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The aim of the present research is to define a simplified approach which allow the 
determination of the composite beam behavior; i.e. load capacity versus deflection, based 
on shear connector properties. Composite beams are widely used in construction, 
especially for rehabilitation or when seismic effects are to be considered in structural 
analysis. An advantage feature is that it involves an interaction between structural 
elements made of same or different structural materials. This leads to an increase in 
stiffness in addition to structural and economical benefits. A computer program was 

developed to predict the behavior of composite beams under flexure in the linear and 
non-linear phases. Many researchers have dealt with the effect of partial composite action 
in the elastic zone. However, few studies have revealed the nonlinear response of 
composite beams with regard to the behavior of shear connectors. In the present work, a 
new approach using discretization method was presented for the implementation of the 

composite effect for nonlinear analysis purpose. An experimental program was 
established on a series of composite beams with different shear connector characteristics. 
Based on shear connector characteristics, full or partial action is to be considered. The 
validity of this approach was established by correlation of numerical results with 
experimental test evidence. 

إن الغرض من هذا البحث هو إيجاد طريقة مبسطة تسمح بتحديد تصرف الكمرة المركبة )علاقة الهبوط بالحمل( على أساس 
الإنشاءات خصوصاً لتأهيلها ولزيادة قدرتها على  خصائص روابط القص. يعتبر استخدام الكمرات المركبة شائعاً في مجال

مقاومة الزلازل. تتكون الكمرات المركبة من قطاعات مصنوعة من نفس المواد أو مواد إنشائية مختلفة تترابط مع بعضها 
د تم تطوير برنامج البعض مما يؤثر في زيادة صلابتها وقدرة تحملها للأحمال. ولذلك فوائد من الناحية الإنشائية والاقتصادية. لق

كومبيوتر يمكن من خلاله توقع تصرف الكمرات المركبة عند تعرضها للإنحناء في المرحلة المرنة وغير المرنة. هنالك عدد 
من الدراسات التى ركزت على موضوع التأثير النسبي للروابط في المرحلة المرنة. أما فى المرحلة الغير مرنة، فالقليل من 

الموضوع آخذة في الإعتبار تصرف الروابط نفسها. تعتمد هذه الدراسات على طريقة التجزئة العددية لدراسة الدراسات تناولت 
تأثير الترابط في المرحلة الغير مرنة بهدف أخذها في الأعتبار في التحليل والتصميم. كما تم وضع برنامج تجارب عملية على 

خصائص مختلفة. بناء على صلابة الروابط والمسافة بينها يتغير تصرف مجموعة من الكمرات المركبة بإستخدام روابط ذات 
الكمرة حسب نسبة الترابط حيث تتراوح بين الترابط الكلي والجزئي. إن مطابقة النتائج العددية مع التجارب العملية تعزز 

 صلاحية الطريقة المستخدمة .
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1. Introduction 

 

The stiffening and strengthening of beams 

using composite construction materials is a 

suitable technique, which appears particularly 
for restoration as well as for increasing the 

resistance against lateral forces [1]. The 

objective of this research is to study the role of 

shear interface on the composite effect. The 

composite beams such as steel beam and con-
crete slab are widely used as structural mat-

erials due to their ability to absorb dynamic 

loads. The use of such system allows reduced 

beam depth and increased stiffness. Thus, it 

can be more economical at longer span. 

The studs (shear connectors) comprise the 
most basic element of the system creating a 

“link” between the upper part and the lower 

part element. This allows them to work 

together to support the load. Composite const-

ruction as treated in this paper consists of 
steel plate placed upon and interconnected to 
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a steel rolled I-section shaped girder. In the 

United States, the design provisions of 

composite structural members can be found 
in the American Concrete Institute building 

code No. (ACI 318 1999) [2], the American 

Institute of Steel Construction (AISC 1999) [3], 

and the National Hazards Earthquake 

Program (NEHRP) seismic provisions (BSSC 

1997) [4]. 
However, due to lack of sufficient data on 

shear connector effect, it is noted that the 

design provisions of composite structural 

members have not included the partial effect 

of shear connectors. An experimental study on 
the mechanical behavior of steel I-section 

shaped composite beam subjected to bending 

was conducted on a series of specimens. A 

computer program was developed for that 

purpose. The results of the theoretical form-

ulation are in good agreement with 
experimental data. The importance of this 

study is that the non-linearity is taken into 

consideration in the approach. The objectives 

are to develop a model for predicting the 

influence of upper plate and bond conditions 
on the behavior of composite beams and to 

propose a new approach to evaluate the perce-

ntage effect of composite action. Also to study 

the parameters that increases the stiffness 

and the load capacity of the composite beam.  

