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The strong non-linearity structural system simulating liquid sloshing under combined
parametric and external excitations is studied for the principle resonance cases. The method
of the multiple time scale is applied to derive the differential equations of the system
governing the amplitude and phases angles. The numerical solutions are introduced to
analyze the amplitude response characteristics in the neighborhood of the resonance
conditions for the first and second mode. When the system is excited by non-impact forces,
the results show that response reaches the steady state value if the parametric and external
detuning parameter are equal (o, = oy) and is independent upon the initial conditions. Any
small change away of this equality will draw the response amplitude to the chaotic
behaviors depending upon the detuning parameter values before following the random
behaviors. The strong non-linearity is controlling the amplitude response in the second
mode more than the first mode. The results of the second mode indicate that impact
suppresses the system responses with another doubling in the domain of chaotic
fluctuations. It is found that the system is possessing more than one stable fixed point for
impact forces which are dependent upon the initial conditions if o, = oy . The chaotic
fluctuations are varying about the main steady state values for o, # oy . The separate
previous study of the parametric and external excitations for the two modes explained that
amplitude is always steady without any chaotic fluctuations. The combined effect of the
parametric and external excitations is considered as a source of chaotic behaviors for the
non-linear dynamic systems. )
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1. Introduction

The study of liquid sloshing dynamics
within a moving vehicle involves different
types of modeling and analysis. The equations
of motion with strong non-linearities involve
non-linear modal interaction and the effects of
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parametric and external excitation become of
considerable significance under certain
conditions. The impact case is defined as non-
linearities up to the fifth order (strong non-
linearity), while the non-impact case considers
the non-linearities up to the cubic order (weak
non-linearity). It is clear that the intensity of
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the external forces is independent upon the
response of the system to external excitation.
The parametric force is a function of the
system response (i.e. terms with time-varying
coefficients in the right hand side for the
equations of motion). The parametric
excitation of an elevated water tower
experiencing liquid sloshing hydrodynamic
impact was studied by El-Sayad and Ibrahim
[1, 2]. These works were interested in the
parametric excitations in the absence and
presence of the internal resonance. The
strongly non-linearity due to impact forces
under parametric vertical excitation were
investigated by using the multiple time scales
method. Through these studies, many
numerical results were introduced for
studying the first and second mode
excitations. In the presence of the
simultaneous internal resonance, the chaotic
response of the system was presented and the
results for the different cases were obtained.
The behaviors of an impact system simulating
liquid sloshing subjected to external
horizontal non-parametric excitations in the
absence and presence of the internal
resonance was examined by El-Sayad, Ghazy
and et al. [3, 4]. The system responses were
examined in the neighborhood of two external
resonance conditions. The dynamics of a non-
linear system simulating liquid sloshing
impact in moving structures was investigated
by Pillpchuk and Ibrahim [5]. The liquid
impact was modeled based on a
phenomenological concept, by introducing a
power non-linearity with higher exponent.
Non-linear  structural vibrations under
combined parametric and external excitations
were studied by Haquang and et al. [6]. A set
of second order equations with weak quadratic
and cubic nonlinearities was considered.
Simultaneous  parametric and external
excitations were included. The frequency of
the parametric excitation was near a natural
frequency of the system. It was found that
stable multi-modal responses may exist in the
first-order asymptotic solution. The nonlinear
interaction of liquid free surface motion with
the dynamics of elastic supporting structure of
elevated water towers subjected to vertical
sinusoidal ground motion was established in
the neighborhood of internal resonance by

