
Alexandria Engineering Journal, Vol. 47 (2008), No. 5, 441-450 441
© Faculty of Engineering, Alexandria University, Egypt.

Mobile agents management, modeling and implementation

Mohamed Khamis, Ibrahim Al-Bedewi
Faculty of Computing and Information Technology, KAAU, Saudi Arabia

To gain large amount of processing power in an inexpensive way, the computational power
of a group of small computers can be accumulated rather than the power of a single
expensive supercomputer. Internet, in this case, represents the communication media that
bridge the distance gaps between these small computers and bring them in a single
computing paradigm. A scheme is, therefore, required to manage these distributed
computers. However, the required communication bandwidth can represent an obstacle for
achieving this target in an efficient way, especially when many messages need to be
exchanged among the different computing nodes. Mobile agent technology represents a
viable solution of this problem, but a framework is needed to allow agents to communicate,
migrate and execute in a secure environment. This paper presents an agent platform that
provides applications with these services using a simple interface. Both the modeled
platform and its implementation are described and a demo is given to show how to integrate
this platform with agent applications.

Keywords: Distributed application, Agent framework, Modeling, Mobile agent, Platform

1. Introduction

In order for mobile agents to work and
perform their tasks properly they need an
environment that provides the execution for
agents, this environment is called Agent
Server, Agent Framework, Agent Platform, or
Agency. Agent environment hosts all agents
which are running in parallel on a machine,
and enables agents to access its resources.
Also, this environment allows agents to
communicate with each other locally or
remotely and to migrate to other
environments. The environment manages the
creation, execution, suspension, transfer, and

termination of mobile agents [1]. It provides a
directory service to look up for agents'
locations [2]. This service is required to allow
agents to communicate and to migrate. Agent
Security [3] is one of the most important
issues, since agent is an executable code
which could cause damage for the machine it
migrates to. The environment, like any other
application, is subject to errors and
corruption, so it has to adopt a fault tolerant
technique to be reliable. Below, several of the
existing mobile agent environments are briefly
described.

M. Khamis, I. Al-Bedwi / Mobile agents management

442 Alexandria Engineering Journal, Vol. 47, No. 5, September 2008

2. Background

Aglet [4] is an agent platform that allows
java objects to move from one host to another
spanning network. Aglet system does not offer
strong mobility or migration. For security
reasons, all Aglet agents communicate with
each other through a proxy object. The Aglet
proxy object acts as a shield to protect the
agent against malicious agents. The proxy
consults the agent security manager to check
the permission. An Aglet’ agent has a unique
identifier used through the life cycle of the
agent.

Agent Remote Action (ARA) [5] is another
platform that facilitates the execution of
mobile agents in a heterogeneous network.
ARA mobile agent is a code that can migrate to
another machine during its execution to
resume its execution there. This means that,
the ARA system can capture the execution
state and sends it with the agent to the
destination host, i.e. ARA system provides
strong mobility. ARA system deals with the
agent independently of its programming
language since it uses different language run-
time interpreters in order to execute multiple
mobile agents programmed with multiple
interpreted languages. ARA core is the part of
the system which provides different services
such as mobility, communication, security,
and resource management.

Concordia [[6]] is a java-based mobile

agent environment to develop mobile agents. It
introduces many services for executing mobile
agents, these services are implemented in
many components known as managers. The
mobility of mobile agents is performed by an
agent manager, which also provides the agent
execution. This environment introduces inter-
agent communication in two forms:
distributed events and agent collaboration.
This environment allows developers to support
agents by adding new services to Concordia
servers using Service Bridge components.
Concordia introduces a Directory Manager to
register agents, which in turn enables locating
the desired servers. Concordia provides
security model to protect agents from access
or tampering while they have been stored in
persistent storage. Further, it protects agents
during transmission via network. Also,

Concordia protects server resources from
harmful and unauthorized access or
modification. One of the important services
introduced by Concordia is the recovery from
failure service that protects both agents and
server against system crash by saving them in
persistent storage; thereby recovering the
original state is feasible. Concordia uses a
message Queuing system, which works as
"store and foreword". This system allows the
saving of all transmitted agents locally until
they successfully reach the remote server.
Concordia Queue Manager is a component
that performs the latter technique, while it
uses java RMI in its communication.