 
2. Composite action 

 

Composite action is developed when two 

load carrying structural members such as 

steel plate and the supporting steel beam are 
integrally connected and deflect as a single 

unit. Viest notes that the important factor in 

composite action is the bond between the 

upper and lower part of the composite beam 

[5]. The shear connectors provide the 

interaction necessary for the system to act as 
a unit; i.e. no slip between the upper and the 

lower part of the beam. The shear forces are 

transferred across the interface [6, 7]. 

In developing the concept of composite 

behavior, consider first the non-composite 
behavior where friction is neglected, the beam 

and plate each carry separately a part of the 

load. When the plate deforms under vertical 

load, its lower surface is in tension and 

elongates, while the upper surface of the beam 

is in compression and shortens. Thus a 
discontinuity occurs at the plane of contact. 

Since friction is neglected, only vertical forces 

act between the plate and the beam. This is 

shown in the fig. 1-a. By examination of the 

strain distribution that occurs when there is 

no interaction between upper and lower plate 
as shown in fig. 2-a, it is seen that the total 

resisting moment is equal to the summation of 

the plate and beam moments eq. (1-a). There 

are two neutral axes, one at the center of 

gravity of the plate and the other at the center 
of gravity of the I-beam. Horizontal forces 

(shear forces) are developed on the lower 

surface of the plate to compress and shorten 

it, while simultaneously they act on the upper 

surface of the beam to elongate it; fig. 1-b. 

When partial interaction is present, the center 
of gravity of the plate and beam are closer to 

each other and the slip is decreased as shown 

in fig. 2-b. The moment is given in eq. (1-b). 

When a system acts compositely, no relative 

slip occurs between the plate and the beam. 
There will be one single neutral axis; fig. 2-c. 

The moment is then obtained by eq. (1-c). 

 

 M = Mplate + Mbeam,             (1-a) 

 

 M=T’.e’  or   C’.e’,         (1-b) 

 

 M=T”.e”   or  C”.e”.                   (1-c) 

 
3. Computer program development 

 
3.1. Elasto-plastic behavior 
 

Computer software was developed to 
predict the full behavior of the composite 

member in the elastic and elasto-plastic 

phases under bending load. The composite 

member consists of an I-section shaped beam 

supporting a rectangular plate. In this re-

search, the same material properties were se-
lected for both the beam and plate. We have 

studied the case of a simple beam supporting 

a single concentrated load. Knowing that the  
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Fig. 1. Comparison of deflected beam with and without composite action. 

 

 
Fig. 2. Strain variation in composite beams [6]. 

 

program can be modified to consider the com-

posite member made of two different materials 

such as steel and concrete of different stiff-

ness. For pure elastic deformation, we assume 
that Hooke’s law applies throughout the 

member. If the yielding strength is exceeded in 

some portion of the member, or the material 

involved is a brittle with a nonlinear stress 

strain diagram, this relation ceases to be 

valid. 
When designing within the elastic range, 

the load capacity of the composite member is 

then computed based on the proportional 
relationship (2) between the applied load P 

and the deflection y. Therefore, there is no 

need for a computer program and the relation 

will be in case of single load acting on the mid-

span of a simply supported beam: 

 

y =
IE48

PL3


                    (2) 

 
where E and I are the modulus of elasticity 

and the inertia of the section.       

While, in case the stresses in the members 

exceed the elastic proportional stress and 

enter the elasto-plastic zone, the load capacity 
will depend on the behavior of the material as 

well as the size and shape of the composite 

N.A 
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N.A Beam 

N.A Beam 

N.A Plate 

sssSlaSlab
Beam 
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sssSlaSlab
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No Slip 

e’ 
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C’’ 

T’ 

T’’ 
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a-No interaction            b- Partial interaction      c- Complete interaction 

(a) Deflected non-composite beam (b) Deflected composite beam 
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member. The position of the neutral axis is 

also an aspect to be considered. As the load 

increases, the maximum stresses at the top 
and bottom increases accordingly up to the 

yielding stress. Assuming the yielding stress 

in tension and compression are equal. 