Ibrahim and Barr [7], Ibrahim [8] and Ibrahim
et al. [9]. In the neighborhood of internal
resonance conditions, the liquid structure
system  experienced complex response
phenomena such as jump phenomena,
multiple solutions, and energy exchange. Non
stationary responses with cases including
violent system motion, which can lead to
collapse of the system, were reported in the
neighborhood of multiple internal resonances.
Ibrahim and Li [10] studied liquid-structure
interaction under horizontal periodic motion.
Soundararajan and Ibrahim [11] examined
more realistic cases, such as case of
simultaneous random horizontal and vertical
ground excitation for elastic structure. Non-
linear structural vibrations under combined
multi- Frequency parametric and external
excitations were established by Plaut et al.
[12]. A system of second order equations with
weak quadratic and cubic non-linearities was
considered. Simultaneous parametric and
external excitations act on the system, each
including multiple harmonic components with
independent amplitudes, frequencies and
phases. Attention was focused on resonances
cases introduced by the effect of relations
between the two frequencies, the excitations
and natural frequencies of the system. Two-
degree of-freedom systems with quadratic
non-linearities subjected to parametric and
self excitation was investigated by Asrar [13].
The principal parametric resonance of the first
mode and a three-to one internal resonance
were considered, followed by the case of
internal and parametric resonance of the
second mode. In both cases, the stability of
the system was studied. The sloshing motions
in excited tanks reported by Jannette B.
Frandsen [14]. The author investigated
numerically steep free surface sloshing in
fixed and base-excited rectangular tanks with
a focus on moving liquid tanks. Numerical
modeling was necessary because neither
linear nor second-order potential theory was
applicable to steep waves where high-order
effects are significant. It was also found that,
in addition to the resonant frequency of the
pure horizontal excitation, an infinite number
of additional resonance frequencies existed
due to the combined motion of the tank. The
dependence of the non-linear behavior of the
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solution on the wave steepness was discussed.
The normal oscillations of a string with
concentrated masses on non-linear supports
were examined by Pilpchuk and Vedenova
[15]. They represented the interaction impact
dHimpact(e) [ 0 qu_l

————=h — , where q>>1

de &y

is a positive integer, and b is a positive
constant parameter. The forces acting on the
walls of tank were described by these
phenomenological formulas for the elastic and
damping forces raised to higher powers. The
coefficients of these formulas were obtained
experimentally. There was a limit of absolutely
rigid bodies' interaction, if q—> . For this
case the potential energy takes the square well
form. The energy dissipation of the pendulum
basically resulted from the pendulum
interaction with the container walls. This
means that the dissipation was spatially
localized around the points around the points
0 =10,. The localized dissipative force will be

approximated by the

force Fimpact =

expression:

2p
Fq :d(gﬁJ 0, where d is a constant
0

coefficient, p >> 1 1is a positive integer
(generally p. q ). The negative sign denotes
energy taken from the system, and c is a
linear viscous damping coefficient a special
Saw-Tooth Time Transformation (STTT)
technique was used analytically to describe
the in-phase and out- of phase strongly non-
linear periodic regimes. Liquid sloshing
dynamics, (theory and applications) was
presented by R. Ibrahim [16]. The linear,
nonlinear vibrations, random responses of
liquid-free surface and more generally liquid
sloshing dynamics were studied. The liquid
sloshing dynamics study based on analytical
and experimental results. There were many
discussions resulting from the studying of
various particular tank geometries.

Now, the present paper studies the
response of strong non-linearity system
subjected to combined parametric and
external excitations for the resonances of the
first and second mode. Considering the
dynamical systems governed by the equations
of motions which were established by El-
Sayad and Ibrahim [1, 2]:

u, + a),Qlun =

g{_25nwnu;l + (‘Pn)gn + (\Pn)impact +(Pp)ext (1)

Where n denotes the two natural modes of
excitation (n = 1, 2), ¢, n is the linear damping
coefficients and ¢ is a small constant. The
right-hand sides of these equations include
inertia and stiffness non-linearities of cubic-
order which are referring to geometric non-
linearities and are denoted by subscript “gn”.
They also include impact non-linearities of
fifth-order and are denoted by the expressions
with subscript “impact”. The symbol @ are the
natural frequencies of the linearized system
for the two modes of excitations. All of these
symbols and constants are defined in the
appendixes.

2. Analysis

Under parametric and external excitations
resonances, the differential equations of
motion for the system shown in fig. 1 are
considered by El-Sayad, Ibrahim [1,2] and El-
Sayad, Ghazy [3,4] in the form:

H

Fig. 1. The first and second mode shape for the
amplitudes a and b.
2
@2 1 =(x)sign.

p__ M2
0 M-ofy) Ko
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X+ of Xy = e{¥,(X;) - 26,0, X0} (2-a)

mp,

X5+ 03X, = e )Wy (Xio) — 28202 X0} -(2-D)

Mmoo

Y+ oY) = e{W, (V) - 25,00 Y0} - (2-¢)

e M\ o = :
Yy + 3y, =e(m—“){%2mj)—2:2w2Ygo}. (2-d)
22

¥ o s
terms corresponding to the present cases.
According to the procedures of the multiple
time scale method, i= 1, 2, .and j= 0, 1. One
can introduce the uniform expansion for the
solutions X(¢, ¢ and Y(t, g in the form:

@, and ¥,, stand for all secular

Xi :xiO(TO’T17T27"')+g‘)(il(TOaT17T27"')+"' (3-&)
Yvi :YiO(TO>Tl’T27"')+gYil(T07T17T2"")+"' (S_b)

Where, T, = t,T; = &t, T, = £%t,..i.eT, = &"t, n=
0,1, 2.