TACOMA [[7],[8]] agent is a code that has

the ability to migrate to remote host across the
network, during its execution. TACOMA
project focuses on the support of operating
system to agent based computing, and how to
structure applications based on the mobile
agent model. TACOMA consists of interpreter
for TCL scripting and C programming
languages to provide the access to its features

Tracy [[9]] is a java-based mobile agent that

allows building and managing stationary and
mobile agents. Tracy introduces basic services
required to manage and transmit mobile
agents.

Mobile Object and Agent (MOA) [[10]] is an

Agent Environment (AE) implemented in Java
Virtual Machine (JVM) without any
modification to JVM. It is developed to achieve
four goals; the first goal is to provide
collaboration among agents or their users. The
second goal is to provide resource control in
order to protect agents and hosts against
denial of service attack. The third goal is to
provide a standard way to configure and
customize the system's components. The
fourth goal is to increase the base in which
agents can visit other agent systems. The
architecture of MOA consists of components
that support naming and locating agents,
mobility, communication, and resource
management. MOA does not support strong
mobility. Many security issues were not
implemented, such as authentication,
authorization and integrity checking.

Grasshopper [[12]] is the first mobile agent

platform, which conforms to MASIF standards

M. Khamis, I. Al-Bedwi / Mobile agents management

 Alexandria Engineering Journal, Vol. 47, No. 4, September 2008 443

in addition to FIPA. Grasshopper was
developed by GMD FOKUS and IKV++. It is
based on JVM, and it represents the actual
runtime environment for both kind of agents
(mobile and stationary). It enables the
programmers to develop multi-agent systems
with mobile agents and provides an Agent
Communication Language (ACL) to support
the communication and cooperation among
agents. Grasshopper's Distributed Agent
Environment (DAE) is composed of regions,
places, agencies, and agents. Grasshopper
agency is composed of two parts: the first one
is the core agency, which support the minimal
services required for executing the agents.
Whereas, the second parts is one or more
places, which are the container in which the
agents are executed. The core agency provides
many services such as communication service,
registration service, management service,
security service, and persistence service. The
communication in grasshopper is supported
by using multiple protocols to achieve remote
interactions, such as, CORBA, RMI, and plain
sockets. Optionally the last two protocols can
be protected by SSL. Also, this environment
introduces four modes of communications,
such as synchronous, asynchronous,
dynamic, and multicast communication. The
security in grasshopper is implemented in two
levels: the external and the internal. The
external level protects the interactions
between the distributed agencies and region
registries by using SSL protocol while the
internal level protects the agencies resources
against unauthorized access, and protects the
agents from each others, this level is based on
java security mechanism.

MAPNET [[14]] is another alternative to

java-based environments; it is based on .net
framework and conforms to MASIF
specification. This environment is written in
C#, and supports both migration and inter-
agent communication.

3. Agent migration service

The available agent platforms don’t provide
all the necessary component modules.
Building a mobile agent platform to provide
the different modules is a project funded at
the KAAU University. The main goals of this

project is improving the performance and
efficiency by adopting efficient algorithms for
the different services and introducing all the
necessary modules in a single platform as well
as building a prototype of this platform. In
this paper a model and implementation for the
communication, migration and management
services are given. These services represent
the core functionality of any platform. The
migration model considers a layering concept
to facilitate developing the framework. This
model is described below.

3.1 . Agent migration model architecture

The migration service is the module
responsible for transmitting agents to their
destination. The migration model is
introduced to support migration of agents
between agencies. The proposed model
considers the previously stated migration
design issues in order to fulfill the dedicated
tasks. It adopts the concept of layers. As the
layering makes the design functionality
modular, so the system could be evolved
easily.

The proposed model is called Four-Layers
Model (FLM). It consists of four layers as
depicted in fig. 1. This modularity of the
system facilitates the developing and
upgrading for each layer separately. Further,
it enables discovering the errors of the system
easily and in turn minimizes the time required
to debug and fix the problems.
The functions of the different layers are
summarized as follows:

 Communication Layer: it opens TCP
channel to migrate agent from the sender to
the receiver.

 Mapping Layer: it queries the DNS server
in order to resolve the host symbolic name
when an agent is required to migrate to other
servers.

 Migration Layer: it guarantees reliable
migration for mobile agents.

