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Several techniques are used to estimate the entropy of a finite sequence of symbols taken 
from a finite alphabet. Here we will present a new technique based on using varying levels of 
approximations for the entropy. Fitting the different approximations into one of a set of 
functions will result in an estimate to the absolute entropy. New applications are presented 
for the entropy gradient technique; estimating the real memory span of finite memory 
machines as a special case of finite state machines and investigating the degree of 
compositeness of numbers. 

توجد طرق متعددة لتقدير الأنتروبية لسلسلة محدودة الطول من الرموز المأخوذة من أبجدية محدودة. سيتم عرض تقنية جديدة تعتمد 
على استخدام درجات متعددة من التقريبات للأنتروبية. و سيؤدى وضع تلك التقريبات المختلفة فى صورة واحدة من مجموعة من 

سيعرض تطبيقان جديدان لطريقة تدرج الأنتروبية؛ تقدير عمق الذاكرة الحقيقي للآلات محدودة ة المطلقة. الدوال إلى تقدير الأنتروبي
 الذاكرة كحالة خاصة للآلات محدودة الحالات، و دراسة قدر التركيب للأرقام.
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1.  Introduction and preliminaries 

 

     The Information Theoretic version of 

entropy was first proposed in its modern form 
by C.E. Shannon [1] in a statistical form and 

by Kolmogorov in an algorithmic theoretic view 

[2]. 

The Shannon Entropy of a data sequence is 

a highly used figure to describe the complex-
ity, compressibility [3], amount of information, 

weight of noise component, effectiveness of 

random data generators, and many other 

properties of the analysed data. Various appli-

cations exist for the estimation of entropy in 

quite distant fields as Biology [4], and Medi-
cine [5,6]. A good collection of various applica-

tions is presented in [7]. 

     The amount of information per symbol 

extracted from a data source (i.e., entropy) 

was prior to Shannon considered to be 
log2(|S|) bits of information  where S is the 

alphabet from which the data source selects 

its output. 

Shannon introduced the effect of statistical 

properties of the source on its entropy level. 

Given the probabilities of various symbols of 
the alphabet, the general form of this relation 

is: 


S

p.log(p)H(S) .             (1) 

    

It extends to extract the information of a 

data source, realizable as a state machine, by 
averaging the entropy of the data source over 

all its states; 

 

. 

States State|S

p.log(p)P(State)H(S)  

 

     Or the detailed notation as will be used in 

the calculations; 

 

  )...sss|...ss)log(s...ssP(s(S)H m21e21me21
e
m , 

 
where e is the source extension level (i.e., 

symbol block size), and m is the memory span 

(i.e., order of the machine's Markov model) [8]. 

As we go further in analysis; adding up 
states, estimating probabilities of symbols 

more reliably, and observing the conditional 

probabilities using longer correlation into the 

history of the data sequence, we achieve better 

approximations of the absolute entropy of the 
data source. 

By studying the way our approximations 

get better, we can get a better inside view of 
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Sequence:  

a (bb) 

Sequence:  

ab (ba) 

Sequence:  

abb (aa) 

the data source under consideration, and 

extrapolate to find out the real entropy of the 

source. 
     To estimate the probabilities needed for the 

entropy calculations, we can make use of the 

following general form; 
dN

n
)A(P A








 , where nA 

is the frequency of event A among total 

samples, and d is the cardinality of the 

alphabet set (i.e., |S|).  is a constant to be 

chosen according to each specific case. =0 is 
the normal maximum likelihood estimation 

form, =1 is the one proposed by Laplace, but 

others used values like =1/d [14]. We will 

show that negative values of  have given 
amazing results in some applications. 

     We will first discuss the technique broadly, 

then show how to realize it explaining some of 
the implementation problems. In section four, 

we will show how this technique was verified 

using some standard data sources, and give 

comparisons to other techniques. In the last 

section we will focus on a couple of new 

applications that make use of the technique, 
and entropy estimation in general. 

 

2. Technique overview 

 

We can divide the technique into three 
phases: data sequence processing (data 

collection phase), probability estimation and 

entropy calculation (calculation phase), and 

finally curve fitting and result extraction 

(estimation phase). 

 
2.1. Data collection phase 
 

Assuming the data source is providing its 

output on a symbol per symbol basis (online), 
namely; s1s2s3 … sN  from a finite alphabet S, 
|S| = d. N is finite also. 

In order to be able to calculate all 

entropies based on a range of extensions and 

memory depths, we need to save all the 

frequencies (or what is enough to deduce it) of 

such blocks of symbols [10]. We will be using 
a d-ary suffix tree (or a prefix tree, they are 

both equivalently useful to our work as is 
shown later) where d is the cardinality of our 

source alphabet. 