We note that the T» represent different
time scales because ¢ is a small parameter
[Nayfeh, 14]. Using the Chain rule, we have:

d & 0 5 0

— = +e——+¢ +.. (4-a)
dt o1, N T,

d2

o D3+2eDyD,+e?(Df+2DyD,) +... . (4-b)

t

Substituting the solution (3-a, b) into egs. (2-
a, b, c, d), using the transformed time
derivative, gives:

{Dg+2eDo Dy +e* (DY +2Do Dy )+..} X +007 X;
= Sqlil . (5-&)

{D§+2eDyDy+e2 (D +2Dy Dy) +...}Y;+07Y;

—eW, . (5-b)

Equating the coefficients of equal powers of &0
gives a set of differential equations to be
solved for X, yio:

DiX, + @i X0 =0 . (6-a)
2 2

DgYyo + @Yo =0. (6-b)
X0 + @5X50 =0. (6-¢)
Yoo + @3Y50 = 0. (6-d)

And equating coefficients of equal powers of !
gives a set of differential Xi and yi as:

2 2
Dy X +07 Xy =

—2DgDy X0 + 111 1(X5) — 201, X1 0 (7-a)

2 2
Dy Xo1 +w5X0;1 =

~ 2Dy Dy Xo + oy (Xi0) — 2005 X0 - (7-b)

2 2 = > :
DYy, +@1Yy, = —2DgD Y1 + 111 (V) — 28101 Y10 -
(7-c)

DgYm + W§Y21 =-2DyD;Y,, + ﬁzz Yis)- 252“2%0 .
(7-d)

Assuming the general solutions of egs. (6-a, b,
and c, d) can be written in the form:

X0 = A(Ty)explio, To) + A(Ty)exp(-ien Tp) . (8-a)
Xo0 = B(T})exp(io,To) + B(Ty)exp(-ia, To) - (8-b)
Yio = A(Ty)explion To) + A(Ty)exp(-io; Ty) . (8-¢)
Yoo = B(T})exp(iosTo) + B(Ty)exp(-io,To) . (8-d)
Wherei=+-1, and the
conjugate, i.e. Aand E are the conjugates of
A and B, respectively and A(T:) and B(T)) are

functions of the time scale Ti. Substituting
solutions (8-a, b, c, d) into (7-a, b, c, d), gives:

over-bar denotes
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DgXu + 0)12X11 =—2D D, (A(Ty ) exp(io, Tp ) +
A(Ty)exp(-io T )) + @11 (X0) —

2i0f £ (AT Jexplio, Ty) +--- (9-a)

D§ X5y + @3 Xo1 = —2Do Dy (B(Th)exp(im, T,)) +

= m
B(T1)exp(—ia)2T0) )+ m—llq)22(Xio) -
22

2iw3 Lo (B(Ty)explianTy) +.... (9-b)

D(%Yu + 6012 Yy =-2Dy D, (A(Ty)explioy Tp) +
A(Ty)expl-ianTp)) + @1 (Yio) -

2i7 (AT )explio, Ty) +---- (9-c)

D§Y, +@3Y,; =—2DgD; (B(Th)exp(iow, T,) +

m J—
B(T1) exp(—iw, 1)) )+ m—ll @5 (Yi0) -
22

2iwa o (B(Ty)explianTy) +.... (9-d)

Substituting with the secular terms included
by W;;and ¥,, [Appendix B] for these

resonance cases in egs. (9-a, b, and c, d),
gives:

DXy, + o X1 =-2Dy Dy {AexplianTy)} -
2iwd 1 AexpliogTo) -

. . X, _
Gy 1 exp(i(Qx To)) ?O +{(8G1g — 3G 907 )AA -

(12iCy 50, ~12iCy50, —60C,)A?ABB +
(6iCy50, —24iCi50, +60C,c)B2AB? +
(2iCy50, +10C,6)A% A%} explioyT) +CC . (10-a)

