Free lateral vibrations of moderately thick trapezoidal plates
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In the present paper, the free vibration of moderately thick trapezoidal plates has been
studied. The analysis based on the Mindlin shear deformation theory. The solutions are
determined using the pb-2 Rayleigh-Ritz method. The transverse displacement and the
rotations of the plate are approximated by Ritz functions defined as two dimensional
polynomials of the trapezoidal domain variables and a basic function that satisfies the
essential boundary conditions. Three different arrangements of boundary conditions; the
cantilevered, the simply supported and the clamped edge conditions are considered. The
effects of both the transverse shear and the rotary inertia are accounted for.
Convergence of the solutions is verified by considering polynomials of several subsequent
degrees till the results converge. The present results are compared with those available in
the open literature. Comparisons indicate good agreement between the present results
and those previously published. A set of tabulated results for a wide range of variation of
both thickness to root width (H/a) and the trapezoid angle 8 for each of the three different
cases of boundary conditions are presented.
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1. Introduction

Many aircraft wings can be modeled as
either trapezoidal or quadrilateral plates. The
free vibration analysis of such models is a
necessary prerequisite to design them to
operate under different loading conditions.
Based on classical thin plate theory and
several different approximate mathematical
methods, there exists a reasonable amount of
work related to the vibration of thin
trapezoidal plates of constant thickness. In
[1,2], Chopra and Durvasula have investigated
the free oscillatory motion of simply supported
symmetric and asymmetric trapezoidal plates
by applying Galerkin's method. Orris and
Petyt [3] used the finite element method to
study the free vibration of simply supported
and clamped triangular and trapezoidal
plates. In [4], Nagaya applied the integral
equation technique to investigate the free
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vibration of plates of arbitrary shapes that

have free and simply supported mixed
boundary conditions. Results for thin
trapezoidal plates were presented as

numerical examples of such arbitrary plates.
Srinivasan and Babu [5] used the integral
equation method to study the free vibration of
cantilevered quadrilateral and trapezoidal
plates. In [6], Narita et al. presented the
results of the experimental study of the free
transverse vibration of clamped trapezoidal
plates. Bert and Malik [7] applied the
differential quadrature method to study the
free lateral oscillations of plates of irregular
domains. They presented the solutions for
simply supported and clamped trapezoidal
plates as worked examples.

For trapezoidal plates that have variable
thickness, there is a little amount of work
related to the free vibration analysis of such
plates. Laura et al. [8] applied the Rayleigh-
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Ritz method to investigate the free vibration of
tapered cantilevered trapezoidal plates. In [9],
the author has investigated the problem of
transverse vibration of plates which have
span-wise quadratic thickness variation. The
finite element method was applied and the
results for cantilevered trapezoidal plates
were presented. In [10], three different cases ,
which are the linear, the quadratic and the
exponential  thickness  variations  were
considered. In each case, Galerkin's method
was applied to solve the problem of free
vibration of clamped trapezoidal plate.

In the present study, the effects of both
the transverse shear deformation and the
rotary inertia on the free vibration
characteristics of plates are accounted for. The
Mindlin plate theory [11] is employed. The pb-
2 (Two dimensional polynomial and a basic
function) Rayleigh- Ritz method is applied.
Three different cases of edge conditions that
are the cantilevered, the simply supported and
the fully clamped are considered. Convergence
of the present solutions is demonstrated
through using polynomials of several
subsequent degrees. The results for
moderately thick trapezoidal plates are not
available in the open literature. So, the results
for isosceles triangular Mindlin plates are
obtained as special cases from trapezoidal
plates and then compared with those
presented by other researchers. Also, the
results for thin trapezoidal plates that are
obtained as special solutions from those
concerning thick plates are found to be in
good agreement with the previously published
results. The effects of variation of the
thickness to root width ratio (h/a), the
trapezoid angle(6) and the aspect ratio of the
plate (y) on the frequency coefficients are
studied.

2. Mathematical formulation

A thick isotropic symmetric trapezoidal
plate of uniform thickness H , length b and
root width a is considered. The geometry of the
plate is shown in fig. 1. Following Karunasena
et al. [12], the energy functional II for a
Mindlin plate can be written in terms of the
maximum strain energy Umax and the
maximum kinetic energy Tmax as:

H=Umax_Tmax’ (1)
where:
[69_x e
1 X oY
b | 0% 0 0% 00y )2
A _Q(I_U)lmx__Y_l(_X,L_l”
X oY 4oy X

bbb j[pr2 +-LpH3(o% + e%)]dA, 3)
ek 12

in which W is the transverse displacement, 0x
is the rotation about the Y- axis, Oy is the
rotation about the X- axis,o is the natural
frequency of the plate, v is the Poisson’s ratio,
p is the density of the plate, k is the shear
correction factor, D is the flexural rigidity of
the plate [ D = E H3/12(1 - v2) where E is the
modulus of elasticity | , G is the modulus of
rigidity [G = E / 2(1 + v ) ] and A is the plate
surface area.

