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Vibrations of systems are always undesired as they may cause damage or destruction of the
system. The vibration of a second order non-linear system is controlled using a non-linear
damper or absorber. The method of multiple scales up to the third order approximation is
applied to determine approximate solution for the non-linear second order differential
equations describing the system. The frequency response equation is determined to study
steady state solution, system stability and the effects of the different parameters on system
behavior. Some resonance cases are investigated numerically to test system stability when it

is operated at such cases
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1. Introduction

Torsional vibrations occur in all
machines and rotating parts. They may be
due to torque fluctuations in internal
combustion engines, or due to unbalanced
rotating parts or other mechanical reasons.
Such vibrations if not controlled may cause
damage or destruction to the rotating shafts
or their accessories. To control such
torsional vibrations, there are many
methods [1-5] one of them is using the
absorber or the damper or the neutralizer
[6]. It is preferred for its simple design and
practical application. The elastomer damper
is the most common one [5,6] for
controlling the torsional vibration, as it is
effective in reducing such vibration levels.
The elastomer material has the advantage
of working as a spring and damper at the
same time.

In this research we use the elastomer
damper to reduce the torsional vibration of
the crankshaft of an internal combustion
engine. We considered the non-linearity of
both the crankshaft and the elastomer
damper. The method of multiple scales
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perturbation technique [6,7] is applied
throughout to solve the coupled, second
order non-linear differential equations
describing the system dynamics up to the
third order approximation. The frequency-
response equation is derived tc investigate
steady state solution and system stability.
The effects of different parameters on steady
state solution also considered. Some of the
deduced resonance cases are tested
numerically. At the end of the work, a
comparison is given with the available
published work.

2. Problem formulation and mathematical
analysis .

Fig. 1 illustrates a diagrammatic sketch
of the considered system simulating the
main rotating shaft and the elastomer
material fitted to the hub and the inertia
damper assembled to the hub and the
elastomer material.

The crankshaft has a mass inertial Iy,

damping coefficient linear and

nonlinear stiffness assumed to be in the
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form }j,:lxne;‘, where 0; is the angular

displacement, respectively. The elastomer
has a mass inertial I, damping coefficient

C,, where 6, is the angular displacement,

respectively.
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Fig.1. Schematic representation of the elastomeric
damper K=kitkatks and Kj = (Kj;,Kip, Kiz),

(i=12).

From the dynamics of the system shown
in fig. 1 equations of motion are given by,

1303 \bisigs
1181 + YK, 07 +C10; + Y Kypn(6; - 02)"
n=1

n=1
+Cy(0; - 05) = Fsin(Qt), (1)
. e 3 L
I202 + 3 Kon(02 - 61)" + Ca(8 - 6;) = 0, (2)
n=1

where F and Q are the excitation torque
amplitude and frequency, respectively.

System of second order differential equations
(1,2) can be rewritten as follows:

a 2 2 3
91 +(l)191 +€ [(11191 +ajo 61 —ﬁ1192

+B12 01 -02)% + B3 (6 -02)% +¢116;
+C12(01 - 63) - Fsin(@t)]= 0, (3)

0z + 0305 - 03 0 + 8[@21 (62 - 6y)

+B22 (01 - 02 + Pz (02 - 0% =0, (@)
where,

2 Ki+Ky 9 K,
of ==, 0 =P sa =52, (5-a)

K3 K *

By Fopnyiehy g0 112 » P13 = Ky3, (5-b)
Kj K29 K3

SBII o Ii ’ SB22 = I, ’ 8'323 3 123 ) (S'C)
c c

8C11=I—l’. 8C21=723, e€12 =Cy. (5-d)

Using the above definitions in egs. (3, 4), we
seek an approximate solution for small ¢ .
Using the multiple scales method [2,3], let

61 = Y e"01,(to,t1), (6)
n=0

0y = X €"0y,(to, ty), (7)
n=0

d%u

EtT_(Do+anl+...)“, (8)

where t; =¢'t and D; =4 (i=01,).
1

Substituting eqs. (6) and (8) into egs. (2)
and (3) and equating the coefficients of the
same power of €, the following systems of
differential equations are obtained.

Order €° :
(D2 +0?)8y0 =0, 9)
(D +02)0,0 = ©20;10 (10)
Order ¢:

2 2 3 2
(DO +(D1 )611 = —2D0D16—a1291010 —auelo

-%11D0810 +B11020 —B12(010 —620)?

~B13(010 —020)> ~£12D0 (010 -020)+Fsin(Qt),
(11)
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(D + 3)021 = 03011 ~ 2DoD;050
-C21D0(020 - 610)
~Ba2(620 - 610)

~B23(020 ~ 610)° - (12)
The solution of eq. (9) can be expressed in
the form,

010 = Ag(ty)ei® +cc, (13)

where cc is the complex conjugate term and
A; is a complex function in t;.
Using eq. (13) into eq. (10), we get,

050 = Ag(ty) €2t + TA (t;) el +cc, (14)

2

(0]
where I'=—2-,
02 —01

complex function of t; and cc is the complex
conjugate of the preceding terms.