Therefore, the yielding stress appears first at 

the bottom where the distance from the 

neutral axis to the bottom edge is greater than 
that to the top edge due to the presence of the 

upper plate in our case. As long as the normal 

stress does not exceed the yield stress, 

Hooke’s law applies, and the stress 

distribution across the section is linear as 
shown in fig. 3-a. The maximum value of the 

stress is Y in case of an elasto-plastic 

material. As the bending moment increases 

x  eventually reaches the value Y . As the 

bending moment further increases, plastic 

zones develop in the member with the stress 

uniformly equal to (- Y ) in the upper zone 

and (+ Y ) in the lower zone; fig. 3-b. Between 

the plastic and elastic zone an elastic core 

subsists and the stress varies linearly with the 

following eq. (3):   
 

y
y

x
Y

Y
  ,              (3)  

 

where yY represents a part of thickness of the 

elastic zone.                        

We shall use eq. (4) to determine the value 

of the bending moment (see figs. 3 & 5 for the 
notations): 

 

,  

Ct

0

Cc

0

y.dA..by.dA..bM    dA=b.dy.  (4) 

Where for: 0 ≤ y ≤ yY   y
y

x
Y

Y
  , 

   yY ≤ y ≤ c  Yx   . 

 

 
We note that when yY approaches zero, the 

bending moment approaches the limiting 
value. This value corresponds to the plastic 
moment Mp, eq. (5); fig. 3 ©. 

 
Mp=k.My where My is the moment at start of (5) 

the yield and k is the shape factor.        

 
Fig. 3. Stress distribution of an elasto-plastic material (full composite case). 

 
 

 
 
 

 
 
 
 

 
 
 
 

 
Fig. 4-a. Stress-strain curve, (b) & (c) Stress and Strain distribution over the cross section. 
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Fig. 5. Discretization of the stress diagram (full composite case). 

 
For rectangular section, the width (b) 

=constant and k = 1.5. It should be kept in 

mind that the distribution of strain across the 

section remains linear after the onset of yield. 

Therefore eq. (6-a,b) is used: 

 
 yY = Y ,            (6-a) 

Y  =
E

Y
 ,            (6-b) 

 

where   is the radius of curvature.                               

 For beams of variable cross section, the 

computation of the plastic moment will 

usually be simplified if a graphical method of 
analysis is used. 

 
3.2. Nonlinear behavior 
 

The purpose of this section is to develop a 

more general method for the determination of 
the distribution of stresses in a member in 

pure bending, which may be used when 

Hooke’s law does not apply. We first recall that 

no specific stress strain curve was assumed. 

The normal strain x varies linearly with the 

distance y from the neutral surface fig. 4 ©. 

Thus still eqs. (7-a,b): 

 

y
y

x
Y

Y
   ,             (7-a) 

 

c

y

m

x





.                 (7-b) 

 
Where y represents the distance from the 

point considered from the neutral surface, and 
c is the maximum value of y. A material 

characterized by the same strain relation in 

tension and compression, the neutral axis will 

coincide with the horizontal axis of symmetry 

of the section. Considering the distribution of 

the strain is linear and symmetrical with 

respect to the horizontal axis. The stress 

strain curve is assumed to be symmetrical 

with respect to the origin of coordinates. 
The distribution of the stresses in the 

cross section of the member i.e., the plot of 

x  versus y, is obtained as follows. Assuming 

that m  has been specified. We first determine 

the corresponding value of m  from the stress 

strain diagram and carry this value into the 
eqs. (6,7). Then for each value of y, we 

determine the corresponding value of x and 

obtain from the stress strain diagram the 

stress corresponding to this value of x . 

Plotting x  against y, yields the desired 

distribution of stresses.   

If x  is a known analytical function of x , 

then x  can be expressed as function of y and 

the integral of the moment eq. (4) can be 

determined analytically. Otherwise, the bend-

ing moment may be obtained through a 
numerical integration. An important value of 

the bending moment is the ultimate bending 
moment Mu which causes failure of the 

member. This value can be obtained from the 

ultimate strength u  of the material. However, 

it is found more convenient in practice to 
determine experimentally Mu for a specimen of 

a given material. 

