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The strong non-linearity structural system simulating liquid sloshing under combined 
parametric and external excitations is studied for the principle resonance cases. The method 
of the multiple time scale is applied to derive the differential equations of the system 
governing the amplitude and phases angles. The numerical solutions are introduced to 
analyze the amplitude response characteristics in the neighborhood of the resonance 
conditions for the first and second mode. When the system is excited by non-impact forces, 

the results show that response reaches the steady state value if the parametric and external 

detuning parameter are equal ( Yx   ) and is independent upon the initial conditions. Any 

small change away of this equality will draw the response amplitude to the chaotic 
behaviors depending upon the detuning parameter values before following the random 
behaviors. The strong non-linearity is controlling the amplitude response in the second 
mode more than the first mode. The results of the second mode indicate that impact 
suppresses the system responses with another doubling in the domain of chaotic 
fluctuations. It is found that the system is possessing more than one stable fixed point for 

impact forces which are dependent upon the initial conditions if Yx   . The chaotic 

fluctuations are varying about the main steady state values for Yx   . The separate 

previous study of the parametric and external excitations for the two modes explained that 
amplitude is always steady without any chaotic fluctuations. The combined effect of the 
parametric and external excitations is considered as a source of chaotic behaviors for the 
non-linear dynamic systems. 
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1. Introduction 
 

The study of liquid sloshing dynamics 
within a moving vehicle involves different 
types of modeling and analysis. The equations 
of motion with strong non-linearities involve 
non-linear modal interaction and the effects of 

parametric and external excitation become of 
considerable significance under certain 
conditions. The impact case is defined as non-
linearities up to the fifth order (strong non-
linearity), while the non-impact case considers 
the non-linearities up to the cubic order (weak 
non-linearity). It is clear that the intensity of 
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the external forces is independent upon the 
response of the system to external excitation. 
The parametric force is a function of the 
system response (i.e. terms with time-varying 
coefficients in the right hand side for the 
equations of motion). The parametric 
excitation of an elevated water tower 
experiencing liquid sloshing hydrodynamic 
impact was studied by El-Sayad and Ibrahim 
[1, 2]. These works were interested in the 
parametric excitations in the absence and 
presence of the internal resonance. The 
strongly non-linearity due to impact forces 
under parametric vertical excitation were 
investigated by using the multiple time scales 
method. Through these studies, many 
numerical results were introduced for 
studying the first and second mode 
excitations. In the presence of the 
simultaneous internal resonance, the chaotic 
response of the system was presented and the 
results for the different cases were obtained. 
The behaviors of an impact system simulating 
liquid sloshing subjected to external 
horizontal non-parametric excitations in the 
absence and presence of the internal 
resonance was examined by El-Sayad, Ghazy 
and et al. [3, 4]. The system responses were 
examined in the neighborhood of two external 
resonance conditions. The dynamics of a non-
linear system simulating liquid sloshing 
impact in moving structures was investigated 
by Pillpchuk and Ibrahim [5]. The liquid 
impact was modeled based on a 
phenomenological concept, by introducing a 
power non-linearity with higher exponent. 
Non-linear structural vibrations under 
combined parametric and external excitations 
were studied by Haquang and et al. [6]. A set 
of second order equations with weak quadratic 
and cubic nonlinearities was considered. 
Simultaneous parametric and external 
excitations were included. The frequency of 
the parametric excitation was near a natural 
frequency of the system. It was found that 
stable multi-modal responses may exist in the 
first-order asymptotic solution. The nonlinear 
interaction of liquid free surface motion with 
the dynamics of elastic supporting structure of 
elevated water towers subjected to vertical 
sinusoidal ground motion was established in 
the neighborhood of internal resonance by 

