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Local scour occurs when the local flow near the structure is strong enough to remove bed
material around it. Most of previous methods to predict the local scour depth are based on
the regime approach, dimensional analysis, analytical, experimental or semi empirical
approach. All of these methods depend on much simplification of analysis in order to
overcome the large number of parameters. The main objective of the present study is to
develop a new approach for predicting the local scour depths around abutments. Artificial
Neural Networks, (ANN), model was used to investigate the problem. The concept of artificial
neural networks is an advanced topic that provides a strong tool for estimating the missing
information to be used. In this study, the parameters that affect local scour depth were
investigated, based on the previous data by others, in order to determine the dominant
parameters to be used in the ANN model. By using the error analysis, the mean and
standard deviation were determined to calibrate the model. A sensitivity analysis was used
to investigate the effect of the different parameters affecting local scour depth on the ANN
model. The most effective parameters were determined. A comparison was made among the
obtained results from the ANN model, the regression analysis and the previous formulas to
determine the accuracy of the model results. The study shows that ANN model gives good
prediction of the local scour depth around abutment. The results are close to the

corresponding previously measured values compared with other formulae.
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scour around abutments occurs

in

Local scour is the scour around an
obstruction. It is a result of the flow pattern
created by the presence of the obstruction. It
is confined to small area around the obstruc-
tion and associated with three dimensional
flow and vortex system. Local scour may be
subdivided into two categories. They are clear
water scour and live bed scour. When local
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absence of sediment transport it is commonly
known as clear water scour. The moving of
bed material from the scour hole is practically
undisturbed by the flow and no sediment is
supplied to the scour hole to replenish the
amount which has been removed. Sediment is
removed only near the abutment where the
shear stresses on the boundary are greater
than critical shear stress z. The bed material
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upstream of the scour area is at rest and thus
no sediment is supplied to the scour hole to
replace the amount, which has been eroded.
Clear water scour may be regarded as being
the threshold condition of live-bed scour. For
this case, the maximum clear water scour
depth is generally 10% more than that due to
live-bed scour as shown in fig. 1. For design
purposé, clear water scour should be
considered the worst condition more than live
bed scour. Local scours at bridge abutments,
piers and spur-dikes have been a subject of
interest and importance to many researchers.
Gill [1] studied the local scour around spur
dikes experimentally. He concluded that depth
of equilibrium scour is affected by the size of
bed material. Rate of scour development of the
fine sand was higher than that of coarse sand.
Depth of equilibrium scour is also affected by
the depth of uniform flow upstream of the
scour location and the depth of maximum
scour occurs when the sand bed upstream of
the spur dike is at the threshold of movement.
Melville [2] presented laboratory data from
various researchers’ experiments to demon-
strate their effects on scour depth. He
included sufficient data of abutment length,
flow depth, abutment shape and alignment,
scour data for the effects of sediment
characteristics, flow intensity and approach
channel geometry.

He obtained the following relationship

between scour depth and some of the

parameters that affect it.

ds=2ks L LAO <1, (1)

d, = 2K K}(V,L)°51 < % <25, @
ds =10k, Yo L/,o > 25. 3)

Dey and Barbyuiya [3] presented an
investigation for the scour around vertical
wall, wing wall and semicircular abutment.
Experiments were for clear water scour and
uniform sediments to compute the time
variation of scour depth in an evolving scour
hole. They concluded equations by regression
analysis:

dse (max)

- __L; dse (max)

equilibrium scour depth dse

shear velocity ratio Y+

Uxg

Fig. 1. Variation of equilibrium scour depth with shear
velocity ratio (after Tey, 1984).
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Where Fe is excess abutment Froude number,

=Ue/(4glY?, Ue=(Us—EUs) is the approach-
ing velocity and & is constant = 0.55 for wing

wall abutment. Tey [4] investigated the effect
of flow depth on the maximum depth of local
scour at bridge abutments. Kandasamy [5]
investigated the effect of flow depth and
abutment length on local scour depth at
threshold condition Us/ U+« = 1.0, and the effect
of shear velocity ratio on local scour depth.
Kwan [6] investigated the effect of flow depth
changes on the velocity field and mapped the
three dimensional flow patterns in the
abutment vicinity under clear water scour
condition and presents the following equation.

0.5
Dem _ 030+ K[L} . (5)

Yo Yo

Lim [7] carried out experimental
investigations to present a semi empirical
analysis to detérmine the maximum local
scour depth for clear water scour and to check
the developed relationship against laboratory
data from his study and many other data. He
concluded the following equation.

722 Alexandria Engineering Journal, Vol. 45, No. 6, November 2006



H. Moghazy et al. / Estimation of local scour depths

$:KS(O.9><—2). (6)

o

Rahman and Muramoto [8] developed a
simplified analytical model for the prediction
of the maximum scour depth around spur-
dike like structure based on continuity
relation between the inflow and the outflow in
the nestricted flow concentration region of a
scour hole.

