

Alexandria Engineering Journal, Vol. 43, (2004), No. 1, 21-29 21

© Faculty of Engineering Alexandria University, Egypt.

Entropy gradient: a technique for estimating the entropy of
finite time series

Adel S. El-Atawy and Ahmed A. Belal
Dept. of Computer Science and Automatic Control, Faculty of Eng, Alexandria University, Alexandria, Egypt

Several techniques are used to estimate the entropy of a finite sequence of symbols taken
from a finite alphabet. Here we will present a new technique based on using varying levels of
approximations for the entropy. Fitting the different approximations into one of a set of
functions will result in an estimate to the absolute entropy. New applications are presented
for the entropy gradient technique; estimating the real memory span of finite memory
machines as a special case of finite state machines and investigating the degree of
compositeness of numbers.

توجد طرق متعددة لتقدير الأنتروبية لسلسلة محدودة الطول من الرموز المأخوذة من أبجدية محدودة. سيتم عرض تقنية جديدة تعتمد
على استخدام درجات متعددة من التقريبات للأنتروبية. و سيؤدى وضع تلك التقريبات المختلفة فى صورة واحدة من مجموعة من

سيعرض تطبيقان جديدان لطريقة تدرج الأنتروبية؛ تقدير عمق الذاكرة الحقيقي للآلات محدودة ة المطلقة. الدوال إلى تقدير الأنتروبي
 الذاكرة كحالة خاصة للآلات محدودة الحالات، و دراسة قدر التركيب للأرقام.

Keywords: Entropy estimation, Finite memory machines, Finite state machines, Number
 properties, Compositeness

1. Introduction and preliminaries

 The Information Theoretic version of

entropy was first proposed in its modern form
by C.E. Shannon [1] in a statistical form and

by Kolmogorov in an algorithmic theoretic view

[2].

The Shannon Entropy of a data sequence is

a highly used figure to describe the complex-
ity, compressibility [3], amount of information,

weight of noise component, effectiveness of

random data generators, and many other

properties of the analysed data. Various appli-

cations exist for the estimation of entropy in

quite distant fields as Biology [4], and Medi-
cine [5,6]. A good collection of various applica-

tions is presented in [7].

 The amount of information per symbol

extracted from a data source (i.e., entropy)

was prior to Shannon considered to be
log2(|S|) bits of information where S is the

alphabet from which the data source selects

its output.

Shannon introduced the effect of statistical

properties of the source on its entropy level.

Given the probabilities of various symbols of
the alphabet, the general form of this relation

is:


S

p.log(p)H(S) . (1)

It extends to extract the information of a

data source, realizable as a state machine, by
averaging the entropy of the data source over

all its states;

. 

States State|S

p.log(p)P(State)H(S)

 Or the detailed notation as will be used in

the calculations;

 )...sss|...ss)log(s...ssP(s(S)H m21e21me21
e
m ,

where e is the source extension level (i.e.,

symbol block size), and m is the memory span

(i.e., order of the machine's Markov model) [8].

As we go further in analysis; adding up
states, estimating probabilities of symbols

more reliably, and observing the conditional

probabilities using longer correlation into the

history of the data sequence, we achieve better

approximations of the absolute entropy of the
data source.

By studying the way our approximations

get better, we can get a better inside view of

A. S. El. Atawy, A. A. Belal/ Entropy gradient

22 Alexandria Engineering Journal, Vol. 43, No. 1, January 2004

Sequence:

a (bb)

Sequence:

ab (ba)

Sequence:

abb (aa)

the data source under consideration, and

extrapolate to find out the real entropy of the

source.
 To estimate the probabilities needed for the

entropy calculations, we can make use of the

following general form;
dN

n
)A(P A








 , where nA

is the frequency of event A among total

samples, and d is the cardinality of the

alphabet set (i.e., |S|).  is a constant to be

chosen according to each specific case. =0 is
the normal maximum likelihood estimation

form, =1 is the one proposed by Laplace, but

others used values like =1/d [14]. We will

show that negative values of  have given
amazing results in some applications.

 We will first discuss the technique broadly,

then show how to realize it explaining some of
the implementation problems. In section four,

we will show how this technique was verified

using some standard data sources, and give

comparisons to other techniques. In the last

section we will focus on a couple of new

applications that make use of the technique,
and entropy estimation in general.