Ibrahim and Barr [7], Ibrahim [8] and Ibrahim 
et al. [9]. In the neighborhood of internal 
resonance conditions, the liquid structure 
system experienced complex response 
phenomena such as jump phenomena, 
multiple solutions, and energy exchange. Non 
stationary responses with cases including 
violent system motion, which can lead to 
collapse of the system, were reported in the 
neighborhood of multiple internal resonances. 
Ibrahim and Li [10] studied liquid-structure 
interaction under horizontal periodic motion. 
Soundararajan and Ibrahim [11] examined 
more realistic cases, such as case of 
simultaneous random horizontal and vertical 
ground excitation for elastic structure. Non-
linear structural vibrations under combined 
multi- Frequency parametric and external 
excitations were established by Plaut et al. 
[12]. A system of second order equations with 
weak quadratic and cubic non-linearities was 
considered. Simultaneous parametric and 
external excitations act on the system, each 
including multiple harmonic components with 
independent amplitudes, frequencies and 
phases. Attention was focused on resonances 
cases introduced by the effect of relations 
between the two frequencies, the excitations 
and natural frequencies of the system. Two-
degree of-freedom systems with quadratic 
non-linearities subjected to parametric and 
self excitation was investigated by Asrar [13]. 
The principal parametric resonance of the first 
mode and a three-to one internal resonance 
were considered, followed by the case of 
internal and parametric resonance of the 
second mode. In both cases, the stability of 
the system was studied. The sloshing motions 
in excited tanks reported by Jannette B. 
Frandsen [14]. The author investigated 
numerically steep free surface sloshing in 
fixed and base-excited rectangular tanks with 
a focus on moving liquid tanks. Numerical 
modeling was necessary because neither 
linear nor second-order potential theory was 
applicable to steep waves where high-order 
effects are significant. It was also found that, 
in addition to the resonant frequency of the 
pure horizontal excitation, an infinite number 
of additional resonance frequencies existed 
due to the combined motion of the tank. The 
dependence of the non-linear behavior of the 
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solution on the wave steepness was discussed. 
The normal oscillations of a string with 
concentrated masses on non-linear supports 
were examined by Pilpchuk and Vedenova 
[15]. They represented the interaction impact 

force
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is a positive integer, and b is a positive 
constant parameter. The forces acting on the 
walls of tank were described by these 
phenomenological formulas for the elastic and 
damping forces raised to higher powers. The 
coefficients of these formulas were obtained 
experimentally. There was a limit of absolutely 
rigid bodies' interaction, if q  .  For this 

case the potential energy takes the square well 
form. The energy dissipation of the pendulum 
basically resulted from the pendulum 
interaction with the container walls.  This 
means that the dissipation was spatially 
localized around the points around the points
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coefficient, p >> 1 is a positive integer 
(generally p. q ). The negative sign denotes 
energy taken from the system, and c is a 
linear viscous damping coefficient a special 
Saw-Tooth Time Transformation (STTT) 
technique was used analytically to describe 
the in-phase and out- of phase strongly non-
linear periodic regimes. Liquid sloshing 
dynamics, (theory and applications) was 
presented by R. Ibrahim [16].  The linear, 
nonlinear vibrations, random responses of 
liquid-free surface and more generally liquid 
sloshing dynamics were studied. The liquid 
sloshing dynamics study based on analytical 
and experimental results. There were many 
discussions resulting from the studying of 
various particular tank geometries.  

Now, the present paper studies the 
response of strong non-linearity system 
subjected to combined parametric and 
external excitations for the resonances of the 
first and second mode. Considering the 
dynamical systems governed by the equations 
of motions which were established by El-
Sayad and Ibrahim [1, 2]:  
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Where n denotes the two natural modes of 

excitation (n = 1, 2), n  
is the linear damping 

coefficients and ε is a small constant.  The 
right-hand sides of these equations include 
inertia and stiffness non-linearities of cubic-
order which are referring to geometric non-
linearities and are denoted by subscript “gn”. 
They also include impact non-linearities of 
fifth-order and are denoted by the expressions 
with subscript “impact”. The symbol ωn are the 
natural frequencies of the linearized system 
for the two modes of excitations. All of these 
symbols and constants are defined in the 
appendixes.  
 