D3 X o1 + @5 Xy, = —2Do Dy {B(Ty) expliowy T )} —
2iw5 £, B(Ty )explio, Ty ) -

. = . X, _
(iG,1B)expliQx T0}7O +1(8Gpg — 403Gy, 0)B°B +

10Cy¢ + 2iwyCi5)B3 B2 expliw, Ty ) +
16 2+-15 240

(4iC, sw, —20iC, 5)A3BB +

(iC; s, + 5C; 6)AA*} explwsTy)+ CC.  (10-b)

D§Yyy + oYy, =-2Dy Dy {Aexplioy Ty )} -
Qiwd 1 AexpliogTo) -

; — ) Y,
(iGy 3A)expli(Q, Ty — o, Ty )}70 +

{(8Gig —3G1pp0)A%A +
(2iCi50, +10C4)A° A?}explionTy)+CC. (10-c)

D3Yy, + @53Y,, = 2D Dy {B(T})expliwy T )} -
2i5 ¢, B(T} ) expli, To) -

. = . Y,
(iGooB)expli(Qy To — w2 To)} 70 +

{(8Ga9 ~4®3Gy10)B°B +
(10C;6 + 2iw,C,5)B3B? }explin, Ty )+ CC . (10-d)

Where CC stands for the complex conjugates
of the preceding terms. Cis and Cis are known
as impact coefficients defined in appendix. The
right-hand sides of these egs. (10-a, b, and c,
d) contain terms that produce secular terms in
Xin and Y (i.e., terms with a small divisor).
Obviously the exponents on the right-hand
sides in these equations decide the resonance
conditions associated with each equation. For
the analysis of this excitations study, we will
consider only the two relationships between
the parametric and external excitation
frequencies (2, . and the two natural
frequencies of the system o and @, where the
following resonance conditions will be
considered:

1. Principal parametric and external
resonance of the first mode (2y= 2w, Q2= @)
2. Principal parametric and external
resonance of the second mode (2y = 2an, O =

)

3. First excitation mode

According to the multiple scale method, it
is important to introduce the parametric
detuning parameter oy and external detuning
parameters ox which measure the nearness to
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the exact parametric and external resonances.
For this case:

QX:COI""C’UX ,QY:2(01+80'Y . (11—a)

QxTy =Ty +oxTy, QyTy =2w0,Ty +oyT;. (11-b)
For the fist mode amplitude analysis, one
should drop all the terms containing the
second amplitude b which has no effect and
going to zero value [El-Sayad and Ibrahim 1,
2]. Now, expressing the solutions for the
unknown amplitude A of the first mode, which
is a function in the slow time scale T; in the
complex polar forms:

A= %exp(ia) ., A= %exp(—ia) . (12

And substituting in eqgs. (10-a, b, ¢, d), and
following the standard procedures of the
multiple scale method, we get the following set
of the first-order differential equations in the
amplitude a and phases angles y, »» where,
n=oxli—a,and p =0yl —-2a as:

aa Xo Y,
W — =—-Gy; ——co0s 7; — G;3a—=CO0S ¥ —
lﬂfl 11 B 71 13 2 72
0=
L SCNL WY (13-a)
2 16
Fy Xo .
oa—=-—)=w — a+Gy;;—siny; +
1 (0”’1"1 0,,1,1) 1(0y ox) 1175 7
Yo . 3 3 2.3 5 5
Gz —siny,a+—(Gyg — —=Gyoom,")a” +—Cyga” .
13 4 V2 8( 18 g 12201") 16 16
(13-b)
2 T2 o -5, - (13-c)
a,

Egs. (13-a through 13-c) define the response
amplitudes and phases angles in the
neighborhood of the parametric and external
resonance conditions. The  non-impact
response is examined by dropping the fifth-
order terms from these equations and the
impact case is considered by keeping these
terms. The equations are integrated

numerically using Runge-Kuttal method
(MACSYMA 2.3) for mass ratio ¢ = 0.2, length
ratio 4 = 0.2, local frequency ratio v = 0.5,
excitation amplitude ratio Xo = 0.2, Yo = 0.2

and damping ratios & =£&,= 0.1. The system

of first-order differential egs. (13-a through
13-c) belong to a non-integrable, non-
conservative class. It is found that in the
absence of the impact loading, the system
responds in different ways when the
parametric and external detuning parameters
o, andoy are varying. For the steady state

