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A semi analytical method based on the power series solution of the differential equation is
developed herein to analyze the vibration of non-uniform thickness plates with various types
of boundary conditions. Plates with cross section varying continuously along their lengths
or widths are used in such structural application in order to optimize the distribution of
weight and strength and sometimes to satisfy architectural and functional requirements.
The present method does not offer only an accurate solution but also reduces the labor
needed if the numerical methods are proposed. Although a huge amount of literature
devoted to numerical or approximate methods of flexural vibration of variable thickness
plate is published, the analytic and exact solutions have a little attention. Due to the
mathematical complexity which is produced from the variable coefficients and boundary
conditions, the publications of exact solutions are few. Because these types of mathematical
problems were formulated previously in successive integration methods, the eigen values
appeared as roots of infinite determinant and therefore the methods did not offer exact
values. In the present research, a semi-analytical solution based on the power series
solution of the governing differential equation of plate is developed for the vibration analysis
of the plates of variable thickness. This method combines the advantages of the analytical
methods and the capability of imposing various types of restrained boundary conditions.
The variation of thickness, boundary conditions and aspect ratio are considered. The
method is illustrated and its validity is satisfied by comparing the results with those
available in the publications.
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1. Introduction

Plates of variable thickness are widely
used in many structural applications to
optimize the distribution of weight and
strength and sometimes to satisfy architec-
tural requirements. An accurate flexural
vibration analysis of plates with variable
thickness is necessary when the designer is
concerned with the possible resonance
between the plate structure and exciting force.
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Different authors analyzed the free vibration of
plates of variable thickness by different
methods of solution. Appl and Byers [1], used
the wupper and lower bounds for the
fundamental eigen value of simply supported
rectangular plate with variable thickness. Soni
and Rao [2] used the spline technique of
solution to analyze the vibration of non-
uniform rectangular plates. The Garlerkin's
methods are used by Ng and Araar [3], to
analyze free vibration and buckling of clamped
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plates of variable thickness. Also Gutierrze
and Laura [4], used Garlerkin's method to
fined the natural frequencies of edge
restrained tapered rectangular plates. Finite
element method is used by Mukherjee and
Mukhopadhyay to analyze the flexural
vibration of plates having varying rigidities.
Pulmano and Gupta. [5], used the method of
finite strip to analyze the flexural vibration of
tapered plates. Akusa and Al-kaabi. [6],
analyzed the free vibration of mindline plates
with linearly varying thickness by finite
difference methods. There are many other
different techniques have been developed to
deal with the same problem. Grossi and Bhat
[7], analyze the natural vibration of tapered
rectangular plates. Bhat et al. [8], obtained the
natural frequencies of transverse vibration of
plates of non- uniform thickness. The Green
function method is used by Sakiyama and
Hung [9], to find the natural frequencies of the
rectangular plates of variable thickness.
Several authors used many approximate
methods to deal with flexural vibration of
plates of variable thickness. For example, Ritz
method by Guturrez et al. [10], power series
expansion method by Kopayashi and Sondada
[11], spline technique by Roshan and
Dhanpati [12], the differential quadauture
method by Bert and Malik [13], Kukreti et al.,
[14], Gutierrez and Laura [15]. Also differential
quadrayure and Rayleight Ritz methods are
used by Kukreti et al. [16]. Moreover,
Rayleight- Ritz method is used by Zhou [17],
Gupta and Khanna [18], Singh and Saxena
[19] and Cheung et al. [20]. Although the
literature pertaining to the numerical method
of flexural vibration of rectangular plates of
variable thickness dates back to the beginning
of [1, 21] a little work has been done through
the analytic methods to find the closed form or
exact solution. The closed form and exact
solution were previously devoted only to a
simple case of boundary conditions such as
the cases of simply supported plates. Due to
the variable coefficients in the equation of
motion of vibrating plates and their boundary
conditions, some mathematical complexities
exist. Farag and Shaker [22] used the Laplace
transform method by means of Maple program
to find a closed form solution of bending
problems of plate.

The main objective of the present paper is
to obtain an analytic closed form solution
based on the power series expansion method
to investigate the flexural vibration of plates of
non-uniform thickness. This method is derived
with the aid of Maple program. In the present
paper, the fundamental solution is obtained by
reducing the partial differential equations of
plates into a fourth order ordinary differential
equation with variable coefficients. Then the
reduced equation is solved by a power series
method by means of the mathematical
algebraic solution with Maple program.