2. Technique overview

We can divide the technique into three
phases: data sequence processing (data

collection phase), probability estimation and

entropy calculation (calculation phase), and

finally curve fitting and result extraction

(estimation phase).

2.1. Data collection phase

Assuming the data source is providing its

output on a symbol per symbol basis (online),
namely; s1s2s3 … sN from a finite alphabet S,
|S| = d. N is finite also.

In order to be able to calculate all

entropies based on a range of extensions and

memory depths, we need to save all the

frequencies (or what is enough to deduce it) of

such blocks of symbols [10]. We will be using
a d-ary suffix tree (or a prefix tree, they are

both equivalently useful to our work as is
shown later) where d is the cardinality of our

source alphabet.

The height of the tree is strictly bounded
by a certain Depth. This Depth is assumed by

the user of the technique depending on his

application, suspected complexity of the data

source, and/or length of available data
sequence. However, Depth should generally be

less than logd(N) for the frequencies of symbols

to be a reliable representation of the data

source's real probabilities.

The tree (the suffix type) holds the

following data: each node has the symbol and

the number of times (its frequency) being the
predecessor of its parent symbols (the root
node, carries the NULL character, and its

frequency value is the total symbol count N).

In the prefix tree case, each node stores the

count showing how many times it was its

parents' successor.
The process for building up the suffix tree

proceeds as follows: For each new symbol,

increment the root node, and increment (or

create with count 1) all its successive children

as the current symbol and previous symbols

dictate, as shown in fig. 1.
The same procedure applies in the case of

a prefix tree moving down the tree according

to the future symbols, not past ones. Of
course the future Depth symbols should be

known, this can be achieved by delaying the
processing of any symbol until Depth symbols

are observed. See fig. 2.

The only cases that we cannot handle are

the start-up state when using suffix trees, and

the finalizing state when using prefix trees.

For these cases, the logical statement that the

sum of counts of all nodes should be equal to
the count of their common parent will be

unsatisfied. This problem can be attributed to

the information hidden in the initial (or final)

Fig. 1. Suffix tree after processing the sequence "abb".
Showing the first steps and the final result.

A. S. El. Atawy, A. A. Belal/ Entropy gradient

Alexandria Engineering Journal, Vol. 43, No. 1, January 2004 23

.

Fig. 2. Prefix tree after processing the sequence "abb(aa)",
"aa" is still to come. Showing steps after each symbol.

state of the data source itself. This exactly-one

error in the frequency should be normally

discarded when the size of data processed

increases, but for very short sequences it can
make a difference in the final entropy value.

This will be handled in the calculation phase.

2.2. Calculation phase

The constructed tree can be used to
calculate the frequency of all symbols and

states as follows (using examples from fig. 3).

Using prefix trees: The value of any node

corresponds to the frequency of the symbols

subsequence from the root. For example;
Freq(ab) = 3, by moving from rootab. Also,

the conditional frequencies can be calculated

as well, by moving according to state symbols,

then specific symbol sequence. For example;
Freq(ab|a) = 1, rootaab. Hence, we can

calculate all the various probabilities needed

for the entropy calculation using a single path
from root to leaf. For example; taking the path
rootaab we can get all the following

values: P(a)=5/9, P(aa)=2/9, P(a|a)=2/5,

P(aab)=1/9, P(ab|a)=1/5, P(b|aa)=1/2.

Using suffix trees: It will be a little bit harder

than the prefix tree to use, but with the same

complexity. The same holds for all uncondi-
tional frequencies and probabilities But

conditional forms will need to extract the total

count of the state under consideration. This

can be done by traversing the tree, keeping

track of multi-pointers with various depths.
For example; Freq(b|aa) = Freq(ba|a)

=Freq(aab) = 1., P(b|aa) = Freq(aab)/Freq(aa)

= 1/2.

Prefix tree:

Suffix tree:

Fig. 3. Prefix and Suffix trees for the sequence
"abbaaabab".

 An algorithm can be designed easily for

traversing both types of trees, to accumulate
terms needed for the calculation of all the
entropies with e+m ≤ Depth, starting with zero

entropies, and adding up entropy terms (i.e.,

Plog(P)) as we traverse down the trees. It can

be shown that both trees will be traversed

with the same complexity, since for every node
the amount of work done is similar, and the

number of nodes in the whole tree will be

essentially identical in both cases.

