
 

Alexandria Engineering Journal, Vol. 43 (2004), No. 1, 7-10      7 
© faculty of Engineering Alexandria University, Egypt.  

Finding near optimal flows 
 

 

Magdy A. Ahmed               
Computer Sciences Dept., Faculty of Engineering, Alexandria University, Alexandria, Egypt  

e-mail : magdy_aa@hotmail.com  

 

 
This paper deals with the problem of approximating optimal flows between a single origin-
destination pair in data networks. We consider the problem of splitting a unit flow among 
N paths having different costs under a special, yet important class of cost functions. 
Despite the existence of  analytical methods for finding exact solutions to this problem, 
these solutions contain in many instances irrational values that cannot be implemented 
exactly. We present a fast algorithm that produces near optimal  flows of the form b-i 
where b,i are integers. 

ت المثلى تقريبا بين اى عقدة كمصدروأخرى كنهاية فى شبكات البيانات، بحيث يتم تقسيم وحدة يتناول البحث مشكلة إيجاد التدفقا
من المسارات بين هاتين العقدتين وكل مسار له تكلفة مختلفة. بالرغم من وجود طرق تحليلية لإيجاد الحل N  من التدفق على

عمليا. ويقدم البحث خوارزم سريع لإيجاد التدفقات المثلى تقريبا  الأمثل ولكن نتائجها دائما تعطى قيم غير نسبية لايمكن تطبيقها
 تكون قيم صحيحة ويعطى نتائج نسبية يمكن تطبيقها عمليا.r,b   بحيث ان  b-rعلى الشكل 
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1. Introduction 
 

 Routing is a sophisticated data network 

function that requires coordination between 
the network nodes through distributed 

protocols and has a direct effect on the 

average packet delay, and the network 

throughput.  

A more sophisticated alternative is optimal 
routing based on flow models. Several algo-

rithms were given for the computation of 

optimal routing, both centralized and distrib-

uted [1-5]. 

 In this paper, we consider the general  

problem of finding the optimal  flows over an 
N-link network with  one origin and one dest-

ination shown in  fig. 1, that minimize the 

general cost function:  
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subject to the constraints:  
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where each iP  is a positive real constant and 

v  is a  negative real value.  

 

 

 

 
 

 

 

 
Fig. 1. Routing problem involving a single OD pair and N 

paths. 
 

The particular cost function C of eq. (1) 

with v  being negative applies to the cases 

where each channel has an abundance of 

available bandwidth and users are penalized 

for leaving a channel idle. 

When v  is negative the given optimization 

problem has a simple closed form solution, [6, 

7]: 
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The solution *
iX  is in general an irrational 

number. To be able to implement the splitting 
of the traffic input into the N-path 

flows, N321 X,....,X,X,X , each of these must 

be a rational number. For example, imple-

menting the splitting of the input flow into 

 Link 1 , Flow X1 
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1 ::  can be done by assigning 2 time slots 

to the first flow and 1 time slot to the second 

and the third, but how do we split into 

2

1

2

1 1  :   . So an exact optimal solution 

cannot in general be implemented.  
A possible solution is obtained by appr-

oximating the optimal solution to rational 

values but the length of the duty cycle may 

become too large (see sec. 3.2). 

 

2. Proposed method 
 

In this section, we describe the proposed 

algorithm, then we follow by examples to dem-

onstrate the process. 

 
2.1. Algorithm  

 

The algorithm is based on finding flows of 

the form ir
i bX 
  that minimize the cost 

function in eq. (1) for a given Nb  , where b 

and ir  are integers . By substitution in eq. (1), 

the cost function is   
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where 1ba v     with v  negative. 

 

It was shown [8, 9] that a modified 
Huffman procedure can be used to minimize 
the cost function in eq. (3), when a is any real 

positive number. For a>1 and a particular 

value for Nb   we use the modified Huffman 

procedure to find optimal solutions to (3) 

which will result in flows of the form 

.bX ir
i


                 

The procedure is then repeated for all 
possible values of b and the one yielding the 

minimum value for C(b) is chosen as our 

solution. 

The number of times needed to try is just 

the number of different tree orders for which a 
complete tree with N leaves exists. This 

number is particularly small and is given by 

integer solutions to the equation:      
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It should be noted that if b1, b2 are two 

possible values for b and b2 is a power of b1 

then C(b1) C(b2) and so evaluation is not 

needed for values of b that are powers of previ-

ously evaluated ones. For example when 
N=49, there are 10 possible values for b, 

namely 2,3,4,5,7,9,13,17,25,49 of which only 

the 6 values 2,3,5,7,13,17 should be evalu-

ated. 