2. Analysis  
 

Under parametric and external excitations 
resonances, the differential equations of 
motion for the system shown in fig. 1 are 
considered by El-Sayad, Ibrahim [1,2] and El-
Sayad, Ghazy [3,4] in the form: 
 
 

 
 

Fig. 1. The first and second mode shape for the 

amplitudes a and   b. 
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22112211 ΨΨ,Ψ,Ψ and  stand for all secular 

terms corresponding to the present cases.  
According to the procedures of the multiple 
time scale method, i = 1, 2, .and j = 0, 1. One 
can introduce the uniform expansion for the 

solutions X(t, ) and Y(t, )  in the form:   
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210 , n = 

0, 1, 2…    
We note that the Tn represent different 

time scales because  is a small parameter 
[Nayfeh, 14]. Using the Chain rule, we have: 
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Substituting the solution (3-a, b) into eqs. (2-
a, b, c, d), using the transformed time 
derivative, gives: 
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Equating the coefficients of equal powers of 0 
gives a set of differential equations to be 
solved for Xi0, yi0: 
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And equating coefficients of equal powers of 1 
gives a set of differential Xi1 and yi1 as: 
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Assuming the general solutions of eqs. (6-a, b, 
and c, d) can be written in the form: 
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Where 1i , and the over-bar denotes 

conjugate, i.e. A and E  are the conjugates of 
A and B, respectively and A(T1) and B(T1) are 
functions of the time scale T1.  Substituting 
solutions (8-a, b, c, d) into (7-a, b, c, d), gives: 
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Substituting with the secular terms included 

by 2211  and  [Appendix B] for these 

resonance cases in eqs. (9-a, b, and c, d), 
gives:  
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Where CC stands for the complex conjugates 
of the preceding terms. C15 and C16 are known 
as impact coefficients defined in appendix. The 
right-hand sides of these eqs. (10-a, b, and c, 
d) contain terms that produce secular terms in 
Xi1 and Yi1 (i.e., terms with a small divisor). 
Obviously the exponents on the right-hand 
sides in these equations decide the resonance 
conditions associated with each equation. For 
the analysis of this excitations study, we will 
consider only the two relationships between 
the parametric and external excitation 

frequencies y, x and the two natural 

frequencies of the system 1 and 2, where the 
following resonance conditions will be 
considered:  
1. Principal parametric and external 

resonance of the first mode (y = 21, x =  
2. Principal parametric and external 

resonance of the second mode (y = 22, x = 

 
  
3. First excitation mode 
 

According to the multiple scale method, it 
is important to introduce the parametric 

detuning parameter Y and external detuning 

parameters x which measure the nearness to 
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the exact parametric and external resonances. 
For this case: 
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For the fist mode amplitude analysis, one 
should drop all the terms containing the 
second amplitude b which has no effect and 
going to zero value [El-Sayad and Ibrahim 1, 
2]. Now, expressing the solutions for the 
unknown amplitude A of the first mode, which 
is a function in the slow time scale T1 in the 
complex polar forms: 
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And substituting in eqs. (10-a, b, c, d), and 
following the standard procedures of the 
multiple scale method, we get the following set 
of the first-order differential equations in the 

amplitude a  and phases angles where, 
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Eqs. (13-a through 13-c) define the response 
amplitudes and phases angles in the 
neighborhood of the parametric and external 
resonance conditions. The non-impact 
response is examined by dropping the fifth-
order terms from these equations and the 
impact case is considered by keeping these 
terms. The equations are integrated 

numerically using Runge-Kuttal method 

(MACSYMA 2.3) for mass ratio  = 0.2, length 

ratio  = 0.2, local frequency ratio  = 0.5, 
excitation amplitude ratio X0 = 0.2, Y0 = 0.2 

and damping ratios 21   = 0.1. The system 

of first-order differential eqs. (13-a through 
13-c) belong to a non-integrable, non-
conservative class. It is found that in the 
absence of the impact loading, the system 
responds in different ways when the 
parametric and external detuning parameters 

Yx  and are varying.  For the steady state 

response, numerical solutions indicate that 
response always steady if the two parametric 
and external detuning parameters are equal 

(i.e. Yx   ). Figs. 2-a, b show a sample of 

time history records for the amplitude as

.0 Yx  It is found that the amplitude 

takes a steady state value and independent 
upon the initial conditions a0.  Several values 
for the initial conditions have been tested to 
explore the possibility of any other fixed 
points. Actually all of these values yield the 
same fixed point in the positive or negative 
side.  Any small change away of this equality 

for Yx    will draw the response amplitude 

to the chaotic behaviors. It is important to 
note that the characteristics of the parametric 
excitation are controlling the system for the 
steady state analysis. Figs. 2-c shows the 
influence of the strong non-linearity (impact) 
which can not increase the amplitude 
response value for this excitation case. It is 
seen that impact force reduces the amplitude 
response as the result that fluid impact acts 
as a vibration absorber to the system first 
mode. It is found also that changing the initial 
conditions of the numerical solutions can not 
change the values of the amplitude, but can 
draw it in the negative side with the same 
values as shown in fig. 2-b. The in-equality of 