 Next, we show how to handle the few

problems that arise in the case of very short
sequences: Biased Estimation, and Initial/

Final state effect.

 Biased Estimation: It was shown in various

related work [11, 12] that the entropy esti-

mated from the naïve form of estimating the

A. S. El. Atawy, A. A. Belal/ Entropy gradient

24 Alexandria Engineering Journal, Vol. 43, No. 1, January 2004

probabilities using frequencies (MLE) results

in a biased value;

).
N

1
(O)

p

1
1(

N12

1

N2

1M
)S(H)S(H

3
0p i

2
i




 


where M is the different number of symbols (or

blocks of symbols) monitored. This bias term

can be also decreased by using the Laplace

form of estimator, or by adjusting the  pa-
rameter accordingly, for example, it was

shown [9] that  = 1/d is best suited for data

with long correlations (e.g., English text). Also,
we can treat the bias by adding up the first
term to the calculated entropy (M can be ob-

tained for each different e+m by counting the

number of nodes in each level in the tree while

traversing the tree to get the entropy terms

themselves).
 Initial/Final state effect: The problem

appears for the last (or first, in the case of

suffix trees) symbols analysed, as they won't

have future (past) symbols. This can be seen

in fig. 3 for nodes (b, ab) (or in the

suffix tree: a, ba) as the node count

does not equal the sum of its children nodes.

This unity-difference affects the final value of

entropy calculated, but disappears very
quickly by processing more symbols. To com-

pensate for its effect, we should add this unity

discrepancy into the child nodes, and there

are various ways to distribute it among child

nodes:

 Equal Share: safest method.
In Ratio: optimistic, we assume the initial state

takes the same trend as the average seen till

now.
Worst case: distribute it in a way to increase

the estimated entropy (by adding it to the least

count, and on ties, distribute evenly).
 These methods assume that there might be

no different symbols other than those

observed, but consider the case in fig. 3

bb) (same case in the suffix tree) where

we observed only a's after the 2 b's. In such

cases it will be useful to add up fake nodes,

with zero count for missing symbols, then use
the distribution strategies mentioned above.

2.3. Estimation phase

 For some purposes the process will stop
here, with a table of entropy values for the

ranges e=1 to Depth, and m=0 to Depth-e (i.e.,

an upper triangular matrix). For other - mostly

automated - processing cases, we will need to

fit these values into a surface that gives us an
overview for the behaviour of the source. A

curve fitting strategy might look direct and

straightforward, but it will not be very

successful if not done carefully. First, we

should choose a function form of some logical
meaning related to the samples (i.e., entropy

values) we have, see table 1. We can enumer-

ate a few problems with the direct least square

error technique

 The fitting cannot be symmetric with

respect to negative and positive errors. If the
fitted curve floats over the samples, that will

be safer than getting below them. Being

conservative in entropy estimation is most

probably safer than giving underestimations.

 The bias - not fully removable - increases
with increasing the e+m value, this dictates

that the fitting technique have to be less
sensitive in some regions (i.e., high e+ m) than

others.

 Some constraints may be placed over the

parameters of the functions to be used.

 Formalizing our problem into a generic
optimization problem will go as follows:

,








D

1e

eD

0m

2
vm,e,εerror:min

where;














m),H(e,

v
m)(e,*H,m))H(e,

v
m)(e,*H(

m)H(e,
v

m)(e,*H,m))H(e,
v

m)(e,*Hλ(

vm,e,ε

and  > 1 (v is the parameter vector of the

EGF, Entropy Gradient Function, to free the

objective function from their exact representa-

tion. The components of this vector are the

target for optimization). The effect of the added

 parameter is to make the error in the nega-

tive direction more important to avoid than
positive error. Other alternative formulations

of the problem are:

)))m,e(H
v

)m,e(*H((Expv,m,e 

),
v

)m,e(*H)m,e(H(Exp 

A. S. El. Atawy, A. A. Belal/ Entropy gradient

Alexandria Engineering Journal, Vol. 43, No. 1, January 2004 25

or

























m),H(e,
v

m)(e,*H,βm))H(e,
v

m)(e,*H(

m)H(e,
v

m)(e,*H,αm))H(e,
v

m)(e,*H(

vm,e,ε

where  > .

 Many optimization techniques [13] can be

used to solve this problem, as it is a well

behaved objective function whatever the
values of the errors.