 
3.3. Numerical approach 
 

The computation of the moment in the 

computer program is based on the 

discretization method. As the bending load 

increases, the stress distribution diagram is 

plotted over the cross section. We have se-
lected the mid span section where the deflec-

tion is the maximum. The corresponding 

stress distribution is plotted and divided into 

dFi= i.dAi 

 

dAi=bi.dhi 

 

M =   dFi.di 

dAi 

dA 

di 

dhi 

N.A 
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strips for computation of the moment. The 

total moment is equal to the summation of all 

strips where each strip has a moment eq. (8-
a,b): 

 

 (h)b.. ii ddFMi  ,           (8-a)  

  

M = iM ,           (8-b) 

 
where: dFi is the area of the strip, di is the 

distance from the centroid of the strip to the 
centroid of the composite section, and b(h) is 

the width of the section at the centroid level of 

the strip. 

The computer program has a subroutine 

function which allows the determination of the 
width b at any level of the section. For each 

load, there will be a corresponding value of the 
actual moment according to the stress distri-

bution diagram; fig. 5. The load deflection 

curve is then plotted illustrating the full 

behavior of the section to be studied. The 

importance of this program is that it can be 
integrated into a computer structural analysis 

program so that each section of the structural 

element can be checked. 

 

4. Experimental program 

 
4.1. Test set up 

 

The load deformation curve was deter-

mined using an automated testing machine 

provided with data acquisition unit. On line 
measurements of load and deflection are 

taken from transducers and transferred to the 

P.C. through the data acquisition unit. Spe-

cialized software allows the on-line monitoring 

of the load deflection curve. A large number of 

readings per second can be specified allowing 
an accurate and smooth transition of the 

curve. The load is acting monotonically at the 

mid-length of the specimen through a 

displacement control method. The load 

produces single curvature bending in all 

specimens with bending moment acting about 
the major axis of the steel shape. The 

deflection is measured through LVDT while, 
the load P is monitored from both the gauge of 

the machine and from the computer; fig. 6. 

 
4.2. Test specimens 
 

In this study, steel I-beams of 1000 mm 

span length were tested. Table 1 shows the 

materials and section properties of the test 

specimens (beams and plates). The material 
consists of mild steel, which shows high 
ductility under testing. The yielding stress fy 

and the ultimate tensile strength fu of steel 

shape are determined according to ASTM 

method of universal tension testing of metallic 

materials (E8-91); [8]. Before conducting the 

load deflection test, the materials properties 
were determined. The results shown in the 

table represent the range of all materials data 

obtained. The composite girders consist of an 

I-beam supporting a rectangular plate of 

different thicknesses. The connection of the 
plate with the beam is ensured through the 

shear connectors. Tests were conducted using 

shear connectors of different stiffness and 

spacing. 

 

 

 
 

 

 

 

 
 

 

 
 
 
 

Fig. 6. Test set up system. 
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Table 1  
Materials and section properties 

 

Section properties Mechanical characteristics 

I- Beam 
Designation: 

Total height:  
Web thickness: 

 Flange width: 
Cross section area: 

Inertia: 
 
Plates 
Designation: 

Dimensions:  
 

 
IPE 100 
h=100 mm 
bw =4.1 mm 
bf =55 mm 

A = 10.3 x 102 mm2 
I =1.6332 x 106  mm4 

 
 
Pl 10 & Pl 20 
Pl10 :10 x 50 mm 
Pl20: 20 x 50 mm 

 
Modulus of elasticity: 

Yield Stress:                
Ultimate Stress:           
 

 
E = 130 – 150 MPa 

fy  = 250 – 300 MPa 
fu = 300 – 350 MPa 

 

 
 

5. Test results and discussions 

 
5.1. Validation of the discretization method 

 

The validation of the program was checked 
by comparison of experimental test results 

with numerical data obtained from the 

program. The figs. 7 and 8 compare between 

the load deformation curves obtained from 

experiments conducted on specimens and that 

obtained from numerical analysis based on 
actual materials properties and dimensions. 