Yx  and  will create the chaotic behaviors for 

the amplitude response as introduced later.  
All the previous results are taken by changing 
one detuning parameter and keeping the zero 
value for the other parameter. Fig. 3-a shows 
the non-impact response in a nearly triangle - 

periodic form for 1.0,0  Yx  and , where  
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Fig. 2-a, b, c.  Time history phase record for non-impact 

and impact cases under first mode external and 

parametric excitations  

(X0= 0.2, Y0= 0.2, x = 0,y = 0, ). 
 
the effect of initial conditions is drawing 
fluctuations to the negative side as shown in 
fig. 3-b. For the impact case, the sinusoidal 
periodic fluctuations are given in fig. 3-c. It is 
found that amplitude is oscillating mainly 
about the steady state values shown 
previously. Figs. 4-a, b show the amplitude 
response in the resonance cases for the 
parametric and external excitations separately 
[sayad 1, 3], where the steady state response 
always introduces without any chaotic 
behavior. The more change for the detuning 

parameter Y  will affect the characteristics of 

chaotic behaviors for the amplitude. One can 

classify these changes in the following 
different domains. The first domain is 

bounded by: 05.2  Y , where the periodic 

forms of single or double period are 
introduced. The second domain is bounded 

by: 5.28  Y , where the amplitude 

response tends to be quasi-periodic form for 
the non-impact and impact loads as shown in 
figs. 5-a, b. The third domain is limited by: 

815  Y , and the  hopf- bifurcation 

fluctuations are introduced where the 
amplitude response is increasing from zero to 
the maximum value and repeating that 
periodically, [El-Sayad and Ibrahim 2], figs. 6-
a, b  show this phenomena for the non-impact 
case with different initial conditions which 
give the same  negative or positive values, and  
fig. 6-c is recording the impact case. A similar 
scenario is expected for changing the external 

detuning parameter X  with zero value to 

detuning parameter y . Figs. 7-a, b show 

amplitude response for 05  Yx  and . The 

snap- through form of the chaotic behavior is 
demonstrated in fig. 7-b for the impact case. 
Out of these regions, the characteristics of 
non-linear oscillators are controlling the 
impact response to the random behavior as 
shown in figs. 8-a, b. It is important to note 
that negative changes for parametric and 
external detuning parameters will give a 
similar result as the positive changes which 
are explained previously.  
 
4. Second excitation mode 

 
According to the multiple scale method, 

and regarding to the analysis of the first mode, 
one can assume: 
 

YYXX   22 2, .           (14-a)       

 

10201020 2, TTTTTT YYxx   .  (14-b) 

 
For this case of amplitude analysis, one can 
drop all terms containing the first amplitude a 
similar to the previous analysis. Now, one can 
express the solutions for the unknown 
amplitude B of the second mode, which is a 
function in the slow time scale T1 in the 
complex polar form: 
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Fig. 3-a, b, c. Time history phase record  for  non-impact 

and impact  cases under first mode external and 

parametric excitations  

(X0= 0.2, Y0= 0.2, x = 0,y = 0.1, ). 
 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4-a . Amplitude- frequency response curves under 

parametric  excitations for  the first mode  

resonance case (Y0= 0.2) 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 4-b. Amplitude- frequency response curves under the 

horizontal external excitations for the first mode  

resonance case (X0= 0.1, )     

______ Impact                  --------- Non-Impact. 

 

 
 

Fig. 5-a, b. Time history phase record for non-impact  

and impact cases under first mode external and  

parametric excitations  

(X0= 0.2, Y0= 0.2, x = 0, y = 5.0). 
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Fig. 6-a, b, c. Time history phase record for  non-impact 

and impact  cases under first mode external and 

parametric excitations 

(X0= 0.2, Y0= 0.2, x = 0,y = 10, ). 

 

 
 

 
 

Fig. 7-a, b. Time history phase record for non-impact  

and impact cases under first mode external and 

parametric excitations  

X0= 0.2, Y0= 0.2, x = 5.0,y = 0, ). 