3. Technique verification

 In order to verify the correctness of data

collection and entropy calculation schemes (as

well as the suitability of the proposed EGF's),

a few test sequences were used. The used

sequences have statistical forms that allow for

an exact calculation of their entropy.

3.1. Test 1: Exponential distributed data

 The alphabet consists of n symbols with

the following probability distribution:













. ni,
1)(n

2

ni,0 i2
i)P(x

The entropy of this source;

.
2)(n

221).(n
1)(n

2
1n

1i

ii.2

)1n.log(2
1)(n

2
1n

1i
)i.log(2i2

n

1i
)1p.log(p

























 Comparing the results obtained by using
the EG method with a context-based tech-

nique like Lempel-Ziv [14] and a statistical

technique like Huffman (i.e., first step of

entropy approximation) we obtained the fol-

lowing results shown in fig. 4.

 Fig. 5, shows how close the results of
Huffman (a memory-less technique) and the

Table 1

Some proposed EGFs and their corresponding
constraints

Examples of possible EGFs: Constraints

me

r
hm)(e,H*


 h, r ≥ 0

h ≤ log(d)

bmae

1
hm)(e,H*


 a, b ≥ 0

c* bm)(aehm)(e,H 
c ≥ 0

EG technique were. EG is slightly lower at

some points as it is not bounded to encode

such data as the Huffman technique does.
 EG gives better results than Lempel-Ziv

that tries to get contextual relations between

successive symbols, while the data - by defini-

tion - is memory-less.

3.2. Test 2: Single memory source (locality

 referenced states)

The output of the data source is the label

of the current state of a specific probabilistic

finite state machine.
Each state is labelled with two parameters;

a group number and an inter-group number.

At each state transition, the group number

changes to next value with probability , and

stays still with probability 1- (In a cyclic
fashion over 1 to M). Next inter-group number

is selected uniformly from 1 to N.

The entropy of this source can be calculated

independently from the two label components;

H(S)= H(grp#) + H(inter-grp#)

 =H() + log(N),

where;

H() = - .log () – (1-). log (1-)

The next graph fig. 6, shows the result of
applying EG, LZ, and Huffman (compared to

the exact value) on the output sequence of the

defined data source. As was in the case of Test

1, LZ gives a steady higher estimate than EG

and Exact value. The Depth needed can be as
low as 2 levels, although higher values can be

used without affecting the final result (Depth

is still subject to the limits mentioned before).

This source is an example of a statistical

source with finite context dependency length

(memory span = 1 in this case).

3.3. Test 3: English text

Using the EG technique (with EGF-3 and

Depth = 5), and with application to English
text (various novels, textbooks,… and their

combinations, sum up to about 6x107 chars)

gave results that are within 4% from that

A. S. El. Atawy, A. A. Belal/ Entropy gradient

26 Alexandria Engineering Journal, Vol. 43, No. 1, January 2004

Entropy of Exponentially Distributed

Symbols

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

0 2 4 6 8 10 12

Symbol Count

E
n

tr
o

p
y

Exact

EG

Huff

LZ

Entropy Ratio of Exponentially Distributed Symbols

0.9990

0.9995

1.0000

1.0005

1.0010

0 2 4 6 8 10 12

Symbol Count

R
e

la
ti

v
e

 E
n

tr
o

p
y

EG/Exact

H2/Exact

Locality Groups (2 grps)

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

0 0.2 0.4 0.6 0.8 1

Probability of Set Change

E
n

tr
o

p
y
 (

b
it

s
/s

y
m

b
o

l)

LZW

Huff

EG

Exact

Entropy of FMM output

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 1 2 3 4

Memory

E
n

tr
o

p
y

Fig. 4. Entropy results for exponential distributed data,
using EG, Huffman, LZ, compared to the exact value.

Fig. 5. Zoomed fig. 4, comparing Huffman and EG
technique results.

Fig 6. Entropy curves for Locality based state machines.
Comparing EG to Huffman, LZ and the exact values.

(Huffman is seen as a steady line).

obtained by previous researchers [9] (EG

achieved 1.796 bits/char and Schurmann's

extrapolated estimate was 1.860 bits/char,

and 1.781 bits/char for plain 27 characters

text).

Fig. 7. Entropy gradient over memory, for a specific finite

memory machine with memory span equals to 2.