This shows the conformity of test results and 

the validity of the approach. Two cases were 

studied. A full composite action was ensured 

by welding the plate and the beam from all 
sides. For non-composite action case, the 

plates were supported by the I-beam without 

any connection. It is shown that when the 

stress exceeds the maximum proportional 

limit, the behavior does not become fully 

plastic. This is indicated by the slope of the 
load deflection curve after the elastic zone. 

Therefore, due to strain hardening, there is no 

pure plasticity as it is theoretically assumed 

when calculating the plastic moment; fig. 9 

(b). The program calculates first the fictitious 
moment based on the fictitious stress (elastic 

stress) and then makes correction based on 

the actual maximum stress; fig. 9 (a) which 

exceeds the yielding stress. The actual 

moment as well as the actual maximum stress 

are smaller than the fictitious moment and the 
corresponding stress; fig 9 (c). The decrease in 

moment is then equal: 

 
M  = Mfictitious - Mactual .                    (9) 

The load deformation curve is plotted for 

full composite and non-composite action 

considering the actual materials strength. The 

role of shear interface appears when 

comparing the load deformation curve of full 
and non-composite action [9,10]. The increase 

in the load capacity as demonstrated in fig. 7 

is due to the effect of shear connection. As the 

thickness of the plate increases, the inertia of 

the assembly as well as the load capacity is 

amplified; fig. 10. 
  

6. Shape factor 

 

The influence of beam section shape on 

the load capacity curve was studied using the 
program. The I-beam section shape was 

replaced by a rectangular shape. The inertia of 

the system was kept constant.  The equivalent 
width (b) was calculated accordingly to provide 

the same inertia of the system. The fig. 11 

indicates that the load capacity was increased 
only in the non-elastic case in case of 

rectangular shaped beam due to the larger 

cross sectional area. A shape factor can be 

deduced for each shape cases based on a 

standard shape. 

 
6.1. Effect of shear connectors 

 

The horizontal shear that develops 

between the plate and the I-beam during 

loading must be resisted so that the slip at the 
interface will be restrained. It is evident that 

the composite action depends on the 

properties of shear connectors [11-13]. In 

order to study the effect  of  shear  connectors, 
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Fig. 7. Experimental and Numerical comparison of load-deflection curves using Pl 10 & Pl 20. 
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Fig. 8. Load-deflection curves without upper plate. 
 

 
 

Fig. 9. Stress distribution diagrams. 
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Fig. 10. Load-deflection curves (Pl 10-20-30, Num.). 

 

its behavior has to be determined through 

shear test [14,15]. A section of the beam is 
attached to plates (Pl 10) on both sides as 

shown fig. 12. The load applied on the cross 

section is distributed on four bolts. The load 

displacement per each bolt is plotted 

illustrating the behavior of the stud; fig. 13. 

Two types of stud were studied of high and 
low stiffness. The stiffness factor St of the bolt 

is calculated from the slope of the initial 

portion of the curve. 

 

act  Y Y  fictitious  

(a) Fictitious (b) Elasto-plastic (c) Actual 
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Fig. 11. Load-deflection of I and rect. section shaped beam 
(Pl 10, beq=15.5 mm, Isys=26438x106 mm4). 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 12. Shear connector test. 
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Fig. 13. Behavior of shear connectors (high and low stud 

stiffness). 

 

6.2. Partial composite action 

 

The connection stiffness evaluation is 
important because the composite beam deflec-

tion is strongly influenced by the slip between 

the beam and plate. Taking full advantages of 

composite system, this permits the use of 

shallower depth as well as lighter member. 

This advantage may increase the span length 
and reduce the height of multistory buildings 

materials such as outside walls and stairways. 

The suggested approach is based on the fact 

that, for partial composite action the load-

deflection curve should be situated between 
the two curves representing the fully compos-

ite and the non-composite action cases. The 

program is able to compute the shearing force 
F per each shear connector due to the bending 

load at the shear interface level as follows: 
 

sysI

.V 
  ,              (10-a) 

 

SF . ,              (10-b) 

 

N

L
S  .             (10-c) 

 

Where;   is the shearing stress, V is the 

shearing force at the section, I sys is the inertia 

of the system,  is the moment of area of the 

plate about the center of gravity of the 
assembly, F is the force per each stud, S is the 

spacing between connectors, L is the span 
length and N is number of rows (two studs per 

row were used). 