 

 
 

Fig. 8-a. Time history phase record for non-impact case 

under first mode external and parametric excitations 

(X0= 0.2, Y0= 0.2, x = 0,y = 18, ). 
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Fig. 8-b. Time history phase record for impact case under 

first mode external and parametric excitations 

(X0= 0.2, Y0= 0.2, x = 0,y = 25, ). 

 

)exp(
2

,)exp(
2

 i
b

Bi
b

B  .        (15) 

 
And substituting in eqs. (10-a, b, and c, d), 
and following the standard procedures of the 
multiple scale method, one can obtain the 
following set of the first-order differential    
equations in the amplitude b and phases 

angles andas:    
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Eqs. (16-a, b, and c) define the response 
amplitudes and phases angles in the 
neighborhood of the parametric and external 
resonance conditions. The impact and 
nonimpact responses are examined 
numerically similar to the first mode. The 
influence of non-linearity created by the 

impact and non-impact forces is indicated in 
figs. 9-a, b, and c for the steady state 
amplitude. Fig. 9-a shows the steady state in 
the absence of the impact non-linearity which 
is independent upon the initial conditions for 
two equal values of parametric and external 

detuning parameters ( )0(  Yx  . It is clear 

that impact forces have a complicated effect 
on the out-of-phase mode (second mode) than 
the case of in-phase mode (first mode) as 
shown in figs. 9-b, c.  This implies that system 
possesses more than one stable fixed point 
due to impact forces dependent upon the 
initial conditions. Any small change away of 

the zero values of  Yx  and  will control the 

amplitude response into the chaotic regions 
similar to the first mode. Fig. 10-a show the 
amplitude response due to a small change in 
the parametric detuning parameter 

0.0,1.0  xY  and  for non- impact forces, 

where the simple periodic form is introduced. 
Figs. 10-b, c show two different samples of 
time history recorded due to impact, where we 
get the simple periodic form in figure 10b and 
quasi – periodic form in fig. 10-c.  The 
responses of the two samples are fluctuating 
about the main values of the steady state 
which are suppressed by the impact non-
linearity. Figs. 11-a, b indicates the 
amplitude- frequency response curves under 
the parametric and horizontal external 
excitations for the second mode resonance 
cases separately [Sayad 1, 3].  Fig. 12-a shows 
the chaotic behaviors for the non-impact 

loading due to changing 5Y , which is the 

simple periodic form. The quasi-periodic 
fluctuations of the impact loading dependent 
on the initial conditions are given in figs. 12-b, 

c. The more change for Y  will draw the 

amplitude to respond as  double-period form  
in the absence of impact which is  shown in 
fig. 13-a ,  and more quasi-period with the  
snap-through  form as plotted in fig. 13-b, c. 
Another sample of time history is given in figs. 
14-a, b, c showing the effect of changing 

external detuning parameter 5x  at zero 

value of Y . One can expect a similar Scenario 

for results due to changing x before 

amplitude is responding in the random form 
as given in figs. 15-a, b, and c. The results 
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corresponding to the second mode are 
indicating that impact non-linearities have 
more serious effect than the first mode 
dependent upon the initial conditions. The 
results explain that impact can suppress and 
double the domain of chaotic behaviors before 
the random behaviors and that compared with 
the non –impact case. 
 

 
 

 
 

 
 

Fig. 9-a, b, c. Time history phase record for non-impact 

and impact cases under second  mode of  external  

and parametric excitations  

(X0= 0.2, Y0= 0.2, x = 0,y = 0, ). 

 
 

Fig.10-a, b, c. Time history phase record for non-impact 

and impact  cases under second  mode of  external  

and parametric excitations  

(X0= 0.2, Y0= 0.2, ). 

 

 
 

Fig. 11-a . Amplitude- frequency response curves under 

parametric excitations for the second mode resonance 

case. (Y0= 0.2
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Fig. 11-b . Amplitude- frequency response curves under 

the horizontal external excitations for the second mode 

resonance case (X0= 0.2) 

______  Impact                  ---------   Non-Impact 

 

 
 

Fig. 12-a, b, c. Time history phase record for non-impact 

and impact cases under second mode of external  

and parametric excitations  

(X0= 0.2, Y0= 0.2, x = 0y = 5, ). 