Froehlich [9] modifies equation for estimat-
ing the scour depth

0.63 0.43
d 1.16
%s _0.78K, k,{—L J B [—y" J o l#l,
Yo o d50

(7)

Nagy [10] in his study for the scour depth near
emerged vertical wall spur dike, concluded
equation by the regression analysis method

0.42 .- 0.717
3_523(11/1(/; ) A ®
o 50 o

2. Review on artificial neural network
model

An artificial neural network is an
information-processing system. A neural net
consists of a large number of simple
processing elements called neurons. Each
neuron is connected to other neurons by
means of directed communication links each
with an associated weight. The weights
represent information being used by the net to
solve the problem. Each neuron has an
internal state called its activation function or
activity level, which is a function of the inputs.
A neuron sends its activation function as a
signal to several other neurons. The neuron
can send only one signal at a time and that
signal is broadcasted to other several neurons

A biological neuron has three types of
components. They are dendrites, soma (cell
body), and axon as shown in fig. 2. The signal
from one neuron is passed into another by
means of a connection between the axon of
the first and a dendrite of the second. This
connection is called synapse. Axons often
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synapse onto the trunk of a dendrite, but they
can also synapse directly onto the cell body.
The signals are electric impulses that are
transmitted across a synaptic gap by means of
chemical process. The action of the chemical
transmitter modifies the incoming signal
(typically, by scaling the frequency of the
signals that are received) in a manner similar
to the action of weights in an artificial neural
network. The soma, or cell body, sums the
incoming signals, when sufficient input is
received, the cell fires; by means of
transmitting a signal over its axon to other
cells. It is often supposed that a cell either
fires or doesn’t at any instant of time, so that
transmitted signals can be treated as binary.

A neural network is characterized by its
pattern of connections between the neurons.
Fig. 3 shows an example of a simple neuron.

Axon from
another neuron
i \) Dendrite of
p another neuron
Synaptic om
yGe?p v <
Axon y)
Synaptic )Dendrite of
Gap another neuron
Axon from
another neuron

Fig. 2. Biological neuron.
W,
(x2)

Fig. 3. A simple artificial neuron.

W2

«’5
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2.1. Advantages of using artificial neural
network models

Neural networks are useful when the un-
derlying problem is either poorly defined or
not clearly understood. Their application does
not require knowledge of the underlying proc-
ess beforehand. They are advantageous when
specific solutions do not exist to the problem
posed. A small amount of errors in the input
does not produce significant change in the
output because of distributed process. The
artificial neural networks are very fast even on
regular PCs. A very important feature of these
networks is their adaptive nature where
“learning by example” replaces “programming
or making functions” in solving problems.

Use of ANN techniques to solve civil
engineering problems began in the late 1980s.
Rumelhart et al. [11] played a major role in
the reemergence of neural networks as a tool
for solving problems. Flood and Kartman, [12]
used ANN to simulate and forecasting
problems in water resources. They include
works of French et al. [13] to forecast rainfall
inspect and time domain. Nagy et al. [14] used
an artificial neural network model to estimate
the natural sediment discharge in rivers in
terms of sediment concentration.

3. Parametric analysis

The analysis of abutment local scour depth
involves a large number of interacting
parameters that influence the scour process.
The data used in the study is collected to
cover a wide range of data as shown in table 2.
The relationship between the depth of local
scour and the parameters which affect on it
can be summarized as follows:

- ds = f (flow, fluid, bed material, abutment
and time) in which;

- The flow of fluid is characterized by its
mean depth yo., energy slope so, the gravita-
tional constant g, and the channel width B.

- The fluid can be characterized by its
density p, and kinematical viscosity v. Both p
and v. are functions of temperature.

- The bed material is characterized by its
specific gravity Ss and the mean diameter dso.
The degree of uniformity of the particle size

distribution can be defined by its standard
deviation oy.

— The abutment is largely determined by its
shape factor Ks, the length of abutment
perpendicular to flow (projected length) L and
the angle of approach flow to the abutment 6.
- Local scour is time dependent. Scour
depth increases with time to reach an
equilibrium state.

For steady uniform flows, constant
temperature and a cohesionless granular
spherical bed material, the local scour depth
can be formulated as

ds=f(L, B:yo :U*: g9, p JV‘)SS)dSO;ag:K’S) e’ t) (9)
3.1. Effect of flow depth

The influence of flow depth is assumed to
depend on the ratios of Us/Ux and yo/L. Most
researchers state that for a constant value of
U+/ Ux the equilibrium scour depth increases
with increasing flow depth but in a decreasing
rate and becomes independent at higher
values of flow depth. [Melville [15]]. Tey (4] and
Dongol [16] found from their experiments that
the scour depth ds/y. increases with
increasing flow depth yo./L. They found also
that the scour depths for vertical wall
abutment are higher than that of wing-wall.