Eqgs. (13) and (14) are the first order
approximate solution of egs. (1) and (2). Using
egs. (13) and (14) into eq. (11) and eliminating
the secular terms in 6;; yields the solvability
condition,

w #wy and “Ay is a

ZiA'l(Dl +3 (XIQAfKI * ICI 1A101 - TB1144
+ 3313(2(1—F)K2A1A2 +(1—r)3K2A12)

+iGp oAy (1-T)+ 1 Fe =0, (15)

where the prime indicates differentiation with
respect to t;, the over bar represents the

complex conjugate, and o is a detuning
parameter defined by Q=w;+ec. The

uniform solution of eq. (11) can now be written
in the form;

01)= ;;15(“ 209 1A1§1)
1

2
2
- 2B1g| AgAg +| ——- | AJA
ﬂlz[ 2A2 [(mg_m%)J 1 1J

2

1 2 o 2 | a2io;t

- =5 | —a11A] - B1g| 51 [A] |e*
3o 05-07

2
1 3 ® 3 | a3yt
"8l [— a)2A] +1313( g 2}\1)6 i,

1 -

0o =04

= ﬁ (ﬁl 1A2 —313(—3/\%%

(03-03)
) V2
— o) ) .
i 6A1A1A2[2—15J +1610A0m |€1°2
7

2a2im0t 3a3imot
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4m%—w?
Bi2AjAgefel(®1t o2t
02(03 -0f)(20; +0y)
Bi2A A 0fe 02— o1t
02(03 - 0f ) (@3 -2 )
Bi3AjAZnfel(®1+202)t
03(03 -of)(0; +0;)

+

-3
4

3 BiaAiAZoe Co1+2e2)t
T4

0a(03-0f) (- o)
Bi3AzAfwfe P10t
P )

(03 -0 )" (0; + 03) (0 +3 o)
B13AxAfefel(®2-202) t
(©3-0f)P(03-01)(@2-30))

Fei Qt
of-0%
Substituting eq. (16) into eq. (12) to obtain

+3 (16)
D2 + 02)031 = 026y - | 2i A iGy1A
(Dg + 03)821 = 03613 1A20p +iGp1A00,

+ 3[323(K2A§ 2 - r)QKIAQAl)) el®2to
+NST, (17)

where NST stands for the secular terms. The
solvability condition of eq. (17) is,

r (311A2 + 3B, 3(K2A§ +2(1-TPA;A%A,

C iCQlAQ(DQ »+ 2.1 A’2(D2 +1i Qz 1A2(D2
+3Py3(A2A2 + 21 - T2A;A.A,)=0. (18)
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The uniform solution of eq. (12) is given in
the appendix.

Introducing the polar  expressions

An ——;—ane , (n=12), where a, and y, are

real. Substituting in eq. (15-18), and
separating real and imaginary parts yields the
following evolution equations governing the
amplitudes and phases of the response:

aj =-2Ga; + 4 Coal -1)- _FC°S(‘V) 189}
\y'=c—8m3a wi28] af + Zu)a %
80) a; B13a1(2a2(r 1)+ ™ (r 1) )
2(0 i F sin(y), (20)
a) =-%82(C21+FC12), (21)

15 =52 (a3 +T013)RF + 222 -1?)

+ 501,—2 Buil, (22)

where y=ot; —-7;.

Eqs. (19-22) are first order coupled
differential equations that have to be
solved simultaneously. However, eq. (21)
gives us two cases; the first is that if the

coefficient {51 +I'¢1y is negative, then aj

will grow exponentially with time, thus
destabilizing the system, second case is
that if this coefficient is positive, then a,

will decay with time. Steady state
conditions occur only at a5 =0, which

results at (g3 =-T'¢;o. If the steady state
condition for a2is satisfied then there

exists a steady state solution for a;, y
and y; only at aj=y =y =0. From the

preceding discussion, it is clear that there
are two interesting cases: First, the

frequency ratio @, of uncoupled modes is
large. Here, the coefficient (p +I¢;p is

positive, which means that a, decays and

the main system will not be affected by
any instability in the damper. However, if
0y >0, the damping in the main system
changes from positive to negative, thereby
destabilizing the system. Second, g is
(03 <;). Here, the
€21 + €12 may be positive or negative. The
positive coefficient causes no instability
for the main system. Consequently, the
system should be guarded against a
negative coefficient; that is &y > ||

small coefficient

for 0y <.