 

 
 

Fig.13-a, b, c. Time history phase record for non-impact 

and impact cases under second mode of external  

and parametric excitations  

(X0= 0.2, Y0= 0.2, x = 0,y = 10, ). 
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Fig.14-a, b, c. Time history phase record for non-impact 

and impact cases under second mode of external  

and parametric excitations  

(X0= 0.2, Y0= 0.2, x = 5,y = 0, ). 

 

 
 

Fig. 15-a. Time history phase record for non-impact  

case under second mode of external and  

parametric excitations  

(X0= 0.2, Y0= 0.2, x = 0,y = 25, ). 

 
 

Fig. 15-b, c. Time history phase record for impact and 

impact case under second mode of external and 

parametric excitations  

X0= 0.2, Y0= 0.2, x = 0,y = 4 0, ). 

 
5. Conclusions 
 

The response of strong non-linearity 
system subjected to parametric excitations in 
the presence of external excitations is studied. 
The results were interested in analyzing   
resonance excitations of the first and second 
mode. Applying the procedures of the multiple 
time scale method, the system responses are 
examined in the neighborhood of two principle 
parametric and external resonance conditions 

(y = 2x = and (y = 2x = . As 
the result of excitation for the first mode in the 
absence of impact non-linearities, the 
response is responding in the chaotic 
behaviors of the non-linear oscillators due to 
changing the parametric and external 

detuning parameters x , Y . For the analysis 

of the steady state, numerical solutions 
indicated that response always steady if the 
two parametric and external detuning 

parameter are equal )( Yx   and is 

independent upon the initial conditions. For 
the impact non-linearities, impact force 
reduced the response amplitude as the energy 



M. Elsayad / Response of a non-linear sloshing impact system 

476                                  Alexandria Engineering Journal, Vol. 47, No. 5, September 2008 

absorbed due to the vibration between the 
fluid and structure carrying the tank. The 
steady state values of the amplitude response 
by impact forces are reduced but the chaotic 
behaviors are different and that before 
amplitudes are following the random 
behaviors of the non-linear systems. For the 
second mode, the response always steady if 
the parametric and external detuning 
parameter are equal. The amplitude response 
is independent upon the initial conditions for 
the non-impact excitation only. It is clear that 
impact forces have a complicated effect on the 
out-of-phase mode (second mode) than the 
case of in-phase mode (first mode). It is found 
that system introduced more than one stable 
fixed point dependent upon the initial 

conditions for Yx   . Any small change away 

of the zero values of Yx  or  will draw the 

amplitude response to the chaotic behaviors 
dependent upon the initial conditions and 
acting as the strange attractors. The results of 
second mode are indicating that impact has 
suppressed the system response with doubling 
in the domain of chaotic fluctuations. For the 
two mode of excitations, The amplitudes 
responses are fluctuating  about  the main 
values of the steady state before  drawing to 
the random form dependent upon the values 

of x  and Y . The results of the two modes 

are studied by changing one detuning 
parameter only at zero value of the other one. 

 
APPENDIX 
 
Appendix A 
 


0




0


 

2
 



g


2
L  2ML

k


L

g


0
2

)/(
)(












y
y

F
f  

0
2

)/(
)(












x
x

F
f  

M

m


L




L

 

)1(2

4)1()1( 2222
2
2,1














2,1
2
2,1

2
2,1

2
2,1

2
2,1

2,1

1

/)1(

1

)1( KB

A










































2

1
][

Y

Y
P  









KK 21

11


11

2

m


  

,2 2
1

2
111   KKm  2

2
2
222 2  KKm , ,

22
1

2

11  Kk   22
2

2
22 Kk   

 
Appendix B  
 

 ``````
gn XXXGXXGXXGXGX= GΨ 2121121

2
21112

2
2110

3
219

3
1181)(  

 `
1

`
21

`
1

`
22

2`
21

2`
22

``
2

2
1

``
112 XXXXXXXXXXXXXXX 118117116115114113 GGGGGG

2`
11

``
1

2
1

2`
122

2
1

2
21 XXXXXXXXXX 123122121120119 GGGGG   

 3
22115

3
21115

4
2216

4
1216

5
216

5
1161 4455)( XXXCXXXCXXCXXCXCX= CΨ ``

impact  

 2
3
1215

2
2

2
1215

2
2

3
116

2
2

2
1115

3
2

2
116 4610610 XXXCXXXCXXCXXXCXXC ```

©
2

4
115

©
2

4
215

©
1

4
215

©
1

4
115

©
12

3
1154 YYCYYCYYCYYCYYYC   

)()( 111 tf= GΨ Xex 



M. Elsayad / Response of a non-linear sloshing impact system 

                                                Alexandria Engineering Journal, Vol. 47, No. 5, September 2008                                  477 