3.2. Effect of Froude number

The Froude number is a significant
parameter which adequately accounts for the
effect of flow characteristics on the maximum
scour depth. The relationship between the
Froude number and scour depth. According to
Tey [4], Kwan [6], Kandasamy [5], Rahman
et el. [17] and Dey and Barbyuiya [3] indicate
that The scour depth increases as the value of
Froude number increases

3.3. Effect of sediment size

The sediment characteristics are presented
by the median diameter dso for uniform
sediment.

Gill’s [1] results for two sand sizes (dsol.52
and 0.914 mm) indicate that for the same
value of Us/Uwx<1, the scour depth is
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deeper for the coarser sand than for the fine
sand. From Tey [4], Kwan [18] and Rahman
and Muramoto [8] experiments it can be
concluded that for L/dso >100 the scour depth
increases with an increase of sediment size.

3.4. Effect of sediment gradation

The variation of particle size distribution
was generally found to have a pronounced
effect on local scour depth. Non-uniform
sediment mixtures (o,> 1.5-2) have been

reported to produce lower scour depth than
uniform sediment. The non-uniform sediments
are known to reduce the resistance to flow.
The coarser fraction deposits as a protective
layer at the bottom of the hole prevent further
removal of the bed material.

From previous studies under clear water
scour conditions, Ahmad [19] and Wong [20]
found that for a constant shear velocity ratio
U-/ U+ the rate of scour and the maximum
equilibrium scour depth decreases as the
standard deviation of the sediment mixture
increases. This trend is a consequence of the
armor layer formation of a more resistant
coarser particle layer from the coarser fraction
of the non-uniform mixture.

3.5. Effect of abutment length

Investigations of the influence of abutment
length perpendicular to flow L have been
correlated in terms of either L/B or L/yo.
There is a general agreement among
investigators that local scour depth increases
with the increase of L. When the length L
increases the backwater also increases. For a
constant flow rate, the higher the backwater,
the larger the reduction in bed shear stress
upstream of the abutment.

Based on his experimental work, Kwan
[18] draws the streamlines pattern of five
different abutment lengths. He observed that
the streamlines separate on approaching the
nose of the abutment. As the length L is
increasing, a greater proportion of the
streamlines is contracted at the nose,
consequently resulting in greater scour.

According to Tey [4], Kwan [6], Kandasamy
[5], Rahman et al. [16] and Lim ([7], for a
constant value of Froude number, the scour

depth increases gradually with increasing the
ratio L/B for vertical wall and wing wall
abutment.

3.6. Effect of abutment shape

Most investigators indicated that there is
influence of abutment shape on the scour
depth. They show that the blunter the
obstruction, the deeper will be the scour
depth. This is because of the difference in the
flow pattern generated for each kind of
abutment. Melville [2] presented shape factors
for different abutment shapes

3.7. Effect of abutment alignment

Researchers found that the scour depth
increases with increasing the angle of
alignment 6 fig. 4. As expected, the angle
6=30° produces the least scour depth. Kwan
[19] analyzed several angles of alignment and
found that the abutment alignment is defined
by the anglef. From the experiments, it was
found that the scour depth increases with
increasing of 6. Using the perpendicularly
aligned abutment angle ¢= 90° as a reference,
abutments pointed upstream are found to
produce larger scour depths

Melville [2, 15] divided the alignment factor
for short abutments, long abutments and
intermediate ones. He shows that the effect of
alignment on scour depth disappears for short
abutment L/y, < 1. He obtained alignment
factors K, for different angles of alignment.

4. Selecting the parameters of ANN

Local scour is time dependent process. At
equilibrium, the parameters will be
normalizing and will be considered all the
factors that affect local scour depth.

4.1. The flow characteristics

This can be expressed by flow velocity U—",
u *

Yo So , Froude number,

Shear stress y = 2292
(Ss —1dso

where g Up
9 Yo
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Fig. 4. Definition sketch of abutment skewness.
4.2. The abutment shape and alignment

Melville [2] selected the vertical wall
abutment as the primary shape and therefore
Ks = 1. He plotted data for the effects of
abutment alignment with respect to flow and
made a table for the data. He concluded that
as the abutment length perpendicular to flow
L increases, the scour depth increases.