response, numerical solutions indicate that
response always steady if the two parametric
and external detuning parameters are equal
(i.e.o,=o0y). Figs. 2-a, b show a sample of

time history records for the amplitude as
o,=o0y=0.It is found that the amplitude

takes a steady state value and independent
upon the initial conditions ao. Several values
for the initial conditions have been tested to
explore the possibility of any other fixed
points. Actually all of these values yield the
same fixed point in the positive or negative
side. Any small change away of this equality
foro, = oy will draw the response amplitude

to the chaotic behaviors. It is important to
note that the characteristics of the parametric
excitation are controlling the system for the
steady state analysis. Figs. 2-c shows the
influence of the strong non-linearity (impact)
which can not increase the amplitude
response value for this excitation case. It is
seen that impact force reduces the amplitude
response as the result that fluid impact acts
as a vibration absorber to the system first
mode. It is found also that changing the initial
conditions of the numerical solutions can not
change the values of the amplitude, but can
draw it in the negative side with the same
values as shown in fig. 2-b. The in-equality of
o, andoy will create the chaotic behaviors for

the amplitude response as introduced later.
All the previous results are taken by changing
one detuning parameter and keeping the zero
value for the other parameter. Fig. 3-a shows
the non-impact response in a nearly triangle -
periodic form foro, =0, and oy = 0.1, where
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Fig. 2-a, b, c. Time history phase record for non-impact
and impact cases under first mode external and
parametric excitations
(Xo= 0.2, Yo= 0.2, p=02,2=0.2,0x =0, oy =0, §; =0.1).

the effect of initial conditions is drawing
fluctuations to the negative side as shown in
fig. 3-b. For the impact case, the sinusoidal
periodic fluctuations are given in fig. 3-c. It is
found that amplitude is oscillating mainly
about the steady state values shown
previously. Figs. 4-a, b show the amplitude
response in the resonance cases for the
parametric and external excitations separately
[sayad 1, 3], where the steady state response
always introduces without any chaotic
behavior. The more change for the detuning
parameter oy will affect the characteristics of

chaotic behaviors for the amplitude. One can

classify these changes in the following
different domains. The first domain is
bounded by: 2.5 > oy > 0, where the periodic

forms of single or double period are
introduced. The second domain is bounded
by: 8>o0y >=2.5, where the amplitude

response tends to be quasi-periodic form for
the non-impact and impact loads as shown in
figs. 5-a, b. The third domain is limited by:
15>o0y ~8, and the hopf- bifurcation

fluctuations are introduced where the
amplitude response is increasing from zero to
the maximum value and repeating that
periodically, [El-Sayad and Ibrahim 2], figs. 6-
a, b show this phenomena for the non-impact
case with different initial conditions which
give the same negative or positive values, and
fig. 6-c is recording the impact case. A similar
scenario is expected for changing the external
detuning parameter oy with zero value to

detuning parameteroc Figs. 7-a, b show

Y-
amplitude response foro, =5 and oy =0. The
snap- through form of the chaotic behavior is
demonstrated in fig. 7-b for the impact case.
Out of these regions, the characteristics of
non-linear oscillators are controlling the
impact response to the random behavior as
shown in figs. 8-a, b. It is important to note
that negative changes for parametric and
external detuning parameters will give a
similar result as the positive changes which
are explained previously.

4. Second excitation mode

According to the multiple scale method,
and regarding to the analysis of the first mode,
one can assume:

QXZC()Q"‘SO'X ,QY=2a)2+wy. (14-3.)

waO = a)2T0 +O'XT1, Cl)yTO = 2(02T0 +GyT1 . (14-b)