 ``````
gn XXXGXXGXXGXGX=  GΨ 2122121

2
22112

2
2210

3
229

3
1282 )(

 `````````` XXXGXXXGXXGXXGXXGXXXG 121218122217
2

21216
2

222152
2
1214112213  

2
112231

2
1222

2
122212

2
1220

2
21219

```` XXGXXGXXGXXGXXG   

 3
22115

3
21115

4
2216

4
1216

5
216

5
1162 4455)( XXXCXXXCXXCXXCXCX= CΨ ``

impact

 2
3
1215

2
2

2
1215

2
2

3
116

2
2

2
1115

3
2

2
116 4610610 XXXCXXXCXXCXXXCXXC ```

 

4
1

`
215

4
2

`
215

4
2

`
115

4
1

`
1152

3
1

`
115 XXCXXCXXCXXCXXX4C   

)()( 212 tf= GΨ Xex  

 
Appendix C  
 

)1(
1

2

1

0
11



K

g
G  )1(

1
2
1

12


K

g
G  , )1(

1 21
13



KK

g
G   , )1(

6 2

4
1

2
0

18


 K
G  2

2
1

2
0

111 )1( K
K

G 



, 

)1(
6

3
21

2
0

19


 KK
G   , 

2
221

2
0

110 )1)((
2

KKKG 



, )1)(( 211221

2
0

112 KKKKKKG 



, 

)1(
2

2
2112

1
2
0

113 KKKK
K

G 



, 

2
121

2
0

114 )1)((
2

KKKG 



 ,

 

))(1( 2
212

2
0

115 KKKG 



 

, ))(1( 2
211

2
0

116 KKKG 



,  

2
2

1
2
0

117 )1(
2

2
K

K
G 




, ))(1(

2
211

1
2
0

118 KKK
K

G 



   

,   )1(
2

2
2

2
1

2
0

119


 KK
G   , )1(

2

2
3
1

2
0

120


 KK
G   ,

 

118121
2

1
GG   

, 
2

1
1

2
0

122 )1( K
K

G 



 ,   122123 GG  ,    

 215
m

d
G  . 

 

,

 0
2216
m

b
G   ,

 

)1(
1

2

2

0
21



K

g
G   ,

 

)1(
1 21

22


KK

g
G   , 

 )1(
1

2
2

23


K

g
G       , )1(

6

2
3
1

2
0

28


 KK
G  , )1(

6

4
2

2
0

29


 K
G    

2
2

2
2
0

210 )1( K
K

G 



 , 

2
221

2
0

211 )1)((
2

KKKG 



 ,

 

)1( 2121
2

2
0

212 KKKK
K

G 



 , 

221223 GG   

)1)(( 212121

2
0

213 KKKKKKG 



,  

2
1

2
2
0

214 )1( K
K

G 



, 210215 GG   

)1)(1( 21
2

2
0

216 KK
K

G 



, 216217 GG  , 214218 GG   , )1(

2

3
21

2
0

219


 KK
G         

)1(
2

2
2

2
1

2
0

220


 KK
G  , ))(1( 2

2
12

2
0

221 KKKG 



,  )()1(

2
21

2
1

2
0

222 KKKG 



. 

 

 



M. Elsayad / Response of a non-linear sloshing impact system 

478                                  Alexandria Engineering Journal, Vol. 47, No. 5, September 2008 

References 
 
[1] M.A. EL-Sayad, S.N. Hanna and R.A. 

Ibrahim, "Parametric Excitation of 
Nonlinear Elastic Systems Involving 
Hydrodynamic Sloshing Impact", Journal 
of Non-Linear Dynamics Vol. 18, pp. 25-
50 (1999). 