3. Steady state solution

Steady state solutions are obtained if
aj =y'=y5 =0, together satisfied with the
condition that a, — 0. Thus, egs. (19), (20)

and (22) become the algebraic equations

o costy) = (Gi2(C - 1-¢), (23)
0)1[;1 sin(y)=-20 + —3—— a12a1 g T Bl i
- ag;ﬁls(a%a‘ -+ Lafr-1°), @4)
a3 = 4T Br1s

“3Travhan) " 3101 25)

Using eq (25) in eq. (24) and squaring and

adding squaring of eq. (23) yields the
frequency-response equation
2
o=Qtd [E - (G +Giz +6ar ), (26)
2\ ojaj
where,
i A ol Bil(C-1)
Q=i eizad - g Puil - & buo( i)
+3 al(r P a12(l“—1)3). (27)

The effect of various parameters on the
response of main system is studied using
the frequency-response eq. (26).

Alexandria Engineering Journal Vol.41, No. 2, March 2002 346



H.M. Abdelhafez, M.Eissa / Non-linear vibrating system

4. Numerical results

Results are presented graphically as the
detuning parameter o against the different
parameters of eq (27). Also, other results
are presented as response and phase-plane
to investigate system stability and presence
of dynamic chaos.

Fig. 2, illustrates the effects of various
parameters on the response of the main
system. The selected values for the different
parameters are as follows:

01 =10, 0 =2.0, a3 =032 =1.0, F=5
By1=-=P23=1.0and§;=(2=8;=05.

The dashed curves mean unstable solution. It
is clear from this figure that:

(@) The effect of changing the excitation
amplitude on the response of the main system
is shown in fig. 2-a. The steady state

amplitude a; and the range of the detuning

parameter o are directly proportional to the
excitation amplitude F. The response curve is
typical for a system with cubic non-linearity
[4-6].

(b) For increasing values of «,, the response
curve bents to the left and the unstable
solution appears. However, the steady state
amplitude a; not affected by increasing or
decreasing of the values of the non-linear
parameter o, .

(c) Fig 2-c shows that the increasing of the
coupling parameter P;; values shifts the
whole curve to the right direction without any

change.
(d) Fig. 2-d illustrates that the increasing of

the values of the non-linear parameter B;3 is
bending the curve response to the right,
however the shaft amplitude not affected. In
addition, jump phenomena and unstable
solution are appearing.

(e) For the damping coefficient &;; as it is
increased, the steady state amplitudes are
decreased and the curves remain nested, see
fig 2-e. The same affect will appear for both of

¢), and &, instead of &1+

(f) Fig. 2-f shows the effect of changing @, on

the response curves. Here, the response
resembles a softening behavior. As @,

increases, the response peak decreases and
shifts to the right. More increasing in @,

cause the system to exhibit the hardening
non-linearity behavior. In addition if @;#1

then the jump phenomenon will appear.

In the following, the effects of some
selected parameters on system response and
also some of the deduced resonance cases will
be reported and discussed.

Fig. 3 demonstrates shaft behavior at
primary resonance Q=~w®; without the
damper, where the steady state amplitude is
about 1.85 or 37% of the input amplitude. The
phase-plane shows a fine limit cycle denoting
that the shaft is free from dynamic chaos. For
all the investigated cases, except the
resonance ones, we have Q=w; w0y, ie.,

incident resonance case or the primary
operating conditions of the system.

4.1. Effects of the damper

Fig. 4 shows the results when the shaft is
connected to the damper. It can be seen that
the shaft steady state amplitude is reduced to
0.075 or 4% of the corresponding value
without the damper. This means that the
damper effectiveness is E, =25, where

E. = Steady stateamplitudewithoutdamper
a ™ Steadystateamplitudewithdamper

For the damper itself, the steady state
amplitude is about 2.5 or 50% of the
excitation torque amplitude.

4.2. Effects of the shaft damping factor &

Fig. 5 shows that the damping factor is
reduced to 5% of its original value; the steady
state amplitude of both the shaft and the
damper are increased showing severe
chaos. Where the damping factor is increased
to 300%, the effects on both the steady state
amplitudes and dynamic chaos are trivial.
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Fig. 2. Dashed cures mean unstable solutions.
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Fig. 4. Effects of the damper.

4.3. Effects of the damper damping factor

Fig. 6 shows that the results when &
and &y, are increased to 10 times. It can be

seen from the figure that the shaft steady
state amplitude is increased to 0.45 compared
to 0.075 as shown in fig. 4. The increase in
this case is about 600%. For the damper, the
steady state amplitude is decreased to about
1.95 compared to 2.5 as shown in fig. 4, as
reported before [7] this damping coefficient
should be kept minimum to allow for energy
transfer from the shaft to the damper. It is
recommended to have such factor very close to
the zero magnitude.

