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A semi analytical method based on the power series solution of the differential equation is 

developed herein to analyze the vibration of non-uniform thickness plates with various types 

of boundary conditions. Plates with cross section varying continuously along their lengths 

or widths are used in such structural application in order to optimize the distribution of 

weight and strength and sometimes to satisfy architectural and functional requirements. 

The present method does not offer only an accurate solution but also reduces the labor 

needed if the numerical methods are proposed. Although a huge amount of literature 

devoted to numerical or approximate methods of flexural vibration of variable thickness 

plate is published, the analytic and exact solutions have a little attention. Due to the 

mathematical complexity which is produced from the variable coefficients and boundary 

conditions, the publications of exact solutions are few. Because these types of mathematical 

problems were formulated previously in successive integration methods, the eigen values 

appeared as roots of infinite determinant and therefore the methods did not offer exact 

values. In the present research, a semi-analytical solution based on the power series 

solution of the governing differential equation of plate is developed for the vibration analysis 

of the plates of variable thickness. This method combines the advantages of the analytical 

methods and the capability of imposing various types of restrained boundary conditions. 

The variation of thickness, boundary conditions and aspect ratio are considered. The 

method is illustrated and its validity is satisfied by comparing the results with those 

available in the publications. 
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1. Introduction 
 

Plates of variable thickness are widely 
used in many structural applications to 
optimize the distribution of weight and 
strength and sometimes to satisfy architec-
tural requirements. An accurate flexural 
vibration analysis of plates with variable 
thickness is necessary when the designer is 
concerned with the possible resonance 
between the plate structure and exciting force. 

Different authors analyzed the free vibration of 
plates of variable thickness by different 
methods of solution. Appl and Byers [1], used 
the upper and lower bounds for the 
fundamental eigen value of simply supported 
rectangular plate with variable thickness. Soni 
and Rao [2] used the spline technique of 
solution to analyze the vibration of non- 
uniform rectangular plates. The Garlerkin's 
methods are used by Ng and Araar [3], to 
analyze free vibration and buckling of clamped 
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plates of variable thickness. Also Gutierrze 
and Laura [4], used Garlerkin's method to 
fined the natural frequencies of edge 
restrained tapered rectangular plates. Finite 
element method is used by Mukherjee and 
Mukhopadhyay to analyze the flexural 
vibration of plates having varying rigidities. 
Pulmano and Gupta. [5], used the method of 
finite strip to analyze the flexural vibration of 
tapered plates. Akusa and Al-kaabi. [6], 
analyzed the free vibration of mindline plates 
with linearly varying thickness by finite 
difference methods. There are many other 
different techniques have been developed to 
deal with the same problem. Grossi and Bhat 
[7], analyze the natural vibration of tapered 
rectangular plates. Bhat et al. [8], obtained the 
natural frequencies of transverse vibration of 
plates of non- uniform thickness. The Green 
function method is used by Sakiyama and 
Hung [9], to find the natural frequencies of the 
rectangular plates of variable thickness. 
Several authors used many approximate 
methods to deal with flexural vibration of 
plates of variable thickness. For example, Ritz 
method by Guturrez et al. [10], power series 
expansion method by Kopayashi and Sondada 
[11], spline technique by Roshan and 
Dhanpati  [12], the differential quadauture 
method by Bert and Malik [13], Kukreti et al., 
[14], Gutierrez and Laura [15]. Also differential 
quadrayure and Rayleight Ritz methods are 

used by Kukreti et al. [16]. Moreover, 

Rayleight- Ritz method is used by Zhou [17], 
Gupta and Khanna [18], Singh and Saxena 
[19] and Cheung et al. [20]. Although the 
literature pertaining to the numerical method 
of flexural vibration of rectangular plates of 
variable thickness dates back to the beginning 
of [1, 21] a little work has been done through 
the analytic methods to find the closed form or 
exact solution. The closed form and exact 
solution were previously devoted only to a 
simple case of boundary conditions such as 
the cases of simply supported plates. Due to 
the variable coefficients in the equation of 
motion of vibrating plates and their boundary 
conditions, some mathematical complexities 
exist. Farag and Shaker [22] used the Laplace 
transform method by means of Maple program 
to find a closed form solution of bending 
problems of plate. 

The main objective of the present paper is 
to obtain an analytic closed form solution 
based on the power series expansion method 
to investigate the flexural vibration of plates of 
non-uniform thickness. This method is derived 
with the aid of Maple program. In the present 
paper, the fundamental solution is obtained by 
reducing the partial differential equations of 
plates into a fourth order ordinary differential 
equation with variable coefficients. Then the 
reduced equation is solved by a power series 
method by means of the mathematical 
algebraic solution with Maple program. 
 
2. Partial differential equation of motion 
 

Partial differential equation for the 

dynamic deflection ),,( tyxw  of vibration of 

isotropic plate, Fig.1 with variable thickness 

),( yxhh   and flexural rigidity ),( yxDD   , 

[23] is: 
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    is Poisson’s ratio of plate material , E is  

modulus of elasticity, and 

g

h  is the plate mass per unit area;   is  

the plate specific weight and g  is the  

gravity acceleration parameter.  
Further, rigidity of the plate bridge is often 

varying only in the y-direction so that the 

variable thickness of plate is changed 
according to: 
 

)(yHhh o ,         (4)  
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Fig. 1. Rectangular plate of variable thickness. 

  
 

where oh  is the initial thickness of plate. 