4.3. The sediment size and gradation

For clear water scour, Tey [4] mentioned
that Ettema [21] defined the influence of
sediment size on scour depth at circular piers
for uniform sediments that scour depth
increases with the relative sediment size L/dso
up to L/dso= 50. For L/dso > 50, ds is
independent of the sediment size. Dongol [16]
found that the influence of relative sediment
size on scour depth is the same for both piers
and abutments. All the previous experiments
were applied for uniform sediments that can
be described by the geometric standard
deviation ;.

Based on the previous studies, the final
developed expression for local scour depth is:

U
dS/Yo =f(W’U—1’FN’kS’K9’
L/B,o,,L/ds). (10)

4.4. Multilayer network

A multilayer net is a net with one or more
layers of nodes (the so-called hidden units)
between the input units and the output units.
Typically, there is a layer of weights
between two adjacent levels of units (input,
hidden, or output), as shown in fig. 5
Multilayer nets can solve more complicated
problems than can single-layer nets, but
training may be more difficult.

4.5. Back propagation neural net

Rumelhart et el. [11] played a major role in
the reemergence of neural networks as a tool
for solving problems. The back propagation or
the generalized delta rule is simply a gradient
descent method to minimize the total square
error of the output computed by the net.

The aim is to train the net to achieve a
balance between the ability to respond
correctly to the input patterns that are used
for training and the ability to give reasonable
response to input that is similar, but not
identical, to that used in training.

4.6. Training the network and verification
of results for vertical wall abutment

Table 1 presents the range of data used in
training and verification for vertical wall
abutment. The network was set up with eight
parameters and the local scour depth is
considered the output for 142 patterns.
Therefore, the input layer contains eight
neurons, while the output layer contains one.
Between the two layers, there is another
hidden layer contains a suitable number of
neurons. The network was trained with 71
patterns. The number of neurons in the
hidden layer and the parameters a & were
determined by calibration through several
computer run tests. The best fitting of the
measured and estimated data was found to be
for number of neurons in the hidden layer
equals 8, the parameter « equals 6 and the
parameter ¢ equals 0.01. After the network is
calibrated the other half of 71 patterns was
added without inserting the output layer ds/ yo
and to be predicted by the program.
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Input One Layer Qutput
Units of Weights Units

Fig. 5. A multilayer neural net.
4.7. Calibration of model parameters

The number of neurons on the hidden
layer, the value of learning rate parameter and
the value of shape factor of sigmoid function
must be assumed first before the training. To
determine the exact model parameters which
agree with the measured one, these
parameters were calibrated.

4.8. Error analysis

The estimated values were compared with
the measured ones. A discrepancy ratio, Dr =
dse /| dsm was used for comparison, where dse
is the estimated local scour depth and dsm is
the measured one: The mean value and the
standard deviation o are expressed as:

D,=iDn- /N, (11)
i=1

and
N

a=‘/Z‘(Dﬁ -Dr)/N-1. (12)
i=1

where N is the number of tested data

4.9. Calibration of steepness «a

The factor a affects the behavior of the
sigmoid function as shown in fig. 6. The
changing of the parameter « in the sigmoid
function affects the training results. The best
results of training are obtained at a value = 6.
Where the mean =1.000199, o =0.038. Fig. 7
shows the change in accuracy of results by
changing a.

Table 1
Range of data used in learning and verification for vertical
wall abutment

Variables range Variables range

Shear 0.025- Alignment

stress ¥ 0.348  factor Ko 107

Flow

velge 0.015-  Contraction 0.044-

e 20887 ratio L/B 0.593
Sediment

Froude 0.149-

number Fv  0.810 star}dgrd 138
deviation og

Shape 0.75-1.0 Sediment size 12.903-

factor Ks ’ ’ L/dso 647.059
plus

- 2% 40— B+ B4 =0— =12
1
7 6 5 4 3 2 4 0 1 2 3 4 5 6 1

Fig. 6. Effect of a on the activation function.
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Fig. 7. Effect of a on the model results

H.L

1.18

1.14

112 ‘

11 \

1.08 .—XV
§ o
et \

1.02 \ o —

1 \ e
0.08 \/
0.96
0 2 4 [ 8 10 12 14 16 18
HL

Fig. 8. Effect of hidden layers on the model results.
4.10. Effect of hidden layers

The number of neurons in the hidden
layers affects the performance of the model.
The best results of training are obtained for
number of hidden layers = 8 as shown in fig.
8.

4.11. Effect of epsilon ¢

The learning rate € affects on the model
results. The value of epsilon that gives the
best results is = 0.01.

4.12. Effect of number of iterations

Good performance of ANN is obtained
when the iteration number increases up to

130000. Fig. 9 shows the effect of number of
iteration on the error value, based on the
program factors that was determined. These
parameters are « =6, hidden layers = 8 and ¢
= 0.01.