A formal description of the algorithm is 
shown in fig. 2. 
 

3.2. Example  

 

The following example demonstrates how 

the proposed algorithm is applied to a 5-link 

network with 71P , 62P , 33P , 24P , 

1P5   and v =-1, the cost function in eq. (1) 

becomes: 
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For comparison purpose, we consider the 

following two cases. 
 

 
Initial-Flows(N , v , p[N]) 
Begin 

   Find the complete tree of order b=2 
   Compute C(2) 
   Let Min-Cost = C(2) 
   For k=N-3 To 0 Step –1 
      Begin 
         Let  b=(N+k)/(k+1) 
         If ( b is an integer value) 
            Then 

                If (b is not powers of previous b’s)      
                   Then 

             Compute C(b) 
                       If (C(b) < Min-Cost) 
                Then 

                    Min-Cost = C(b) 
                       End If 

                End If 
         End If 

      Compute the flows X’s 
      End For 

End. 

 
Fig. 2. Formal description of the algorithm. 
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Case 1: 

 

For optimal flows, applying eq. (2) results 
in   

 

0.28629*
1X      ,  0.2650531*

2X   , 

0.1874208*
3X  ,  0.1530284*

4X  , 

0.1082074*
5X  ,  

 

and the minimum cost = 85.405446. 

By rounding *
iX  to rational values, we get 

the flows:  

 

0.3*
1X

~
, 0.3*

2X
~

, 0.2*
3X

~
, 0.1*

4X
~

, 

0.1*
5X

~
. 

 

In this case the minimum cost = 88.3333 and 

the duty cycle = 10 

 
Case 2: 
 

By applying the proposed method. Since 
N=5, complete trees can be formed for 

b=2,3,4,5. The case b=4 is deleted since it is 

already contained in the case b=2, and only 

the three cases b=2,3,5 will be considered. For 

each case, the modified Huffman procedure is 

applied to construct the tree that minimizes 
the cost C, for the particular value of b 

considered, and the minimum value C(b) is 

determined. The results obtained are 

summarized in table 1 while the resulting tree 
for b=2 is shown in  fig. 3. 

From table 1, the minimum value for the 
cost function is C(2) and the flows are:  

 

4
1

1X  , 
4
1

2X  , 
4
1

3X  , 
8
1

4X  , 
8
1

5X  . 

 

Note that, at the cost of increasing the duty 

cycle from 10 to 100, we can use the 

approximate values 29.0X
~*

1  , 26.0X
~*

2  , 

19.0X
~*

3  , 15.0X
~*

4  , 11.0X
~*

5  , which will 

give the better minimum cost of  85.41. 
Our algorithm gives the minimum cost of 

88 which is 3% of the optimal with duty cycle 

of  8. 

As another example if we use the values  

iP  {42 , 20 , 6 , 5 , 2} with v =-1 the 

minimum cost  is obtained for b=3 giving  C(3) 
  Table 1 
  Results of proposed method 

 

Flows b=2 b=3 b=5 

1X  1/4 1/3 1/5 

2X  1/4 1/3 1/5 

3X  1/4 1/9 1/5 

4X  1/8 1/9 1/5 

5X  1/8 1/9 1/5 

Cost, C(b)  88 93 95 

duty cycle 8 9 5 

         

= 303  with   the  flows  iX  {1/3 , 1/3 , 1/9, 

1/9 , 1/9} and  duty cycle  9. 

 

3. Experimental results 

 
In this section, we compare the results 

obtained using our method with the optimal 

flows for networks with different number of 
paths (N) and different values for the costs Pi. 

To obtain reliable results, a number of 

independent replications where carried out 
and averaged [10-11]. Fig. 4 shows the 

percentage error ratio versus the number of 
paths in the range 5 to 50, indicating a 

deviation of no more than 6% of the optimal. 

 
5. Conclusions 

 

In this paper, we have introduced a new 

procedure for finding nearly  optimal flows 
over N-paths  between  every  OD pair of nodes  

 
 

 

 

 

 

 
 

 

 

 
 
 

Fig. 3. A complete tree of order b=2. 
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Fig. 4. Percentage error ratio of the proposed algorithm 
versus the number of paths. 

               

in a network. The method determines the 

flows iX  by determining the order b,  Nb  , 

and the depths of the leaves ir  of the complete 

tree that minimizes the cost function    






N

1i

v
ii X PC ,               

where ir
i bX 
  and v  is any negative real 

value. 
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