[2] R.A. Ibrahim, and M.A. EL-Sayad, 
"Simultaneous Parametric And Internal 
Resonance In Systems Involving Strong 
Nonlinearities", Journal of Sound and 
Vibration Vol. 225 (5), pp. 857-885 
(1999). 

[3] M.A. El Sayad, and S.S.A. Ghazy, 
"Behavior of Strong Non-Linearity 
Systems Subjected To Horizontal External 
Excitation Experiencing Liquid Sloshing 
Impact", Alexandria Eng. Journal, Vol. 41 
(5-6), pp. 875-887 (2002). 

[4] M.A. El Sayad, S.S.A.A. Ghazy and Amr 
M.A. El-Razek, "Behaviors of Non-Linear 
Sloshing Impact System Subjected To 
Simultaneous Horizontal Excitations", 
Alexandria Eng. Journal, Vol. 44 (4), pp. 
663-679 (2005). 

[5] V.N. Pilipchuk, and R.A. Ibrahim, "The 
Dynamics of a Nonlinear System 
Simulating Liquid Sloshing Impact in 
Moving Containers", Journal of Sound 
and Vibration Vol. 205 (5), pp. 593-615 
(1997). 

[6] N. HAQUANG, D.T. Mook and R.H. Plaut, 
"Non-Linear Structural Vibrations Under 
Combined Parametric and External 
Excitations", Journal of Sound and 
Vibration Vol. 118, pp. 291- 306 (1987). 

[7] R.A. Ibrahim and A.D.S. Barr, "Auto 
Parametric Resonance in a Structure 
Containing a Liquid, Part I: Two Mode 
Interaction", Journal of Sound and 
Vibration, Vol. 42 (2), pp. 159-179 (1975). 

[8] R.A. Ibrahim and A.D.S. Barr, "Auto 
Parametric Resonance in a Structure 
Containing a Liquid, Part II: Three Mode 
Interaction", Journal of Sound and 
Vibration, Vol. 42 (2), pp. 181- 200 
(1975). 

[9] R.A. Ibrahim and W. Li, "Parametric and 
Auto Parametric Vibrations of An Elevated 
Water Tower, Part II: Auto Parametric 
Response", Journal of Sound and 
Vibration, Vol. 121 (3), pp. 429-444 
(1988). 

[10] A. Soundararajan and R.A. Ibrahim, 
"Parametric and Auto Parametric 
Vibrations of An Elevated Water Tower, 
Part III: Random Response", Journal of 
Sound and Vibration, Vol. 121 (3), pp. 
445-462 (1988). 

[11] R.H. Plaut, J.J. Genery and D.T. Mook, 
"Non-Linear Structural Vibrations Under 
Combined Multi- Frequency Parametric 
and External Excitations", Journal of 
Sound and Vibration, Vol. 140 (3), pp. 
379-390 (1990). 

[12] W. Asrar, "Two-Degree-of-Freedom 
Systems with Quadratic Non-Linearities 
Subjected to Parametric and Self 
Excitation", Journal of Sound and 
Vibration, Vol. 150 (3), pp. 447-456 
(1990). 

[13] B. Jannette Frandsen, "Sloshing Motions 
in Excited Tanks", Journal of 
Computational Physics, 196 (2004) pp. 
53–87 (2003). 

[14] V.N. Pilipchuk, Vedenova, "The 
Calculation of Strongly Non-linear 
Systems Close to Vibration", Pricladnaya 
Matematika Mekhanika (PMM) Vol. 49, 
pp. 572-578 (1985). 

[15] R.A. Ibrahim, "Liquid Sloshing 
Dynamics", (Theory and Applications), 
Cambridge Univ. Press (2005). 

[16] A.H. Nayfeh and D. Mook, Nonlinear 
Oscillations, Wiley, New York (1979). 

[17] J.A. Zukas, Impact Dynamics, John 
Wiley, New York (1982). 

[18] A.H. Nayfeh and D. Mook, Nonlinear 
Dynamics, Wiley, New York, (1996). 

[19] H.N. Abramson, (Editor), the Dynamic 
Behavior of Liquids in Moving Containers, 
NASA SP 106, Washington, D.C. (1966). 

 
Received July 17, 2007 

Accepted April 17, 2008  

 