5. Comparison with empirical equations
for vertical wall type

Based on 71 data sets, a comparison between
the present model and four of previous
equations are performed. These equations are
listed in table 4. As shown in fig. 11 and table
5 that about 95% of the data points within the
range * 25% limit line for the neural model.
For Froehlich equation results, around 56%
of the data points within * 25%. Froehlich
equation gives a high value of standard
deviation. Lim equation results give about
72% of the data points within+ 25%, and
about 80% within the range = 50%. Lim
depends basically in his equation on the
parameters L and y.. Melville equation gives
about 50% in the * 25% limit line. Melville
depends on many simplifications in his
equation, the effect of Froude number, particle
size and particle standard deviation and the
bed shear stress was not considered. Nagy
equation gives about 47% with the
range* 25% limit line. By comparing the
results from ANN model with other equations,
the mean of the ANN is the least one and
equal to1.04.

5.1. Sensitivity analyses

The estimated values were compared with
the measured ones. The best results of
training the model are for mean of 1.000199
and standard deviation of 0.38. A comparison
between measured and estimated local scour
depth are presented in fig. 10. The figure
shows that the agreement between the
measured and calculated scour depths is
almost identical.

5.2. Effect of different parameters on the
accuracy of the ANN model

The variables shown in table 3, which
used in the analysis of ANN program, were
assumed to be the most effective parameters.
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Several trials were conducted to examine the
sensitivity of each parameter on the model
results. Some parameters may have no
significant effect on the results. Existence of
other parameters may confuse the training
process of the network. The first run was
carried out with all the parameters, and then
each parameter was eliminated. Statistical
analysis was used for determining the
accuracy of the results. A discrepancy ratio
was used for comparison. The mean value and
the standard deviationc are calculated as
listed in table 3. It seems from table 3 that
every parameter affects the model accuracy
but most effective parameters are Froude
number and sediment factor. Table 3 shows
also the mean and standard deviation of
eliminating each parameter and the accuracy
of the model. From table 3, it appears that the
model is more sensitive to the parameters
v ,Fy and L/ds,. When eliminating L/ds,, the

mean 'was doubled and the standard deviation
increases to a very high value. This indicates
that the sediment size is an important
parameter in the scour prediction. When
eliminating v and Fy the mean change with

about 8% but the standard deviation changed

substantially. The parameters Yo y Og, Ksb

*

K¢and L/B have less effect on the results

when eliminating. The less parameter that the
model had a negligible affect is the sediment
standard deviation. In case of removing this
parameter, the standard deviation of the
program increases by about 16%.

5.3. Training the network and verification of
results for local scour around wing wall
abutment

From the collected data sets, the
dimensionless data are processed into the
following form to cover the selected
parameters. Table 6 presents the range of data
used in learning and verification for wing wall
abutment case. The network was set up with
six parameters and the local scour depth as
the output. Therefore, the input layer contains
six neurons, while the output layer contains
one. Between the two layers, there is another
hidden layer contains a suitable number of

neurons. The network was trained with 158
patterns. The numbers of neurons in the
hidden layer, the parameters a,e were

determined by calibration through several
computer run tests. The best fitting of the
measured and estimated data is for number of
neurons in the hidden layer equals 2, the
parameter a is equal to 14 and the parameter
¢ is equal to 0.01. After the network is
calibrated well, the other half of 158 patterns
was added without the output layer ds/Yo to
be predicted by the program.

Alpha=6

01 1%

001

Error Value

0.001

0.0001

~ N

\\\\\QNNQ\Q‘)\Q\Q\Q\
S N S I R )

Number of Rration

Fig. 9. Effect of iteration number on the model results.

[0 Tey(1984) + Kwan(1984) A Lim(1997) O Rahman(1999) © Dey (2005)

’L,-«ﬁ'
5 =
,-'u
5 _ o
o0
25 e
2
2 "ax
)
1 f
0 1 2 = 6 i

3 4
d,/Y, (measured)

Fig. 10. Comparison between measured and estimated
scour depth for vertical wall abutment.
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Table 2

Summary of the experimental data

Researcher Abutment og dso (mm) Fn L (mm) Yo (mm) fdegree No. of

type ; points

Tey (1984) S.CE®™ 1.26 0.82 0.19-0.38 165-302 50-350 90 5

Kwan (1984) S.C.E 1.28- 0.85 0.31-0.41 314-1400 50,100 45-135 17
1.30°

Lim (1997) V.W @ 1.25 0.94 0.15-0.27 50-150 150 90 11

Rahman v.w 1.28 0.14 0.54-0.81 100-200 14.3-21.5 90 9

(1999)

Dey and V.W 1.17- 0.26-3.10 0.18-0.48 40-120 62-250 90 99

Barbyuiya 1.38

(2005)

Tey (1984) W.W @ 1.26 0.82 0.17-0.38 296-600 50-500 90 24

Kandasamy w.w 1.30 0.90 0.23-0.56 380-1180 20-280 90 30

(1989)