The height of the tree is strictly bounded 
by a certain Depth. This Depth is assumed by 

the user of the technique depending on his 

application, suspected complexity of the data 

source, and/or length of available data 
sequence. However, Depth should generally be 

less than logd(N) for the frequencies of symbols 

to be a reliable representation of the data 

source's real probabilities. 

The tree (the suffix type) holds the 

following data: each node has the symbol and 

the number of times (its frequency) being the 
predecessor of its parent symbols (the root 
node, carries the NULL character, and its 

frequency value is the total symbol count N). 

In the prefix tree case, each node stores the 

count showing how many times it was its 

parents' successor. 
The process for building up the suffix tree 

proceeds as follows: For each new symbol, 

increment the root node, and increment (or 

create with count 1) all its successive children 

as the current symbol and previous symbols 

dictate, as shown in fig. 1. 
The same procedure applies in the case of 

a prefix tree moving down the tree according 

to the future symbols, not past ones. Of 
course the future Depth symbols should be 

known, this can be achieved by delaying the 
processing of any symbol until Depth symbols 

are observed. See fig. 2. 

The only cases that we cannot handle are 

the start-up state when using suffix trees, and 

the finalizing state when using prefix trees. 

For these cases, the logical statement that the 

sum of counts of all nodes should be equal to 
the count of their common parent will be 

unsatisfied. This problem can be attributed to 

the information hidden in the initial (or final) 

 

 
 

 

 

 

 

 
 

 

 

 

 
 

Fig. 1. Suffix tree after processing the sequence "abb". 
Showing the first steps and the final result. 
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Fig. 2. Prefix tree after processing the sequence "abb(aa)", 
"aa" is still to come. Showing steps after each symbol. 

 
state of the data source itself. This exactly-one 

error in the frequency should be normally 

discarded when the size of data processed 

increases, but for very short sequences it can 
make a difference in the final entropy value. 

This will be handled in the calculation phase. 

 
2.2. Calculation phase 
 

The constructed tree can be used to 
calculate the frequency of all symbols and 

states as follows (using examples from fig. 3). 

Using prefix trees: The value of any node 

corresponds to the frequency of the symbols 

subsequence from the root. For example; 
Freq(ab) = 3, by moving from rootab. Also, 

the conditional frequencies can be calculated 

as well, by moving according to state symbols, 

then specific symbol sequence. For example;  
Freq(ab|a) = 1, rootaab. Hence, we can 

calculate all the various probabilities needed 

for the entropy calculation using a single path 
from root to leaf. For example; taking the path 
rootaab we can get all the following 

values: P(a)=5/9, P(aa)=2/9, P(a|a)=2/5, 

P(aab)=1/9, P(ab|a)=1/5, P(b|aa)=1/2. 

Using suffix trees: It will be a little bit harder 

than the prefix tree to use, but with the same 

complexity. The same holds for all uncondi-
tional frequencies and probabilities But 

conditional forms will need to extract the total 

count of the state under consideration. This 

can be done by traversing the tree, keeping 

track of multi-pointers with various depths. 
For example; Freq(b|aa) = Freq(ba|a) 

=Freq(aab) = 1., P(b|aa) = Freq(aab)/Freq(aa) 

= 1/2. 

Prefix tree: 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Suffix tree: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3. Prefix and Suffix trees for the sequence 
"abbaaabab". 

 

      An algorithm can be designed easily for 

traversing both types of trees, to accumulate 
terms needed for the calculation of all the 
entropies with e+m ≤ Depth, starting with zero 

entropies, and adding up entropy terms (i.e., 

Plog(P)) as we traverse down the trees. It can 

be shown that both trees will be traversed 

with the same complexity, since for every node 
the amount of work done is similar, and the 

number of nodes in the whole tree will be 

essentially identical in both cases. 

      Next, we show how to handle the few 

problems that arise in the case of very short 
sequences: Biased Estimation, and Initial/ 

Final state effect. 

     Biased Estimation: It was shown in various 

related work [11, 12] that the entropy esti-

mated from the naïve form of estimating the 
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probabilities using frequencies (MLE) results 

in a biased value; 
 

).
N

1
(O)

p

1
1(

N12

1

N2

1M
)S(H)S(H

3
0p i

2
i




 


 

 

where M is the different number of symbols (or 

blocks of symbols) monitored.  This bias term 

can be also decreased by using the Laplace 

form of estimator, or by adjusting the  pa-
rameter accordingly, for example, it was 

shown [9] that   = 1/d is best suited for data 

with long correlations (e.g., English text). Also, 
we can treat the bias by adding up the first 
term to the calculated entropy (M can be ob-

tained for each different e+m by counting the 

number of nodes in each level in the tree while 

traversing the tree to get the entropy terms 

themselves). 
     Initial/Final state effect: The problem 

appears for the last (or first, in the case of 

suffix trees) symbols analysed, as they won't 

have future (past) symbols. This can be seen 

in fig. 3 for nodes (b, ab) (or in the 

suffix tree: a, ba) as the node count 

does not equal the sum of its children nodes. 