 Compacting Layer: it is to transform agents
to a form that allows them to migrate rather
than the form of execution (marshalling and
un-marshalling operations). Agent Migration
Block (AMB)

M. Khamis, I. Al-Bedwi / Mobile agents management

444 Alexandria Engineering Journal, Vol. 47, No. 5, September 2008

Figure 1: The Four-Layer Migration Model

Fig. 1. The four layers migration model

A mobile agent within migration service is

represented by a data structure known as
Agent Migration Block (AMB). The AMB holds
information about particular agent. This
information includes identifier, agent’ name,
and message of the agent which in turn
includes the state, code and agent itinerary,
beside the format’ information of the message
and other values as shown in fig. 2.

For reliable migration, two AMB are
required. The first in the sender, whereas the
second in the receiver site. As soon as the
agent migration is accomplished successfully,
the AMB in sender will be removed, whereas
the AMB in receiver will be maintained in the
compacting layer.

3.2 . Agent migration scenario

The agents in the system start their

itinerary in the management service on the
machine they are residing on. Once an agent
needs to migrate to another remote machine
after finishing its execution task on the
current machine, the management service will
launch agent for migration through calling the
service of the compacting layer, of the
migration service fig. 3. Sequence of
operations has to be taken in order to
complete the migration process for the agent
as follows:
1. The compacting layer builds the Agent
Migration Block and calls the migration layer
to add AMB to its outgoing list.
2. The mapping layer resolves the destination
name to corresponding IP address then, the

mapping layer will handle both of the IP
address and the marshaled agent to the
sender component of the communication
layer.
3. The sender component will send the agent
to the destination via network using TCP
protocol.
4. At the destination site, the AMB is received
by the receiver object in the communication
layer.
5. The received AMB is accumulated in
incoming list within the migration layer.
Once the agent server is completely
accumulated in incoming list, it will be sent to
the upper layer. The agent is un-marshaled in
the compact layer and is handled to the
management service, which immediately
starts by putting the agent in its execution
cycle.

3.3 . Platform characteristics

Weak mobility is used in this platform, This
kind of implementation offers many
advantages to applications such as network
information gathering, remote filtering and
any application that doesn’t require capturing
the agent state as in case of strong mobility.
Strong mobility is important only when there
is a need to build reliable and dynamic load
balancing systems.

Routing technique in this platform is
static, where all desired hosts (itinerary) to be
visited by the agent, are listed in a table with
the tasks which are needed to be executed at
each host. While the agent roams according to
its itinerary, the platform manager fetches this
table to determine the task to be executed by
the agent at the current host as well as the
next host of the agent’ itinerary. (The
Implication of the Migration Policy).

The current migration service adopts push-
all-to-next strategy. This strategy transmits the
entire agent code as well the agent state at
once to next destination. It suffers from a
considerable drawback. The drawback
appears when the agent code refers to many
dependencies and not all of these
dependencies are used in every destination
during the agent journey. Hence there are
superfluous code that will be transmitted,
which in turn affect the bandwidth of the

M. Khamis, I. Al-Bedwi / Mobile agents management

 Alexandria Engineering Journal, Vol. 47, No. 4, September 2008 445

underlying network. However, if the agent
code doesn’t have these many dependencies,
this policy will be relatively faster, since
agents are transmitted with all of their parts
(object states, and code) at once.

To alleviate the above problem, the
developer can divide the single agent with
multi functions into multi agents, each with
only a single function. The whole functionality

of the big agent is then gathered from these
many small agents. This process is known as
Agent Normalization. Using such normalization
technique the required bandwidth is reduced
and the fastness is obtained.

Once agent migration process is started,
the entire agent information is marshaled into
a migration message, as shown in fig. 2.

Fig. 2. Agent message format.

Fig. 3. Agent migration.

M. Khamis, I. Al-Bedwi / Mobile agents management

446 Alexandria Engineering Journal, Vol. 47, No. 5, September 2008

4. Agent management service

The Agent Management Service (AMS)
includes creation, deletion, and execution of
agents. It is important to note that, AMS has
the authority to manage the agent life cycle.
The agent life cycle model consists of set of
states that an agent can exist in one of them
during its lifetime. The transition of an agent
from state to the other will depend on the
arisen events.