For this case of amplitude analysis, one can
drop all terms containing the first amplitude a
similar to the previous analysis. Now, one can
express the solutions for the unknown
amplitude B of the second mode, which is a
function in the slow time scale T in the
complex polar form:
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Fig. 3-a, b, c. Time history phase record for non-impact
and impact cases under first mode external and
parametric excitations
(Xo= 0.2, Yo= 0.2, p=0.2,A=0.2,0x =0, oy =0.1, §; =0.1).
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Fig. 4-a . Amplitude- frequency response curves under
parametric excitations for the first mode
resonance case (Yo= 0.2, p=02,1=0.2 ,5=0.1).
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Fig. 4-b. Amplitude- frequency response curves under the
horizontal external excitations for the first mode
resonance case (Xo= 0.1, n=02,A=0.2, ¢ =0.1)
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Fig. 5-a, b. Time history phase record for non-impact
and impact cases under first mode external and
parametric excitations
(Xo= 0.2, Yo= 0.2, n=0.2,A=0.2,0x = 0,0y = 5.0, §; =0.1).
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Fig. 6-a, b, c. Time history phase record for non-impact
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parametric excitations
(Xo= 0.2, Yo= 0.2, n=0.2,A=0.2,0x =0, oy =10, {; =0.1).
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Fig. 7-a, b. Time history phase record for non-impact
and impact cases under first mode external and
parametric excitations
Xo= 0.2, Yo= 0.2, p=0.2,12=02,0x = 5.0, oy =0, {;=0.1).
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Fig. 8-a. Time history phase record for non-impact case
under first mode external and parametric excitations
(Xo=10.2, Yo= 0.2, n=02,2=0.2,0x =0, oy = 18, {; =0.1).
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Fig. 8-b. Time history phase record for impact case under
first mode external and parametric excitations
(Xo= 0.2, Yo= 0.2, u=02,A=0.2,0x =0, oy =25, {; =0.1).

B= gexp(iﬂ) ,  B=—expl-iff). (15)

NS

And substituting in egs. (10-a, b, and c, d),
and following the standard procedures of the
multiple scale method, one can obtain the
following set of the first-order differential
equations in the amplitude b and phases
angles y =o=7, —f and » =oyT; -2 as:

b Xo Y,
Wy —— =—Gop —=c08 ¥; —Goob—=C0S 7 —
20”’1"1 21 2 7 22 4 Vo)
-
@60 @ ps (16-a)
2 16
o Xo .
oob(——=-—"=)=w — b+G,; —=siny; +
) (0.,1,1 T, oy —ox) 217, 7
Yy . 3 3 2,13, © 5
Goy —Siny,b+—(Gog — —Gy1q@o” )b° +—C,b>.
22 4 V2 8( 29 3 21002°) 16 16
(16-b)
2 T2 o -oy). (16-0)
o

Egs. (16-a, b, and c) define the response
amplitudes and phases angles in the
neighborhood of the parametric and external
resonance conditions. The impact and
nonimpact responses are examined
numerically similar to the first mode. The
influence of non-linearity created by the

impact and non-impact forces is indicated in
figs. 9-a, b, and c for the steady state
amplitude. Fig. 9-a shows the steady state in
the absence of the impact non-linearity which
is independent upon the initial conditions for
two equal values of parametric and external
detuning parameters ((o,= oy =0). It is clear

that impact forces have a complicated effect
on the out-of-phase mode (second mode) than
the case of in-phase mode (first mode) as
shown in figs. 9-b, c. This implies that system
possesses more than one stable fixed point
due to impact forces dependent upon the
initial conditions. Any small change away of
the zero values of o, and oy will control the

amplitude response into the chaotic regions
similar to the first mode. Fig. 10-a show the
amplitude response due to a small change in
the parametric detuning parameter
oy =0.1, and o, =0.0 for non- impact forces,

where the simple periodic form is introduced.
Figs. 10-b, ¢ show two different samples of
time history recorded due to impact, where we
get the simple periodic form in figure 10b and
quasi — periodic form in fig. 10-c. The
responses of the two samples are fluctuating
about the main values of the steady state
which are suppressed by the impact non-
linearity. Figs. 11-a, b indicates the
amplitude- frequency response curves under
the parametric and horizontal external
excitations for the second mode resonance
cases separately [Sayad 1, 3]. Fig. 12-a shows
the chaotic behaviors for the non-impact
loading due to changing oy =5, which is the
simple periodic form. The quasi-periodic
fluctuations of the impact loading dependent
on the initial conditions are given in figs. 12-b,
c. The more change for oy will draw the

amplitude to respond as double-period form
in the absence of impact which is shown in
fig. 13-a , and more quasi-period with the
snap-through form as plotted in fig. 13-b, c.
Another sample of time history is given in figs.
14-a, b, c showing the effect of changing

external detuning parameter o,=5 at zero
value of oy . One can expect a similar Scenario
for results due to changing o, before
amplitude is responding in the random form
as given in figs. 15-a, b, and c. The results
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corresponding to the second mode are
indicating that impact non-linearities have
more serious effect than the first mode
dependent upon the initial conditions. The
results explain that impact can suppress and
double the domain of chaotic behaviors before
the random behaviors and that compared with
the non —impact case.