Kwan (1988) wW.w 1.30 0.85 0.26-0.42 475 50-200 90 5

Dey and w.w 1.17- 0.26-3.10 0.17-0.48 40-120 59-250 90 99

Barbyuiya 1.38

(2005)

Tey (1984) T.S 1.26 0.82 0.19-0.38 302 50-350 90 7

Tey (1984) S.T® 1.26 0.82 0.19-0.38 295-445 50-350 90 6

(1) Semicircular end
(@ Vertical wall abutment
@) Wing wall abutment

@ Triangle shape abutment

) Spill- through abutment

0]

730

(2)

3

(4)
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Fig. 11. Comparison between ANN model and some
equations.

Table 3
Effect of parameters on results accuracy (number of data
sets =142)

Input of the parameters Mean gtt:nr'ladt?;:
the full parameters 1.02 0.12
Eliminating “y” 1.05 0.95
Eliminating “ Yo 0.93 0.50
Us
Eliminating “Fi’ 0.96 1,12
Eliminating “K” 0.87 0.42
Eliminating “K¢” 1.02 0.62
Eliminating “L/B’ 0.98 0.57
Eliminating “og” . 0.93 0.32
Eliminating “L/d50” 1.99 3.27

5.4. Effect of epsilon &

The best results for the model are obtained
for epsilon value = 0.01.

5.5. Effects of hidden layers

The number of hidden layers affects the
performance of the model. The best results of
training are obtained for number of hidden
layers=2. Fig. 13 shows that the mean value
changes by changing the number of neuron in
the hidden layers.

Table 4 ‘
Summary of equations used in comparison

Lim [7] 9 _K,0.9x-2)
Yo
L/ Yo <1 ds=2L
1< L/Yo <25ds=2 ( Lyo)o.s
Melville [2]
1<Yo225 ds = 10 Yo
d L 0.63
—= =0.78 K kg(_J
Yo Yo
Froehlich [9] o5
Fl 16( Yo ] ag-1_87
dSO
d T 0.42_: 0.717
Froehlich [9] s (L/y,) “(sina) er

Yo (dso / Yo)**""

5.6. Calibration of steepness a

The factor a affects the behavior of the
sigmoid function. The changing of the
parameter « in the sigmoid function affects
the training results. The best results of
training are obtained for the value 14, where
the mean =1.0034, o = 0.20. Figure 12 shows
the changes in the accuracy of results by
changing a.

5.7. Effect of number of iteration

The error value decreases as the number
of iteration increases as shown in figure 14.
The good performance of ANN is obtained
when the iteration number increases until a
value of approximately 129951.

5.8. Sensitivity analysis

The estimated values were compared with
the measured ones. The best results of
training the model were obtained for mean of
1.0034 and standard deviation of 0.20 as
shown in figure 15. The data sets are almost
compatible with the agreement line. The
results for the estimated values are of mean
=1.004 and standard deviation =0.22.
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Table 5
Accuracy of formulas for local scour depths of vertical wall type (number of data sets=71)
Standard ;
Method :\élealnl : devisliis Percentage of data in range
o (eq.12) 075125 0515 _ 025175
Present ANN 1.04 0.16 95.66 97.18 98.59
Froehlich eq. [9] 0.91 0.54 56.34 92.96 94.37
Lim eq. [7] 1.21 0.45 71.83 80.28 91.55
Melville eq.[2] 1.21 0.48 50.70 84.51 91.55
Nagy eq.[10] 0.98 0.80 46.48 92.96 94.36
Table 6
Range of data used in learning and verification of wing wall type
Variables Range Variables Range
Shear stress y 0.027-1.41 Alignment factor Ky 0.75
. . U, ! |
Flow velocity ratio F 12.041-21.377 Contraction ratio L/B 0.044-0.575
Froude number Fy 0.169-0.559 Sediment standard deviation 0y 1.17-1.38
Shape factor Ks 1.0 Sediment size L/dso 12.903- 1533.33

—— =M —0— =10 —4— =12 = =14

110 01 1t

s ”
100
£
S0 ;om
&
080 SRR 3|
085
0.001
NN N N N N N RN N N N N N N N NN NN
. " - " J FESEFFFFFSF S EESSEE
Number of tration
Apha
Fig. 12. Effect of a on the model results. Fig. 13. Effect of hidden layers on the model results.
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Mean

0.99 -— —

0.8

HL

Fig. 14. Effect of iteration number on the model results.

© Tey(1984) m Kandasamy(1989) a Kw an(1988) x Dey(2005)

Line of Agreement

a1y, (estimated)

=1y,

d. /Y, (measured)

Fig: 15. Comparison between measured and estimated
scour depth for wing wall type.