This unity-difference affects the final value of 

entropy calculated, but disappears very 
quickly by processing more symbols. To com-

pensate for its effect, we should add this unity 

discrepancy into the child nodes, and there 

are various ways to distribute it among child 

nodes: 

     Equal Share: safest method. 
In Ratio: optimistic, we assume the initial state 

takes the same trend as the average seen till 

now. 
Worst case: distribute it in a way to increase 

the estimated entropy (by adding it to the least 

count, and on ties, distribute evenly).    
     These methods assume that there might be 

no different symbols other than those 

observed, but consider the case in fig. 3 

bb) (same case in the suffix tree) where 

we observed only a's after the 2 b's. In such 

cases it will be useful to add up fake nodes, 

with zero count for missing symbols, then use 
the distribution strategies mentioned above. 

 

2.3. Estimation phase 
 

     For some purposes the process will stop 
here, with a table of entropy values  for the 

ranges e=1 to Depth, and m=0 to Depth-e (i.e., 

an upper triangular matrix). For other - mostly 

automated - processing cases, we will need to 

fit these values into a surface that gives us an 
overview for the behaviour of the source. A 

curve fitting strategy might look direct and 

straightforward, but it will not be very 

successful if not done carefully. First, we 

should choose a function form of some logical 
meaning related to the samples (i.e., entropy 

values) we have, see table 1. We can enumer-

ate a few problems with the direct least square 

error technique  

     The fitting cannot be symmetric with 

respect to negative and positive errors. If the 
fitted curve floats over the samples, that will 

be safer than getting below them. Being 

conservative in entropy estimation is most 

probably safer than giving underestimations. 

     The bias - not fully removable - increases 
with increasing the e+m value, this dictates 

that the fitting technique have to be less 
sensitive in some regions (i.e., high e+ m) than 

others. 

     Some constraints may be placed over the 

parameters of the functions to be used. 

     Formalizing our problem into a generic 
optimization problem will go as follows: 

 

,








D

1e

eD

0m

2
vm,e,εerror:min  

where;  

 














m),H(e,

v
m)(e,*H,m))H(e,

v
m)(e,*H(

m)H(e,
v

m)(e,*H,m))H(e,
v

m)(e,*Hλ(

vm,e,ε  

 

and  > 1 (v is the parameter vector of the 

EGF, Entropy Gradient Function, to free the 

objective function from their exact representa-

tion. The components of this vector are the 

target for optimization). The effect of the added 

 parameter is to make the error in the nega-

tive direction more important to avoid than 
positive error. Other alternative formulations 

of the problem are: 

 

 )))m,e(H
v

)m,e(*H((Expv,m,e   

 ),
v

)m,e(*H)m,e(H(Exp   
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or  

























m),H(e,
v

m)(e,*H,βm))H(e,
v

m)(e,*H(

m)H(e,
v

m)(e,*H,αm))H(e,
v

m)(e,*H(

vm,e,ε
 

 

where  > .  

     Many optimization techniques [13] can be 

used to solve this problem, as it is a well 

behaved objective function whatever the 
values of the errors. 
 

3. Technique verification 
 

     In order to verify the correctness of data 

collection and entropy calculation schemes (as 

well as the suitability of the proposed EGF's), 

a few test sequences were used. The used 

sequences have statistical forms that allow for 

an exact calculation of their entropy. 
 

3.1. Test 1: Exponential distributed data 
 

     The alphabet consists of n symbols with 

the following probability distribution: 

 













. ni,
1)(n

2

ni,0   i2
i)P(x  

 

The entropy of this source; 

.
2)(n

221).(n
1)(n

2
1n

1i

ii.2

)1n.log(2
1)(n

2
1n

1i
)i.log(2i2

n

1i
)1p.log(p

























 

     Comparing the results obtained by using 
the EG method with a context-based tech-

nique like Lempel-Ziv [14] and a statistical 

technique like Huffman (i.e., first step of 

entropy approximation) we obtained the fol-

lowing results shown in fig. 4. 