Thus the differential eq. (1) becomes: 
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Substitution from eq. (4 into 3) gives: 
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Displacement of flexural vibration of plate can 
be expressed as: 
 

tieyxWtyxw ),(),,(  ,       (7) 

 

where ),( yxW is the displacement amplitude 

and  is the natural frequency of plate 

vibration.  
Substituting of eqs. (2 and 7 into 5), one can 
get: 
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Substitution of eq. (6 into 8), a convenient 

dimension-less equation of motion is: 
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A reasonable solution for eq. (9) is [24, 25]: 
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Where )(m    is a   known basic   function 

[26-27] governing a beam vibration under the 

plate boundary conditions at )1,0(  , while 

)(m is unknown function to be determined 

when the plate boundary conditions at 

)1,0(  are satisfied. 

Applying eq. (11 into 9), one can reduce 
the equation of motion for vibration of plate 
with variable thickness to: 
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The power series solution of the differential 

eq. (12) leads to: 
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For more convenience, the general solution 

of the plate vibration is: 
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o  is a power series function of variable   

having constant coefficients depending on the 
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3. Basic function )(m  

 

The basic function )(m , most commonly 

used, is an eigen function derived from the 
solution of the following differential equation 
for beam vibration: 
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where   is a parameter 

The general solution of this differential 
equation may be expressed as: 
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where 4321 ,,, CCCC  are constants to be 

determined [27-28] through particular 
solutions according to the known boundary 

conditions at the edges of support at )1,0(  .  

 
4. Boundary conditions 
 

The generalized formulae of the boundary 
conditions which are previously demonstrated 
by [28] are also used here. The boundaries 
implemented herein are simply supported “S”, 
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clamped “C”, free “F” and elastically restrained 
against rotation “ER” or translation “ET.” 
 
5. Case study 
 

Thickness function )(H  of square plate is 

investigated in two types of variation. The first 
type is a linear variation and the second is a 
quadratic variation of the thickness. 
 

Case 1: Linear variation 
 
In this case, the thickness of plate varies 
linearly in   direction according to: 

 1)(H .            (22) 
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into 16), one can find the displacement 
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The magnitudes Am , Bm, Cm and Em are those of 
eq. (13) where m = n.   

 

Case 2: quadratic variation 
 

In this case, the thickness of plate varies 
in   direction according to: 
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Similarly, the displacement fuction of this 
plate is: 
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Evidently, eqs. (23, 25) represent the general 
solutions of the governing partial differential 
equations of vibration of plates with linear 
variable thickness and quadratic variable 
thickness respectively under any type of 
boundary conditions. A particular solution can 
be obtained according to the proposed 

boundary conditions at )1,0(  . 

 
6. Results and discussion 
 

For particular case of plate with all edges 
elastically restrained against rotation with 

modulus of restraint R , the boundary 

conditions are: 
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The particular cases of simply supported 

edges and clamped edges at )1,0(  can be 

achieved when the modulus of restraint R  

tends respectively to infinity and zero. 

Applying these conditions at )1,0(  , one 

can obtain the simply supported basic 
function such as: 
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the fundamental mode is expressed for the 
case simply supported square plate with a 
linear variable thickness by considering an 

arbitrary truncation number K. To show the 

convergence of the solution; the characteristic 
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iii- case 3:  10K , the characteristic equation is 
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Table 1 

Natural frequency parameter  of plates of variable thickness 

 

 SSSS CCCC 

  K = 20 K = 30  K = 20 K = 30 

0.0 19.7392088 19.7392088  19.7392088 [25] 35.9726444 35.9195681   35.988 [29] 

0.1 20.6919349 20.6918435 20.7123151   [1] 37.9051456 37.6835682 

0.2 21.5820651 21.5815309 21.6910119   [1] 40.3517037 39.3892500 

0.3 22.4173486 22.4151518 22.6495033   [1] 41.8619221 41.0444919 

0.4 23.2046508 23.1979242 23.6008474   [1] 43.7025667 42.6658676 

0.5 23.9546082 23.9339300 24.5560583   [1] 46.6027334 44.3808934 

 

Evidently, the frequency parameter 2  is 

directly obtained in eq. (29) when 6K . Also 

it can easily be obtained, when 10or8K  

from the characteristic eqs. (30 or 31) 
respectively, by solving eq. (30) as second 
degree algebraic equation or by solving eq. (31) 
as third degree algebraic equation. 

Further, to check the validity of the 
present technique the natural frequency 

parameter  is calculated for the particular 

cases, as in table 1. The two cases of isotropic 
square simply supported “SSSS” and clamped 
plate “CCCC” of linear variable thickness are 
investigated where   varies from 0 to 0.5. The 

present results are compared with those 
previously obtained by Appl et al. [1], Farag 
and Ashour [25] and Jayaraman et al. [29]. It 
is observed that the difference between the 
compared values increases slightly by 
increasing  . The compression shows a good 

agreement.  
 

7. Conclusions 
 

A Semi- analytical Method based on the 
power series solution is derived herein to 
investigate the vibration of plate of uniform 
and non-uniform thickness. The method is 
based on solving the partial differential 
equation of plate vibration by means power 
series expansion with the aid of the 
mathematical Maple program. The method 
does not only match the advantages of the of 
the analytic method but also has the 
opportunity to deal analytically with such 
complex boundary conditions as restrained 
boundary conditions against rotation and/or 
translation. The opportunity of the Maple 
program is exploited to accomplish the terms 

which is enough to express the accurate 
analytic solution. The reliability of the method 
is checked by means of a numerical 
compression, carried out between the present 
results and those available in publications. 
The comparison agrees well.   
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