2. Partial differential equation of motion

Partial differential equation for the
dynamic deflection wix,y,t) of vibration of

isotropic plate, Fig.1 with variable thickness
h=h(x,y) and flexural rigidity D= D(x,y) ,
[23] is:

0’Do*w 9D %D d*w
ox? oy* 0xdy oy? ox?

V2(DV2w) - (1-v)(

ph o%w
=T (1)
g ot
Where
ve2iy ﬁj‘ . 2)
ox oy
Eh3
= > (3)
121-v~)
1% is Poisson’s ratio of plate material , E is
modulus of elasticity, and
ph is the plate mass per unit area; pis

the plate specific weight and ¢ is the
gravity acceleration parameter.
Further, rigidity of the plate bridge is often
varying only in the y-direction so that the

variable thickness of plate is changed
according to:
h=h,H(y), (4)
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Fig. 1. Rectangular plate of variable thickness.

where h, is the initial thickness of plate.
Thus the differential eq. (1) becomes:

2
Dv4w+2d—Di(v2w)+d—Dv2w
dy dy dy?
d?D o%w ph o’w
e g o )
dy® ox g ot
Substitution from eq. (4 into 3) gives:
Eh?
D=D,H?(y); Dy = ———"5-. (6)
12(1-v?)

Displacement of flexural vibration of plate can
be expressed as:

w(x,y,t) = W(x,y)e“", (7)

where W(x,y)is the displacement amplitude

and wis the natural frequency of plate
vibration.

Substituting of eqgs. (2 and 7 into 5), one can
get:

4 2 A2 4 3
D[a I{4V+2 82((3 Vg)+6 VZ]+2@[8 V;/
ox ox* Jdy oy dy oy

oW 0% oW . d?D o*W o*w
+ Y >t o]

dy ox? 0y dy? ox dy
d’D o’*W _ po?
dy2 ox? g

—(1-v)

hW. (8)

Substitution of eq. (6 into 8), a convenient
dimension-less equation of motion is:

4 3
BYH? oW I’Z+6ﬂ4H2H'—‘3 v;)/
on on
2,73, 0° 4172 o°W
+[2p%H°H'— + 3% (H?H" + 2HH)|(—)
oc? on
2
~6lp?H* -~ (2
ocs on
2 o o*w s o'w
+3p°v[H*H" +2HH'] +H =A"HW,
)
Where
X .Y 5_a
g el b,ﬁ e
2 [ph
H’=ﬁ, H"=d1;I and 1=wa? P2,
d77 d77 gDo
(10)

A reasonable solution for eq. (9) is [24, 25]:

W= nld) Prlr). (11)

Where y,,(¢) is a known basic function
[26-27] governing a beam vibration under the
plate boundary conditions at (£ =0,1), while
@, (7)is unknown function to be determined

when the plate
(7 =0,1) are satisfied.

boundary conditions at

Applying eq. (11 into 9), one can reduce
the equation of motion for vibration of plate
with variable thickness to:
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S VA B H O )

+68 H2H'B,, ®" (n)+[28°H3C,, +38%H*H"

+2HH'"?)Apy 107, (7) + 68 H> H'Cppy @1y, (1)
+ [88%v(H?H" +2HH'?)C,,,
+ H®Ey = 2 HAp 10, (7)) =0, (12)

where
1 1

A, =I‘Pm\Pmd§ , B, =IWmW'm dé |
0 0

1 1
C,y = j Y W' di | B, = J' Y owrde. (1)
0 0

The power series solution of the differential
eq. (12) leads to:

M K [k) le
W=, w2, PRO (14
Where

k
oM (0) = Z—f a n=0 ;k=123,.K (15)
n

For more convenience, the general solution
of the plate vibration is:

M

WE)=D W)
2 3
{%(0)+<D,;1(0)n+<b,;;(0)%+¢;2(0)’;—_,+9%0}
(16)
where
O S T 17
0= D @O (17)

R, is a power series function of variable 7
having constant coefficients depending on the
four initial values @,,(0), ©;,(0),
@’ (0) and @ (0). The magnitudes ®®(0);
k=4,5,6, ... Kare obtained by means of the

four initial values

@} (0), @} (0) according to:

Dy, (0), Dpy (0),

1
A BYH?
+[2p%H3C,, +3p%H*H"

+2HH'?)Am 1@, (7)

+6B%H2H'C,, @', (7)+[3B°v(H?H"
+2HH'?)C,y, + H3E,,, — 22HA,, 1@, (1)}

W) =- 6p*H>*H'B,, ®}, (1)

(18)

oW = Lol k=567..K  (19)
n

3. Basic function y,,({)

The basic function ¥,,({), most commonly

used, is an eigen function derived from the
solution of the following differential equation
for beam vibration:

aty

S i, (20
dg

where (1 is a parameter

The general solution of this differential

equation may be expressed as:

Y, (&) = C; sin(ug) + C, cos(ug) + C3 sinh (i)

+ C4 cosh(u(l). (21)
where C;,C,,C3,C, are constants to be
determined  [27-28] through  particular

solutions according to the known boundary
conditions at the edges of support at ({ = 0,1).

4. Boundary conditions

The generalized formulae of the boundary
conditions which are previously demonstrated
by [28] are also used here. The boundaries
implemented herein are simply supported “S”,
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clamped “C”, free “F” and elastically restrained
against rotation “ERr” or translation “Er.”

5. Case study

Thickness function H(y) of square plate is

investigated in two types of variation. The first
type is a linear variation and the second is a
quadratic variation of the thickness.

Case 1: Linear variation

In this case, the thickness of plate varies
linearly in 77 direction according to:

1
244,

W)=Y Wald) (1 +

(A, A2 - E, -1.8C,r°m° +

H(n)=1+yn. (22)

h
7/ = _f —
hO
thicknesses respectively.
By substitution from eq. (22 into 18, 19),
@5 (0)

can be

; ho,hy are the initial and final

derivatives
at n=0 ;k=123,..K of &,
obtained. Then Substituting from egs. (18, 19)

into 16), one can find the displacement
function such as:

various

1 3
—— (1.8C,A,»
60(A,,)° e

0.25
+5.4C By ~ 3B Ay + 3By — (A 72N +...] ®p(0) +[(g - 22 Cm

+;2
120(A,,)
+3Am7/2+Cm a, 1

124, 10(Ay,)

1 s _Bmr 4 1

+=n" -
6 4A, 120(A,,)?

The magnitudes Am, Bm Cm and Enare those of
eq. (13) where m = n.

Case 2: quadratic variation

In this case, the thickness of plate varies
in 7 direction according to:

H(p)=1+ym°. (24)
Similarly, the displacement fuction of this
plate is:

W= ¥nlC)
-A, A2 +1.8C,y+E, '

{{(x—( 24 A +...[0,(0)
2
iy - (Em _A';;OZIS'SCW)US T, )

Ap

(A(A)? - 4.2CpALr2 — ApE, +36C,B,7% )" +....] ®,,(0)+[0.57

(BnCrn? + (A 7® + 3BpAny® = 0.54,Coyin° + ... 105, (0)

(-6(A,,)% 72 +36(B,,)? 72 + 6B, A, y2 —2A, C,)n° +...p" (0). (23)

3A ]/+C 4
+[.5n2 m UC Foervreeeaas [ox(e}
[.577 —( 124 ) 197, (0)
1 3 B3A,y+6B,y+C, s ,
+[=n° - + [OX(0]
iy W 7 (0)
(25)

Evidently, egs. (23, 25) represent the general
solutions of the governing partial differential
equations of vibration of plates with linear
variable thickness and quadratic variable
thickness respectively under any type of
boundary conditions. A particular solution can
be obtained according to the proposed
boundary conditions at (7 =0,1).

6. Results and discussion

For particular case of plate with all edges
elastically restrained against rotation with
modulus of restraintgp, the boundary

conditions are:
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2
wi¢)=0, ) T g aric — o). (26)
¢ oC
and
2
o) =0, W1, “H 0 agy=01). (27
n on

The particular cases of simply supported
edges and clamped edges at (7=0,1])can be
achieved when the modulus of restraint ¢,
tends respectively to infinity and zero.

Applying these conditions at (£ =0,1), one
can obtain the simply supported basic
function such as:

¥ (17) = sinmmy). (28)

Then the integral values A,,B,,C,,E,
can be determined now. Also, by satisfying the

i- case l: K =6, the characteristic equation is

same conditions at (17 =0), the two initial
values @,,(0)=0, @, (0)=0 can be obtained.
Applying the same conditions at (7 =1), one
can achieve two equations containing the two

e

unknowns ®@),(0),®,,(0). The characteristic

equations of the present case are achieved by
eliminating @/, (0) , @}, (0) from the obtained two

characteristic equations.