The agent life cycle model shows the states
of the agents during their life and the different
events on which an agent transit from any
state to another one. According to FIPA agent
management specification the agent life cycle
model is defined explicitly by introducing a
state diagram, which consists of five states,
they are initiated, active, suspended, waiting,
and transit states, where any agent must exist
in one of these states. FIPA also define ten
transitions events, which can be described as:
create, invoke, destroy, quit, suspend, resume,
wait, wake up, move, and execute transitions.
With regard to FIPA the active state is the
central state, through which an agent has to
pass during moving to another state.

4.1 . Agent Life-cycle model

For the sake of efficiency, the management
service of the platform here, embeds few of the
above states in one, and adopts the agent life
cycle model shown in fig. 4, which consists of
three states and seven transitions. The three
basic states are:
1. The suspension state: the agent has
resources allocated but it is not executing. The
agent enters in this state in one of three cases.
The first case, when the agent enters the
system for first time; the second, when the
agent finishes its execution and is ready to
migrate; the third, when the agent is in the
migration state after finishing the current task
but needs to execute another task on the
current machine.
2. The execution state: the manager assign an
agent from the suspension queue to run by
allocating a thread for this agent to perform its
task.
3. The migration state: in which the
management system checks up whether the

Fig. 4. Mobile agent life-cycle model.

next task of an agent, is to be executed on the
local host or on a remote one according to the
agent itinerary. On the local host, the
management system will push back the agent
to the suspension state, otherwise it call the
migration service to send the agent to next
hop in the itinerary (if any), or to send it back
to its home then de-allocates the resources
used by the agent afterward.

Some important notes have to be noticed
here, the proposed agent life cycle model
explained considers the suspension state as
the central state, i.e. when an agent wants to
move between two states it must pass through
the suspension state first. Also, another
important note is that, the management
system is not concerned about the internal
state of agents or even their specific goals.
As mentioned earlier, this model has six
transitions, which describe how agents can
change their state. The state transition of
agents can be listed as:
1. Create; it causes creation of an agent by
representing it in the system with Agent
Control block (ACB). This transition assigns
the agent in suspension state.
2. Run; it brings an agent to the execution in
an independent thread, hence, the agent state
is changed accordingly.
3. Suspend; it makes an agent to be in its
passive form after its task has been fulfilled.
4. Migrate; it brings the agent into migration
state to check up for the next hop in the agent
itinerary.
5. Resume; it resumes the agent back from
migration state to suspension state in order to
execute the next task on the current machine.
6. Dispose; it causes the termination of the
agent and the release of its resources, either
after fulfilling its tasks or after sending the
agent to the migration service to continue the
remaining tasks on other machines.

M. Khamis, I. Al-Bedwi / Mobile agents management

 Alexandria Engineering Journal, Vol. 47, No. 4, September 2008 447

5. Queuing service

The management service is implemented
in the server to control and to coordinate the
execution of all agents within the environment
using three queues: Suspension Queue (SQ),
Execution Queue (EQ), and Migration Queue
(MQ). Any agent within the system has to join
one of these queues. Further, the agent is
represented in these queues using the
structure of its ACB. The ACB is composed of
six fields:
1. The identifier; it is a unique string that is
used to access the agent during its life time.
2. The state; it is a value that reflects the
state of the agent. When an agent joins the
SQ, the agent will take one of two values
"Execute" or "Migrate". If the agent joins other
queues, this value will be “NONE”
3. The code path; it is a string that indicate
the path of the agent source file.
4. The Itinerary; it is an object that maintains
the itinerary of this agent.
5. The agent-object; it is an object that
represent the real instance of the agent in
memory.
6. The agent thread; it is an object thread in
which the agent object executes its task.
In the implementation of the management
service, each state in the model is represented
by a queue and each transition in the life-
cycle model is represented by a method.