Also, the program computes the shearing 

strain/deformation ( int ) assuming a full 

composite action at the interface level. The 

shearing force versus deformation curve at the 

interface can be plotted and compared to the 

stiffness stud curve; fig. 14. The shear force-

slip curve is relative to the cross section 
dimension of beam and plates used.  For each 

shearing force, there will be a corresponding 

shearing strain/deformation in the interface. 

This will be compared to the actual shearing 

strain/deformation occurred in the stud 

( stud ). The composite action factor is then 

calculated as follows: 
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Fig. 14. Shear interface and stiffness stud curves 
(shearforce – slip). 
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(b) 

Fig. 15. Comparison of load deflection curve for partial 
composite action (a: 2 rows & b: 4 rows) 

int

studint
k



 
  .                              (11) 

 
There are three cases: 

- k  0   stiffness factor of stud is lower 

than that of interface   No composite action, 

- k > 0    stiffness factor of stud is greater 

than that of interface   Partial composite 

action, 

- As k increases   this leads to fully compos-

ite action. 

The load capacity for partial composite 
action case is then equal to the load capacity 

in case of non-composite action plus the 

difference between the load corresponding to 

the fully composite and non-composite action 

computed from the program and multiplied by 
the composite factor action; eq. (12). Fig. 15 

shows that our approach for the computation 

of the percentage of composite action is rea-

sonable. Experimental results are illustrated 

in the same graph indicating that partially 

composite action curves are situated between 
the non-composite and fully composite curves; 

fig. 16. 

 
Ppartial = Pnon-comp + (Pfully comp. – Pnon-comp). k.     (12) 

 
6.3. Influence of stud stiffness 
 

Using other type of studs made of mild 

steel where the stiffness is reduced to the half, 

the experimental results shown in the fig. 17 

confirm that the stiffness of studs has an 
essential role in the composite action. It is 

shown that even when the number of rows is 

increased, there will be no composite action. It 

is evident that the composite action factor 

depends on the stiffness factor which reflects 

the behavior of the stud. The numerical 
results for different stiffness values are 

illustrated in fig. 18. 

 
6.4. Influence of stud spacing 

 
It is known that as the spacing between 

studs decreases, the shearing force per each 

stud increases. This will help in increasing the 

composite action which affects the load 

deflection curve as it is indicated in the nu-

merical results shown in fig. 19. The spacing 
factor Sp has to be taken into consideration in  
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Fig.16. Exp. tests (Hard steel stud & Pl 10). 
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Fig. 17. Exp. Results (Mild steel stud & Pl 10). 
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Fig. 18. Effect of stiffness on the load deflection  (Pl 10).     
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Fig. 19. Effect of spacing on the load deflection (Pl 10). 

 

the calculation of the composite factor; eq. 
(13). Where, for a theoretical spacing equal to 

span length, the spacing factor equal zero. 
 

Kcorrected = k.Sp =k.
S

SL 
.         (13) 

 

7. Conclusions 

 

The overall economy of using composite 

construction when considering total building 

cost appears to be increasingly favorable. The 
rehabilitation requires stiffening works to 

enhance structural performance. The widely 

adopted technique of composite beams allows 

an increase in stiffness and load capacity. A 

particular care must be paid to the connection 
design concerning stud stiffness and spacing 

to ensure a perfect composite action. To ob-

tain a fully composite action, the shear con-

nectors should be stiff enough to provide 

complete interaction. For partial composite 

action, the load deflection curve falls between 
that of fully composite and non composite 

cases. The computation of the load capacity of 

composite beam is performed by a computer 

program, based on the actual stress distribu-

tion over the section and using the discretiza-
tion method. The percentage of composite 

action is obtained based on shear connectors 

stiffness and spacing parameters. Assuming 

full composite action, the nominal strength of 

the section greatly exceeds the sum of the 

strengths of the plate and the beam consid-

Non- comp. 0 row 

Partial comp. 2 rows 

Partial comp. 4 rows 

Fully comp. welded 
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ered separately, providing high overload 

capacity. The proposed method gives 

satisfactory predictions as compared to the 
test results. 
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