     Fig. 5, shows how close the results of 
Huffman (a memory-less technique) and the  

 
Table 1 

Some proposed EGFs and their corresponding 
constraints 

 

Examples of possible EGFs: Constraints 

me

r
hm)(e,H*


  h, r ≥ 0 

h ≤ log(d) 

bmae

1
hm)(e,H*


  a, b ≥ 0 

c* bm)(aehm)(e,H   
c ≥ 0 

 

EG technique were. EG is slightly lower at 

some points as it is not bounded to encode 

such data as the Huffman technique does. 
     EG gives better results than Lempel-Ziv 

that tries to get contextual relations between 

successive symbols, while the data - by defini-

tion - is memory-less.  

 
3.2. Test 2: Single memory source (locality 

 referenced states) 

 

The output of the data source is the label 

of the current state of a specific probabilistic 

finite state machine. 
Each state is labelled with two parameters; 

a group number and an inter-group number.  

At each state transition, the group number 

changes to next value with probability , and 

stays still with probability 1- (In a cyclic 
fashion over 1 to M). Next inter-group number 

is selected uniformly from 1 to N. 

The entropy of this source can be calculated 

independently from the two label components; 
 
H(S)= H(grp#) + H(inter-grp#) 

      =H() + log(N),  
 

where; 
 

H() = -  .log () – (1-). log (1-) 
 

The next graph fig. 6, shows the result of 
applying EG, LZ, and Huffman (compared to 

the exact value) on the output sequence of the 

defined data source. As was in the case of Test 

1, LZ gives a steady higher estimate than EG 

and Exact value. The Depth needed can be as 
low as 2 levels, although higher values can be 

used without affecting the final result (Depth 

is still subject to the limits mentioned before). 

This source is an example of a statistical 

source with finite context dependency length 

(memory span = 1 in this case). 
 
3.3. Test 3: English text 
 

Using the EG technique (with EGF-3 and 

Depth = 5), and with application to English 
text (various novels, textbooks,… and their 

combinations, sum up to about 6x107 chars) 

gave  results   that  are  within  4%  from  that  
 



A. S. El. Atawy, A. A. Belal/ Entropy  gradient 

26          Alexandria Engineering Journal, Vol. 43, No. 1, January 2004                                             

Entropy of Exponentially Distributed 

Symbols

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

0 2 4 6 8 10 12

Symbol Count

E
n

tr
o

p
y

Exact

EG

Huff

LZ

Entropy Ratio of Exponentially Distributed Symbols

0.9990

0.9995

1.0000

1.0005

1.0010

0 2 4 6 8 10 12

Symbol Count

R
e

la
ti

v
e

 E
n

tr
o

p
y

EG/Exact

H2/Exact

Locality Groups (2 grps)

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

0 0.2 0.4 0.6 0.8 1

Probability of Set Change

E
n

tr
o

p
y
 (

b
it

s
/s

y
m

b
o

l)

LZW

Huff

EG

Exact

Entropy of FMM output

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 1 2 3 4

Memory

E
n

tr
o

p
y

 
 
 
 

 
 
 
 

 
 
 
 

 
 

Fig. 4.  Entropy results for exponential distributed data, 
using EG, Huffman, LZ, compared to the exact value. 

 

 

 

 

 

 

 

 

 

 

 
 
 

Fig. 5. Zoomed fig. 4, comparing Huffman and EG 
technique results. 

 
 

 

 

 

 
 

 

 

 

 

 

 
 

Fig  6. Entropy curves for Locality based state machines. 
Comparing EG to Huffman, LZ and the exact values. 

(Huffman is seen as a steady line). 

 
obtained by previous researchers [9] (EG 

achieved 1.796 bits/char and Schurmann's 

extrapolated estimate was 1.860 bits/char, 

and 1.781 bits/char for plain 27 characters 

text). 
 

 
  
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
Fig. 7.  Entropy gradient over memory, for a specific finite 

memory machine with memory span equals to 2. 
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Fig. 8. Entropy gradient of an example FSM, over different 

memories. The multiple lines represent the entropy for 
different extensions. 

 
This test ensures the applicability of our 

technique to data with high contextual con-

tent. 

 

4. Applications 

 
Many applications that use entropy 

estimation exist. Here, two new applications 

for which the EG technique may be specifically 

useful are proposed.  
 
4.1. Finite memory machines 
 

A finite memory machine is a state 

machine that given the previous  inputs/ 
outputs pairs you can identify the current 

state [15]. 
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Given a finite state machine, it is generally 

not trivial to decide whether it is a finite 

memory machine or not. 
The problem is with finding all the possible 

input sequences and guessing the next state 

(by studying previous sub-sequences of an 

assumed length). If the guess was successful 

for all possible sequences then their length is 

the machine memory span. Carrying this 
experiment is practically hard, and another 

method is proposed in this paper based on 

entropy analysis. 