5.9. Effect of different parameters on the
accuracy of ANN model

Several experiments were conducted to
examine the sensitivity of each parameter on
The first run was carried with all the parame-
ters then each parameter was eliminated from
the group. Statistical analysis was used for
determining the accuracy of the results. The
mean value and the standard deviation o are
calculated. It seems from table 7 that the
mean affected by eliminating all the parame-
ters and the standard deviation. This indicate
that the parameters are important in the
model.

Table 7
Effect of parameters on res
data sets=158)

Input of the Standard
Mean I
parameters deviation
the full parameters 1.0039 0.21
Eliminating *y ” 1.09 0.31
. R .
Eliminating “ — 1.08 0.28
Us
Eliminating “Fy” 1.08 0.26
Eliminating “L/B" 1.005 0.26
Eliminating "o " 1.02 0.22
Eliminating “L/d50 1.08 0.27

5.10. Comparison with empirical equations
for wing wall type

A comparison between the present model
and five of previous equations as shown in
table 8 on the same 78 data was performed to
determine the accuracy of the formulas. Fig.
16 and table 9 show that about 72% of the
data points within the range + 25% limit line
and about 97% of the data points within the
range * 50% limit line for the neural model.
For Froehlich equation results, around 46% of
the data points are withint 25% and about
98% of the data points within the range + 50%
but the data is under predicting. Froehlich
equation gives a low value of the mean. Lim
equation results gives about 56% of the data
points withint25% and about the model
results. 90% within the range * 50%. Lim
depends basically in his equation on the
parameters L and y.. Melville equation results
give about 38% in the * 25% limit line and
about 66% within the range * 50%. Melville
depends on many simplifications in his
equation, the effect of Froude number, particle
size and particle standard deviation and the
bed shear stress were not considered. Dey
equation results gives about 80% with the
range * 25% limit line and about 86% within
the range * 50%. Dey used the regression
analysis to obtain his equation. His results are
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Dey Equation W
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Fig. 16. Comparison between ANN and some equations.

good in the range *25% and increases
slightly at +50% range. The mean and
standard deviation in the neural model are
better than Dey equation. Kwan equation gives
about 40% within the range * 25% and about
67% within the range * 50%. Kwan predicted
the equation in a narrow range of data. By
comparing the results from ANN model with
other equations according to the results, the
mean of the ANN is the least one and equal
t01.004.

5.11. Application of regression analysis on
local scour depth problem

A regression analysis model is used to
determine the relationship between a
dependent, representing local scour depth,
and independent variables, representing the
factors affecting local scour depth. According
to the equation for vertical wall type:

ds/ Yo = Xvo o1 y2 (Up/ U¥) x¥3
F{*4(L /ds)™S (L /B)Y™C K ™" Ko . (13)

Where the parameters from xw to xis are the
regression constants.

The program was run for 71 data sets and
the regression parameters were obtained. The
equation is:

ds/yo = 0.094

Uo /U*)0.12 F]%OO (L/dSO )0.46 (L/B)O.IO-K‘01,68 ;
0.0.15 O.SOKg.IS

174
(14)

Then the equation was applied for the
other 71 data sets and the mean was 1.1125
and the standard deviation was 0.26.

5.12. Comparison between ANN model and
regression analysis method for vertical
wall

As shown in table 10 and fig. 17 that
about 96% of the data points are within the
range 125% limit line and for regression
analysis results, around 83% of the data
points are within the same range. For the
range of £50%, about 97% are within the
range + 50% limit line for the neural model.

For regression analysis results, about 85%
are within the range +50% limit line. By
comparing the results, the neural model gives
mean 1.04 but regression analysis gives mean
1.12 with increasing ratio 12% the ideal value.
The ANN model and the regression analysis
give standard deviation of 0.16 and 0.26,
respectively. According to these results, it can
conclude that ANN estimates more accurate
values of local scour depth rather than the
regression analysis

5.13. Estimation of local scour depth for
wing wall abutment using regression
analysis

The program was run for 80 data sets and
the regression parameters were obtained. The
equation is:

ds/yo =45.27

(0_0,34F1(V).718(L/d50 )0.216 (L/B)0.119 (15)

(UO / U*)1.35 VO.Oll

Then the equation was applied for the
other 78 data sets and the mean was 0.995
and the standard deviation was 0.27.
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5.14. Comparison between ANN model and
regression analysis method for wing
wall type

Table 11 and fig. 18 show that about 72%
of the data points are within the range +25%
limit line and for regression analysis results,
around 60% of the data points are within the
same range. For the range of+50%, about 97%
are within the range+50% limit line for the
neural model. For regression analysis results,

Table 8
A summary of equations

about 96% are within the range+50% limit
line. By comparing the results, the neural
model gives mean 1.004 but regression
analysis gives mean 0.96 with increasing ratio
4% the ideal value. The ANN model and the
regression analysis give standard deviation of
0.22 and 0.26, respectively. According to these
results, it can conclude that ANN estimates
more accurate values of local scour depth
rather than the regression analysis.