5.1 . Agent queuing algorithm

The queuing algorithm is used to judge
and coordinate the execution of agents within
the environment. It is explained in the activity
diagram depicted in fig. 5. When an agent is
received by the migration service, it will be
sent to the management service by invoking
the Create method. The Create method
constructs the ACB for the agent and adds it
to SQ. At this point, the suspension state (SS)
is set to "Execute" value. If the thread pool has
thread available, then the management service
will send the ACB of this agent to EQ and
invokes the Run method that take the ACB as
an argument. The Run method executes the
agent task in a thread from the thread pool.
When the agent completes its task, the
management service invokes the Suspend

method to change the ACB suspension state
to "Migrate" value, removes the ACB from EQ,
and adds it to SQ. once the ACB is added to
SQ, the management service invokes Migrate
method to remove the ACB from SQ and add it
to MQ. In the MQ, the management service
checks the next task. If the next task is a
local one, then the ACB will be removed from
MQ, its suspension state will be changed to
execute value, and finally it will be added to
SQ, otherwise, if the next task has to be
executed remotely then, the agent information
will be sent to management service in order to
rebuild AMB to send the agent to the remote
machine through the migration service.
Finally, the ACB is disposed.

6. Application interaction with the
Framework

The server (framework) which has been

built provides the basic services, which are
required to execute mobile agents and control
their life-cycles. The server is built as a library
that has an interface which allows
applications to access the services of this
server. Like many other mobile agent servers
such as Aglets, Grasshopper, Concordia,
Mapnet, etc, any agent class has to extend a
predefined base class to be considered as a
mobile agent.

6.1. Using system API library

Developers need to access and benefit from
the services of this mobile agent server. So,
the server has an API that enables developers
to write mobile agents easily. Further, these
API make developers able to map out the
movement and the tasks for their mobile
agents in simple manner. The API is located in
a library which has two classes; the first one
is MobileAgent class, whereas the second one
is Itinerary class.

The MobileAgent class is the super class
for all mobile agents' classes. The key issue
from extending this class is to give the
mobility ability for user-agent classes. It has
three attributes and one method. The
attributes are:

M. Khamis, I. Al-Bedwi / Mobile agents management

448 Alexandria Engineering Journal, Vol. 47, No. 5, September 2008

Fig. 5. The queuing algorithm.

1. The agentname: to assign a user-symbolic
name for the agent.
2. The agentassembly: to specify the agent
assembly file path.
3. The agentitinerary: to assign a itinerary
object to the agent.

The only method of this class is the GO
method. When the GO method is invoked, the
agent will migrate to the local mobile agent
server to start its journey. This method builds
the agent message, described previously in
Migration service.

The Itinerary class is the class that allows
developers from to determine the journey of
their mobile agents, in addition to the tasks at
each station of the journey. To do so,
developers have to initiate an object from this
class and invoke its SetSiteTask method. This
method takes two string parameters; the first
one is the name of the destination or IP
address to where the agent migrate, whereas
the second parameter is the name of the
user's agent method that has to be executed
at that destination. Eventually, the itinerary

object has to be assigned to a user mobile
agent using its AgentItinerary property.

6.2. Lunching mobile agent

In order to create a mobile agent,
developers need to extend the MobileAgent
base class, which belongs to the MicroLib
library. Moreover, they also need to flag the
mobile agent class with the serializable
attribute.
[Serializable]

public class CDAgent: MobileAgent

{

//Implement the Agent code //here!

// in our demo we assume two

//methods are defned for the //agent

// they are compare() and //print()

}

To minimize the size of the transferred
code, it is preferred to write the agent class in
separated assembly. The assembly file is the
unit of transferable code for agents.

There are

another tasks

M. Khamis, I. Al-Bedwi / Mobile agents management

 Alexandria Engineering Journal, Vol. 47, No. 4, September 2008 449

After writing mobile agent class in a
separate assembly file, the agent needs to be
initiated and launched to the target machines
in order to start execution of its tasks. So, in
the application assembly, the developer
initiate a new itinerary object from itinerary
class and uses its SetSiteTask method to plan
out the agent journey. After that a new
instance from the user mobile agent class is
required to be created. In this example, the
developer can set AgentName property
optionally, whereas the AgentAssembly
property must be set mandatory, in addition
to AgentItinerary which in this example takes
the previously defined itinerary object.
Eventually, the last step required to launch
the mobile agent is to invoke the GO method
with this agent, which in turn enforces the
migration of agent. The following piece of code
show how the developer can launch the mobile
agent.
private void SendAgent_Click(object

sender, EventArgs e)

{

Itinerary itnr = new

Itinerary();

itnr.SetSiteTask("LocalSite",

"");

itnr.SetSiteTask("Site#1",

"Compare");

itnr.SetSiteTask("Site#2",

"Compare");

itnr.SetSiteTask("Site#3",

"Compare");

itnr.SetSiteTask("LocalSite",

"Print");

CDAgent _agent = new CDAgent();

_agent.AgentName = "aaa";

_agent.AgentAssembly = "/*The

agent assembly path*/";

_agent.AgentItinerary = itnr;

// set the agent’ local data

here

_agent.GO();

}

After launching the mobile agent, it starts
its tasks as planed out in the itinerary object.
At the end of the agent life-cycle, the agent
comes back to the first site and provides the
gathered data to the owner.