The identification process goes as follows; 
Generate a random sequence X (a pseudo 

random sequence will do), and apply it to the 
machine and record its output sequence Y. 

Calculate the entropy approximations using 
different memory depths (i.e., H(1,m) for m=0, 

1,... Depth-1) for both sequences; X and Z = 

{(xi,yi)} (i.e., each symbol is an ordered pair of 

the input and its corresponding output). 
As X is taken to be a random sequence; its 

entropy will stay steady at 1 bit/symbol (in 
case of a binary input/output machine). The 
entropy of Z will start high (up to 2 bits/ 

symbol for, as assumed, binary input/output) 

and decays with increasing the memory of the 
estimation till it reaches the entropy level of X. 

The reason is that the information hidden 
inside the machine (the knowledge of the 

current state) is decreased till it vanishes 

completely when we use  previous states in 
the estimation. 

So the test concludes that the given FSM 

is a FMM with memory span equals to m, 
where H(1,m)(X) = H(1,m)(Z). This is shown in 

fig. 7. 

A thing to note is the effect of using 

different values of  in the estimation of 

probabilities. Negative values of  result in a 
very useful result namely, the approximation 

values achieve a minimum at the required 

memory level (at m=), instead of stabilizing at 
the entropy level of X. This can reduce the ef-

fort to search for the appropriate m. 

One last point, if the machine is not a 
FMM in the first place; then we can know this 
from the entropy gradient of the Z sequence as 

it will never home into that of the input se-

quence, but keeps on approaching it in a decr-

easing rate as shown in fig. 8. 

 

4.2. Number properties 
 

Here we try to study the properties of 
numbers using the average of the entropy of 

their representation in more than one radix. 

The reason behind the idea is that if a 

number is composite, then we expect that we 

might see the pattern of its factors appearing 

in the representation of the number itself. For 
example; 1111,0101,0101 (3925) contain the 

pattern 101 (5) more than once, and 3925 is 

divisible by 5. So, we can say that there is 

some probability that highly composite num-

bers will contain some repeated patterns. 
Repeated patterns lead eventually to low 

entropy. 

We proposed some properties that can be 

quantitatively measured for a given number to 

study and to be compared with the entropy of 

such a number, namely; factor count, divisor 
count, distinct factors count, factor average, 

minimum factor, maximum factor. 

In the next graph, fig. 9, the entropy of a 

set of numbers is compared to the number of 

factors of such numbers, showing the trend of 
the overall set of points. 

The correlation was measured between 

each measure and the entropy of the number 

using binary representation, and by using the 

average entropy over a number of representa-

tions. More than one range of numbers was 
used, and the findings were consistent and 

conforming with logic. Factors/Divisor Count 

when increased means smaller patterns can 

be pointed out more easily, resulting in de-

creased entropy. Also, Average/min/max 
factor value  increases  when  factors  become 

 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 

Fig. 9. Factor count vs. entropy. 
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Table 2 
Correlations between some of the number properties 

selected and entropy of number representations (104 
numbers around the 106 range) 

 
Measure Correlation  

Factor count -0.087 

Divisor count -0.075 
Distinct factors count -0.024 
Factor average 0.108 
Minimum factor 0.080 

Maximum factor 0.140 

 

longer and harder to find in the final repre-

sentation. See the next table for a sample of 

correlation values for one of the tested ranges 
(104 numbers around the 106 range). 

 

5. Conclusions 

 

We have here presented a better form to 
keep statistical information about a data 

source, and that allows estimating probabili-

ties with different block sizes of symbols and 

different conditional levels. Thus, the same 

data is used to estimate entropies with all 

estimating powers instead of saving costly 
exhaustive listings for combinations of 

symbols and states as other techniques might 

do. 

Problems facing probability estimation 

were mentioned and solutions were proposed; 

bias, zero probability problem, initial/final 
data source state problem. 

Basically a prefix or - equivalently - a 

suffix tree is used to carry multilevel fre-

quency information. And it was shown that 

there is no difference in the amount of work 
needed to extract entropy values from both 

data structures. 

Proposed curves were shown, with increas-

ing degrees of freedom, to be used to fit to the 

entropy values with some modifications to the 

fitting techniques normally used. 
Two new applications were investigated; 

finite memory machine identification, and 

studying the degree of compositeness of num-

bers. The first used the entropy gradient 

directly, and the other went to the final state 
of the estimation to use the estimated entropy 

itself. 
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