4.4. Effects of the non-linear parameter.

For the shaft, increasing the non-linear
parameters affects system behavior trivially.
This is attributed to the small magnitude of
both x2 and x3 when the damper is effective.
Fig. 7 shows the results when the damper
non-linear parameters are increased to 10
times where the effects are also trivial.

4.5. Primary resonance

(Ole, ) # 09y and ®w] >0y Or @] <®).

Fig. 8 shows the results for all these cases,
where E, =4 and the effects on the damper

behavior are trivial. It is clear from the figure
that the damper is still effective, but its
effectiveness is reduced. Best results are
obtained when ®; and o, are close to each

other.

0y *Q, wg #0] and 0y >0] Or 0y <]
fig. 9, shows the results for this case, where
E, =40 and 18, respectively. Comparizon with

the former case shows that the damper is
more effective when its natural frequency is
more close to the excitation frequency. This is
attributed to the non-linearity of the damper
stiffness, which widens its range of operation.

4.6. Secondary or internal resonance

Figs. 10 to 13 show the different internal
resonance cases. It can be seen from the
figures that the best results are obtained when
0y =201, 0y ~Q and oy =30, 0y =Q. The
only disadvantage for these two cases is the
presence of slight chaos. All other cases show
very bad behavior for the system. It is advised
to exclude these cases in the design of the
damper for such system.
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Fig. 5. Effects of the damper damping factor C, (increased to 10 times).
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Fig. 6. Effects of the damper damping factor C, (increased to 10 times).
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Fig. 7. Effects of the damper non-linearities (increased to 10 times).
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Fig. 8-b. Primary resonance 01=Q, 01 02 and w2 > o).
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5. Discussion and conclusions

Absorbers or dampers or neutralizers are
very effective in reducing the vibrations of
mechanical systems or structures especially
at resonance. In this work we considered the
vibrations of the crankshaft of an internal
combustion engine. This system is described
by second order non-linear differential
equations. The elastomer damper is applied
to reduce the vibration of the crankshaft
effectively. Comparison with the previous
published work confirmed the fact that the
nonlinearity of the damper can widen its
range of application [6-9]. Also, the
damping factor of the damper should be

kept minimum for better performance of the
system.

For given values of all parameter that
appear in the frequency-response equation
the variation of the amplitudes with the
detuning parameter is studied. Jump
phenomenon will appear for high values of
the non-linear cubic parameters and for the
first mode w; #1. The effects of the different

parameters on both system stability and
resonance have been studied wusing the
multiple time scale perturbation method up
to the third approximation. Solution of the
frequency response equation shows the
following conclusions:
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Fig. 9-a. Primary resonance w2= Q, 01 # 02 and o2 > o1.
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Fig. 9-b. Primary resonance o2 = Q, o1 # 02 and 02 > o1.
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Fig. 10-a. Internal super-harmonic, 01= 2 02, ®2 = Q.
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Studying the deduced resonance case

shows that:

1- Best performance for the system is
obtained when @, ~w~Q. A slight variation

Fig. 11-b. Internal super-harmonic, 02z 2 01, 02 = Q.

2- Some of the internal resonance cases
can be used as operating conditions for the
system. They are the sub-harmonic cases
0y =ne;, n=2,3 and oy ~Q.

in either @y or w, even or Q does not
affect the effectiveness of the damper.

Appendix

The uniform solution of 6,5 is given by

2
e s 2 o R B
012 =-20a;;A,A; +2{ P2 _Paz ) 7 —L | ARy [+] 2102810
(03 -of)

2
0% w3 1 A O]
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2 2 3 2 .
+iloopAy| =2 |- 3pga] —2L | AjA2+2 0L [R,A1A, |-€20
B e e e RN e S e
3
A} of of it
] —2— - 0
8 (w%—gmf] a12 +(B13 8B23{m3-mf e
A3 ( B2z P12 Ziwgty , A3 (B2 B 3i
+A2( P2z P12 |g2iogto (A2 P23 | P13 | e3ioatp
3 (o% 4(0%—«)? 8 co% 90)% -coj'2
22 3 2 2| .
+ 342 A ®3B1 301 P23 of eil®2+2m)to
L (02 -0 (03 +01) 0y +30y) @102+ 03 -of
2 3 3, V] 4
_3a2p 3 02P130] 4+ Pas of eilo2—2m)to
47172 (@p—op)tog +on P02 -30;) - ©1©2-01){ 0F-of
X 0B120; P22 of —i(wg -y )to
+ 28281 (o012 +01) (02~ 201)20y 1) | w320z =01) mg_mg)]e
_2A,A P12 Y of ||eitz+onto
(02— o) (@ +0n) (0 +20) Rz +0y) (202 o) | oF -
2 2 ;
+3A24, 02B130] B23 of _||eiloz+or)to
27 4og-0y) @40 Bug+ay)  @2+01)B02+01){ 03 -of
2 5
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