Entropy of non-FMM output

1

1.1

1.2

1.3

1.4

1.5

1.6

0 1 2 3 4

Memory

E
n

tr
o

p
y

Fig. 8. Entropy gradient of an example FSM, over different

memories. The multiple lines represent the entropy for
different extensions.

This test ensures the applicability of our

technique to data with high contextual con-

tent.

4. Applications

Many applications that use entropy

estimation exist. Here, two new applications

for which the EG technique may be specifically

useful are proposed.

4.1. Finite memory machines

A finite memory machine is a state

machine that given the previous  inputs/
outputs pairs you can identify the current

state [15].

A. S. El. Atawy, A. A. Belal/ Entropy gradient

Alexandria Engineering Journal, Vol. 43, No. 1, January 2004 27

Factor Count vs Entropy

(small numbers range)

y = -0.014x + 0.9494

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16

Number of Prime Factor

E
n

tr
o

p
y

FacCount

Linear (FacCount)

Given a finite state machine, it is generally

not trivial to decide whether it is a finite

memory machine or not.
The problem is with finding all the possible

input sequences and guessing the next state

(by studying previous sub-sequences of an

assumed length). If the guess was successful

for all possible sequences then their length is

the machine memory span. Carrying this
experiment is practically hard, and another

method is proposed in this paper based on

entropy analysis.

The identification process goes as follows;
Generate a random sequence X (a pseudo

random sequence will do), and apply it to the
machine and record its output sequence Y.

Calculate the entropy approximations using
different memory depths (i.e., H(1,m) for m=0,

1,... Depth-1) for both sequences; X and Z =

{(xi,yi)} (i.e., each symbol is an ordered pair of

the input and its corresponding output).
As X is taken to be a random sequence; its

entropy will stay steady at 1 bit/symbol (in
case of a binary input/output machine). The
entropy of Z will start high (up to 2 bits/

symbol for, as assumed, binary input/output)

and decays with increasing the memory of the
estimation till it reaches the entropy level of X.

The reason is that the information hidden
inside the machine (the knowledge of the

current state) is decreased till it vanishes

completely when we use  previous states in
the estimation.

So the test concludes that the given FSM

is a FMM with memory span equals to m,
where H(1,m)(X) = H(1,m)(Z). This is shown in

fig. 7.

A thing to note is the effect of using

different values of  in the estimation of

probabilities. Negative values of  result in a
very useful result namely, the approximation

values achieve a minimum at the required

memory level (at m=), instead of stabilizing at
the entropy level of X. This can reduce the ef-

fort to search for the appropriate m.

One last point, if the machine is not a
FMM in the first place; then we can know this
from the entropy gradient of the Z sequence as

it will never home into that of the input se-

quence, but keeps on approaching it in a decr-

easing rate as shown in fig. 8.

4.2. Number properties

Here we try to study the properties of
numbers using the average of the entropy of

their representation in more than one radix.

The reason behind the idea is that if a

number is composite, then we expect that we

might see the pattern of its factors appearing

in the representation of the number itself. For
example; 1111,0101,0101 (3925) contain the

pattern 101 (5) more than once, and 3925 is

divisible by 5. So, we can say that there is

some probability that highly composite num-

bers will contain some repeated patterns.
Repeated patterns lead eventually to low

entropy.

We proposed some properties that can be

quantitatively measured for a given number to

study and to be compared with the entropy of

such a number, namely; factor count, divisor
count, distinct factors count, factor average,

minimum factor, maximum factor.

In the next graph, fig. 9, the entropy of a

set of numbers is compared to the number of

factors of such numbers, showing the trend of
the overall set of points.

The correlation was measured between

each measure and the entropy of the number

using binary representation, and by using the

average entropy over a number of representa-

tions. More than one range of numbers was
used, and the findings were consistent and

conforming with logic. Factors/Divisor Count

when increased means smaller patterns can

be pointed out more easily, resulting in de-

creased entropy. Also, Average/min/max
factor value increases when factors become

Fig. 9. Factor count vs. entropy.

A. S. El. Atawy, A. A. Belal/ Entropy gradient

28 Alexandria Engineering Journal, Vol. 43, No. 1, January 2004

Table 2
Correlations between some of the number properties

selected and entropy of number representations (104
numbers around the 106 range)

Measure Correlation

Factor count -0.087

Divisor count -0.075
Distinct factors count -0.024
Factor average 0.108
Minimum factor 0.080

Maximum factor 0.140

longer and harder to find in the final repre-

sentation. See the next table for a sample of

correlation values for one of the tested ranges
(104 numbers around the 106 range).