T

- T T 1 '
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Figure 9a

I .
75.00 TI 100.00

0.00 T T L

Figure 9b
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Fig. 9-a, b, c. Time history phase record for non-impact
and impact cases under second mode of external
and parametric excitations
(Xo= 0.2, Yo= 0.2, n=02,A=02,0x=0, oy =0, {;=0.1).
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Fig.10-a, b, c. Time history phase record for non-impact
and impact cases under second mode of external
and parametric excitations
(Xo=0.2, Yo=0.2, p=02,A=02,0:=0, 6,=0.1,5=0.1).
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Fig. 11-a . Amplitude- frequency response curves under
parametric excitations for the second mode resonance
case. (Yo= 0.2, p1=02,1=0.2 ,5=0.1).

Alexandria Engineering Journal, Vol. 47, No. 5, September 2008 473



M. Elsayad / Response of a non-linear sloshing impact system

/ \ ]
0.30 ‘s‘ \ 015 =
b b
aah 0.10
0.10 -
005 -
0.00 —% T T T —T S S ey e s s B B R R
-40.00 0.00 Oy 4000 0.00 50.00 150.00 I 20000

Figure 13a

Fig. 11-b . Amplitude- frequency response curves under
the horizontal external excitations for the second mode
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Fig. 12-a, b, c. Time history phase record for non-impact
and impact cases under second mode of external
and parametric excitations
(X0=0.2,Y0=0.2, p=02,1=0.2,0x=0, oy =5, {,=0.1).
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Fig.14-a, b, c. Time history phase record for non-impact
and impact cases under second mode of external
and parametric excitations
(Xo= 0.2, Yo= 0.2, p=02,2=0.2,0x =5, oy =0, {;=0.1).
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Fig. 15-a. Time history phase record for non-impact
case under second mode of external and
parametric excitations
(Xo= 0.2, Yo= 0.2, n=0.2,2=0.2,0x =0, oy =25, {;=0.1).
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Fig. 15-b, c. Time history phase record for impact and
impact case under second mode of external and
parametric excitations
Xo=0.2, Yo= 0.2, p=02,12=02,0x=0, oy =40, {;=0.1).

5. Conclusions

The response of strong non-linearity
system subjected to parametric excitations in
the presence of external excitations is studied.
The results were interested in analyzing
resonance excitations of the first and second
mode. Applying the procedures of the multiple
time scale method, the system responses are
examined in the neighborhood of two principle
parametric and external resonance conditions
(Qy=2w ,= o) and (2= 2w, ,2x= @) . As
the result of excitation for the first mode in the
absence of impact non-linearities, the
response is responding in the chaotic
behaviors of the non-linear oscillators due to
changing the parametric and external
detuning parameters o, ,ocy . For the analysis

of the steady state, numerical solutions
indicated that response always steady if the
two parametric and external detuning
parameter are equal (o,=oy)and is
independent upon the initial conditions. For
the impact non-linearities, impact force
reduced the response amplitude as the energy
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absorbed due to the vibration between the
fluid and structure carrying the tank. The
steady state values of the amplitude response
by impact forces are reduced but the chaotic
behaviors are different and that before
amplitudes are following the random
behaviors of the non-linear systems. For the
second mode, the response always steady if
the parametric and external detuning
parameter are equal. The amplitude response
is independent upon the initial conditions for
the non-impact excitation only. It is clear that
impact forces have a complicated effect on the
out-of-phase mode (second mode) than the
case of in-phase mode (first mode). It is found
that system introduced more than one stable

conditions foro, = oy . Any small change away
of the zero values of o,or oy will draw the

amplitude response to the chaotic behaviors
dependent upon the initial conditions and
acting as the strange attractors. The results of
second mode are indicating that impact has
suppressed the system response with doubling
in the domain of chaotic fluctuations. For the
two mode of excitations, The amplitudes
responses are fluctuating about the main
values of the steady state before drawing to
the random form dependent upon the values
of o, and oy . The results of the two modes

are studied by changing one detuning
parameter only at zero value of the other one.

fixed point dependent wupon the initial
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