Finally, the natural frequency parameter of
the fundamental mode is expressed for the
case simply supported square plate with a
linear variable thickness by considering an
arbitrary truncation number K. To show the
convergence of the solution; the characteristic
equations are obtained when Kis taken 6, 8
and 10 as follows:

2 _ 10986960440, +0.193982306y% - 0.779568600; - 6.183933795]
0.3(10) 152 + 0.3790653157(10) 1y - 0.019444444446

ii- case 2: K =8, the characteristic equation is

[0.3637566135 —0.1322751322y +.1(10) ?2)2*

+.4903610794(10)°y —.3453406926(10)° 72 + 3.1332079;° — 0.1(10) 7 5142

+[0.1125333455(10)° - 0.78709455(10)" y

—0.546236030(10)° 7> — 0.2027326604(10)°y* — 0.1979712170(10)° °

+0.620375130(10)*y° —0.1127954790(10)* "] = 0.
iii- case 3: K =10, the characteristic equation is

[-.01640316623 +.00874835535y]1° + [34.42764850 — 120.4022246y + 139.8659898
~-49.05936838y% +11.8127962y% —2.0471151165° — 0.1(10) " y°)A* +[-44828.42293
+68923.29052y — 28019.342902 + 73535.88339y° — 18079.644095* + 5075.68065)°
— 1258.87809y° + 262.9656390y7 +.3(10)°;® - 6.6(10)°5° —0.6(10)7 )2
+[0.1311804148(10)® = 0.1171504710(10)"  — 0.8703839990(10)" 2 - 738496.32;>
—0.4836984420(10)" 7* - 0.2502816558(10)" »° + 368260.565° — 0.2300624496(10)" y*
+0.1361442684(10)'»® —454001.7522y° +100710.2492y° —17456.44324,'!
—-0.000047'? +0.310)2 4131 =0.
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Natural frequency parameter A of plates of variable thickness

SSSS cccc
Y K=20 K=30 K=20 K=30
0.0 19.7392088 19.7392088 19.7392088 [25] 35.9726444 35.9195681 35.988 [29]
0.1 20.6919349 20.6918435 20.7123151 [1] 37.9051456 37.6835682
0.2 21.5820651 21.5815309 21.6910119 [1] 40.3517037 39.3892500
0.3 22.4173486 22.4151518 22.6495033 [1] 41.8619221 41.0444919
0.4 23.2046508 23.1979242 23.6008474 [1] 43.7025667 42.6658676
0.5 23.9546082 23.9339300 24.5560583 [1] 46.6027334 44.3808934

Evidently, the frequency parameter A2 s
directly obtained in eq. (29) when K =6. Also
it can easily be obtained, when K =8 or 10

from the characteristic eqgs. (30 or 31)
respectively, by solving eq. (30) as second
degree algebraic equation or by solving eq. (31)
as third degree algebraic equation.

Further, to check the validity of the
present technique the natural frequency
parameter A is calculated for the particular
cases, as in table 1. The two cases of isotropic
square simply supported “SSSS” and clamped
plate “CCCC” of linear variable thickness are
investigated where y varies from O to 0.5. The

present results are compared with those
previously obtained by Appl et al. [1], Farag
and Ashour [25] and Jayaraman et al. [29]. It
is observed that the difference between the
compared values increases slightly by
increasing y . The compression shows a good

agreement.
7. Conclusions

A Semi- analytical Method based on the
power series solution is derived herein to
investigate the vibration of plate of uniform
and non-uniform thickness. The method is
based on solving the partial differential
equation of plate vibration by means power
series expansion with the aid of the
mathematical Maple program. The method
does not only match the advantages of the of
the analytic method but also has the
opportunity to deal analytically with such
complex boundary conditions as restrained
boundary conditions against rotation and/or
translation. The opportunity of the Maple
program is exploited to accomplish the terms

Alexandria Engineering Journal, Vol. 47, No. 4, July 2008

which is enough to express the accurate
analytic solution. The reliability of the method
is checked by means of a numerical
compression, carried out between the present
results and those available in publications.
The comparison agrees well.
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