5. Conclusions

We have here presented a better form to
keep statistical information about a data

source, and that allows estimating probabili-

ties with different block sizes of symbols and

different conditional levels. Thus, the same

data is used to estimate entropies with all

estimating powers instead of saving costly
exhaustive listings for combinations of

symbols and states as other techniques might

do.

Problems facing probability estimation

were mentioned and solutions were proposed;

bias, zero probability problem, initial/final
data source state problem.

Basically a prefix or - equivalently - a

suffix tree is used to carry multilevel fre-

quency information. And it was shown that

there is no difference in the amount of work
needed to extract entropy values from both

data structures.

Proposed curves were shown, with increas-

ing degrees of freedom, to be used to fit to the

entropy values with some modifications to the

fitting techniques normally used.
Two new applications were investigated;

finite memory machine identification, and

studying the degree of compositeness of num-

bers. The first used the entropy gradient

directly, and the other went to the final state
of the estimation to use the estimated entropy

itself.

References

[1] C.E. Shannon, “Mathematical Theory of
Communication”, Bell System Tech.

Journal, Vol. 27, pp. 379-423, 623-656

July, October (1948).

[2] M.L. and P. Vitanyi, An Introduction to

Kolmogorov Complexity and Its

Applications, Springer (1997).
[3] T. Bell, I.H. Witten, and J.G. Cleary,

“Modelling for Text Compression”, ACM

Computing Surveys, Vol. 21 (4) pp. 557-

591 (1989).

[4] D. Loewenstern and P. Yianilos,
“Significantly Lower Entropy Estimates

for Natural DNA Sequences”, Data

Compression Conf, p. 151, March (1997).

[5] H. Bo; Y. Fusheng, T. Qingyu, and Tin-C.

Cheung, “Approximate Entropy and Its

Preliminary Application in the Field of
EEG and Cognition”, 20th Annual Conf

of the IEEE Engineering in Medicine and

Biology Society, Vol. 20 (4) (1998).

[6] L. Quanzheng and G. Xiaorong

“Subsection Approximate Entropy and
Its Application In Sleeping Staging”,

Proceeding of 1st Joint BMES/EMBS

Conference Serving Humanity,

Advancing Technology, Atlanta, pp. 13-

16 (1999).

[7] S. Verdu, “Fifty Years of Shannon
Theory”, IEEE Trans. Info. Theory, Vol.

44 (6), pp. 2057-2078 (1998).

[8] N. Abramson, Information Theory and

Coding, McGraw-Hill, New York (1963).

[9] T. Schurmann, and P. Grassberger,
‘Entropy Estimation of Symbol

Sequences”, American Institute of

Physics: CHAOS, Vol. 6 (3), pp. 414-427

(1996).

[10] T. Poschel, W. Ebeling W. and H. Rose,

“Guessing Probability Distribution From
Small Samples”, Journal of Stat. Phys.,

Vol. 80, pp. 1443-1452 (1995).

[11] G.P. Bashrain, “On a Statistical Estimate

for the Entropy of a Sequence of

Independent Random Variables”, Theory
Probability Appl., Vol. 4 (3), pp. 333-336

(1959).

[12] R. Moddemeijer, “The Distribution of

Entropy Estimators Based on Maximum

A. S. El. Atawy, A. A. Belal/ Entropy gradient

Alexandria Engineering Journal, Vol. 43, No. 1, January 2004 29

Mean Log-Likelihood”, 21st Sym Inf

Theory, pp. 231-238 (2000).

[13] M.S. Bazaraa, H.D. Sherali, and C.M.
Shetty, Non-Linear Programming, second

edition, John Wiley & Sons (1993).

[14] Lempel and J. Ziv, “A Universal

Algorithm for Sequential Data

Compression”, IEEE Trans. Inf. Theory,

Vol. 23 (3) pp. 337-343 (1977).

[15] F.J. Hil and G.P. Peterson, Introduction

to Switching Theory and Design, third

edition, John Wiley & Sons, sec 10.4,
(1981).

Received May 4, 2003

Accepted November 30, 2003