7. Conclusions

This paper presented and described the
basic services (core) of an agent platform.
These services are migration and management
services.

The strength of this framework stems from
the fact that agents can be written with a
variety of computer languages, while all other
frameworks are designed to support mobile
agents based only on Java except the MAPNET
framework. The CLR framework supports all
agent-based distributed applications that are
written in programming languages such as
C#, C++, VB or Java.

The framework designed is based on
modified algorithms that ensure better
performance. This framework is implemented
using C# and can be incorporated with any
application as a library as described in
section 6.

The services presented here are designed
and implemented in partial fulfillment of a
complete mobile agent framework which
includes other services such as directory,
security and consistency besides many other
services (not core).

References

[1] D.G.A. Mobach, B.J. Overeinder, N.J.E.

Wijngaards and F.M.T. Brazier, "Managing
Agent Life Cycles in Open Distributed
Systems", SAC Melbourne, Florida, USA,
ACM (2003).

[2] Mohamed Khamis, Ibrahim Al Bedwi,
Ihab Sroogy, “Directory and Migration
Services for Mobile Agent Framework”,
JAUES, Vol. 2 (6), January (2008).

[3] Haeryong Park, Haksoo Ju, Kilsoo Chun
and Jaeil Lee, "The Algorithm to Enhance
the Security of Multi-Agent in Distributed
Computing Environment", Proceedings of
the 12th International Conference on
Parallel and Distributed Systems
(ICPADS'06), IEEE (2006).

[4] http://www.trl.ibm.com/aglets/
[5] H. Peine and T. Stolpmann, "The

Architecture of the Ara Platform for
Mobile Agents", First International
Workshop on Mobile Agents (1997).

http://www.trl.ibm.com/aglets/

M. Khamis, I. Al-Bedwi / Mobile agents management

450 Alexandria Engineering Journal, Vol. 47, No. 5, September 2008

[6] T. Walsh, N. Paciorek and D. Wong,
"Security and Reliability in Concordia",
Thirty-First Hawaii International
Conference on System Sciences, IEEE
Press, (1998).

[7] http://www.tacoma.cs.uit.no/
[8] D. Johansen, R. Renesse and F.

Schneider, "An Introduction to the
TACOMA Distributed System", Technical
Report 95-23, Department of Computer
Science, University of Tromso, Norway,
(1995).

[9] P. Braun and W. Rossak, Mobile Agents:
Basic Concepts, Mobility Models and the
Tracy Toolkit, Morgan Kaufman, 2005.

[10] D. Milojicic, W. LaForge and D. Chauhan,
"Mobile Objects and Agents (MOA)",
Proceedings of USENIX Conference on
Object Oriented Technologies and
Systems (1998).

[11] J. Baumann, F. Hohl, M. Straßer and K.
Rothermel, "Mole - Concepts of a Mobile

Agent System", University of Stuttgart,
Institute for Parallel and Distributed
High-Performance Computers (1997).

[12] C. Baumer, M. Breugst and S. Choy,
"GRASSHOPPER – A UNIVERSAL AGENT
PLATFORM", Magedanz (2000).

[13] L. Silva, P. Simoes, G. Soares, P. Martins,
V. Batista, C. Renato, L. Almeida, and N.
Stohr, "JAMES: A Platform of Mobile
Agents for the Management of
Telecommunication Network", 3rd
International Workshop on Intelligent
Agents for Telecommunication
Applications, Stockholm, Sweden (1999).

[14] D. Staneva and D. Dobreva, "MAPNET: A
.NET-Based Mobile-Agent Platform",
International Conference on Computer
Systems and Technologies, ACM Press,
(2004).

Received July 30, 2008

Accepted September 7, 2008