Kwan [6] 0.5
Gam. =0.32+ K[—L—]
yO yO
Froehlich[9] d L 0.63 0.43
% _0.78 K, kg[—] FL16 (i’—) og 187
Yo Yo dso
Mclviles di=2L L/ ys<1
ds = 2 (L yo)°5 1<L/ yo<25
ds=10 yo L/yo225
Lim [7] d

Zs =K (09X-2)

o

Dey and Barybuiya [3] d

T

0.101 -0.231
s 8319 Fo.su[y_o] ( L J
v e

L dsg

Table 9

Accuracy of Formulas for local scour depth of wing wall type (number of data sets=78

Mean equation

Standard deviation

Percent of data in range

Method (eq.11) (eq.12)
a - 0.75-1.25 0.5-1.5 0.25-1.75

Present ANN 1.004 0.22 72 97.43 100
Froehlich eq. [9] 0.79 0.24 46.15 98.72 100

Lim eq. [7] 1.10 0.33 56.41 89.74  97.43
Melville eq. [2] 1.30 0.67 38.46 66.67  80.76
Dey and Barybuiya
5 _y 3 arybuly 1.17 0.38 80.77 85.89  92.30

q. (3]
Kwan eq. [6] 1.37 0.46 39.74 66.67  79.48
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Fig. 17. Comparison between ANN and regression analysis

Fig. 18. Comparison between ANN and regression analysis

for vertical wall type. for wing wall type.
Tablel0
Accuracy of ANN method and regression analysis method for vertical wall type
Percent of Data in Range
Number of Standard
Method Mean (eq.11) i
datn deviation (eq. 181 N o O = 0.25-1.75
Present ANN 1.04 0.16 95.77 97.18 98.59
i
s e 1.12 0.26 83.10 85.91 95.77
analysis
Table 1

Accuracy of ANN method and regression analysis method for wing wall type

Percent of data in range

Standard
Method Number of data Mean (eq.11) deviation (eq.12) 78 1 aE g .
Present ANN 1.004 0.22 72 97.43 100
) 78
Begrestan 0.995 0.27 62 94.87 100
analysis

6. Conclusions

Several studies have been conducted to
predict the local scour depth around
abutments. Most of the methods are based on
the regime approach, dimensional analysis,

736 Alexandria Engineering Jou

analytical or semi empirical approach. All of
these methods depend on much simplification
of analysis in order to overcome the
complexity of the parameters. In this study,
an artificial neural network model was
development to estimate the local scour depth.
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A feed forward back propagation algorithm
was used in the estimation of local scour
depth. It also includes a parametric study of
the theoretical bases to obtain the dominant
parameters of the problem.

Based on the present study, the following
conclusions can be obtained:
1. The artificial neural network model gives
good agreement with observed values of local
scour depth compared with other formulas
2- The artificial neural network model gives
better result compared with the regression
analysis method.
3- Afeed forward back propagation algorithm
of artificial neural network model was used
successfully in the estimation of local scour
depth for both vertical wall type and wing wall
type. :Before training could be carried out, the

size of the networks and the training
parameters must be defined.
4- The ANN model has no boundary

conditions in application. It does not estimate
accurately the scour depth for data out of
range of the learning pattern data. Such a
problem can easily be overcome by feeding the
learning pattern with a wide range of data.

5- By using the artificial neural network
model, the effect of different parameters
affecting local scour depth can be investigated.
For the sensitivity analysis of the model on
vertical wall abutment and wing wall types,
the basic parameters that affect local scour
are Froude number, shear stress and
sediment size.

Notation ANN artificial neural network

B is the channel width,

ds is the scour depth measured from bed
level,

dso is the median grain size,

Fn is the froude number,

Fe is the excess abutment Froude
number,

Ks is the Melville’s shape factor,
Is the Melville’s alignment factor,
L is the length of abutment
perpendicular to flow,
Q is the discharge of flow,
Ss is the sediment specific gravity,
t is the time to reach equilibrium,
U* is the bed shear velocity,

U*c is the critical shear velocity,
Ue is the approaching velocity,

Us is the mean velocity of flow,

Uoc is the critical velocity of flow,

Yo is the mean flow depth,

a is the shaping ratio of function f,

v is the fluid kinematical viscosity

7 is the dimensionless tractive shear
stress.

7 is the angle of inclination,

P is the fluid density,

o is the statistical standard deviation,
and

Og is the sediment geometric standard
deviation.
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