Fig.1. The geometry of the plate.

In the following formulation, the X,Y
coordinates, the thickness H and the
transverse displacement of the plate middle
surface W are normalized by a characteristic
length which is the plate root width a. ( x =
X/a,y=Y/a,h=H/aand w = W/a).The
lateral displacement and the rotations will be
approximated by a set of pb-2 Ritz functions
in the x-y plane as follows:
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wix,y)= Zei(ey)= "o}, (4-2)
Oxly)= Bditi(ry) = ) (), (4-b)
Oy(x,y)= 3 eiyiey) = el ), (4-c)

where {c}, {d}, {e} are the unknown coefficients
vectors containing cj,di,ei , which are the
unknown coefficients of the Ritz functions, as
respective elements, {®}, {¥x}, {¥,} are the Ritz
functions vectors associated to w, 0x, 6y
respectively, whose respective elements are @;,
Vxi, Wyi and T denotes the transpose of a
matrix or a vector. The Ritz functions are
defined over the domain of the plate by the
products of basic functions, that must satisfy
the geometric boundary conditions, and
complete two dimensional polynomials, which
will be assumed here to have the same
degrees, as follows:

{@}=Px,y)f} , (5-a)
(¥} = Qlx, y){} (5-b)
{¥y f= Rix, y)if]} (5-c)

where P(x,y), Q(x,y), R(x,y) are the basic
functions that satisfy the essential boundary

conditions associated to w,0x, 0y, respectively,
they are chosen according to the plate edge
conditions as follows:

For a plate which is cantilevered along the y-
axis:

P (x,)

For a simply supported plate:

=Qxy =Ry =

P (%, y) = x(x-y)(y-cx+0.5)(y + cx-0.5),
Qxy =1
R (%, y) = x (x-7)-

For a fully clamped plate:

Q(x,y) =R(x,y)
= x(x-y)(y — cx + 0.5)(y + cx - 0.5),

Pix, 5=

in which y is the plate aspect ratio ( y = b/a)
and c = tan 6, where 0 is the trapezoid angle.
The elements of the vector {ff} are those of
complete two dimensional polynomials of x, y
that may have variable degrees. As an
example, for a polynomial of degree p = 4, the
components of {f} are given by:

fr={1 x>y x x¢ y & 2y xp? y°
x4 x3y x2y2 xy3 y4 }.

For a two dimensional polynomial of degree =
p , the total number of elements n of the
vector {f} is given by : n = (p+1)(p+2)/2

Substituting from eq. (4) into egs. (1-3)
the energy functional Il can be written as:

1
1= )" (K1~ 2I] o}, ©)
in which A = waZVpH/D is the normalized
natural frequency coefficient and
" =" @ ", (7
Kee Kea Kee
[K]= Kaa Kge |, (8)
symmetric Ko

Mcc Mcd Mce

[M]= Mgq Mee |» )
symmetric Mee
where the sub matrices inside [K] and [M]

are defined by:

T T
KCC=6k(l“’);[@a‘D A JdK, (10-a)

h? aAl0x 0x oy o
_6k(1-v) (0P, T (%
ch ———‘hZ—'L-&‘PX dA 9 (10—b)
_6k(1-v) DT 5
KCC = —h2——i—a;‘\yy dA , (IO'C)
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Kasf a’;kuax ) Aot Holdily (10:d)
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A
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M = O, (11-c)
1 ks
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A
Mge = O, (11-e)
1 T o=
Mee =-l—2—l[\‘l’y‘PydA, (11-9)

where A is the nondimensional area (d A =
dxdy ).

Substituting from eq. (5) into eqgs. (10, 11),
for each of the three different cases of
boundary conditions and carrying out the
associated integration over the domain of the
trapezoidal plate, the elements of both the
overall stiffness and the mass matrices are
evaluated. Setting the first variation of the
energy functional in eq. (6) to zero results in
the following eigenvalue problem.

(K]-22M])a} =10} . (12)

It must be mentioned that each of the
overall stiffness and mass matrices in eq. (12)
are symmetric and of order 3n x 3n. Using
EISPACK routines [13], eqn. (12) is solved for

the natural frequency coefficient A for the
considered plates.

3. Numerical work and discussion

Three different cases of boundary
conditions, which are, the cantilevered, the
simply supported and the fully clamped
plates, will be considered. In each case, the
convergence of the solutions is demonstrated
through using polynomials of successive
different degrees till the convergence is
achieved. The accuracy of results is checked
by comparisons with the previously published
solutions which are available for both the
isosceles triangular Mindlin plates and the
thin trapezoidal plates. Finally, a series of
tabulated results , for thick trapezoidal plates
,are given. To execute correct comparisons,
the Poisson’s ratio is taken to be 0.3 and the
shear correction factor is considered to be k =
5/6 = 0.833 in all the following calculations,
which are the same values that were
considered in [12, 14, 15].

In table 1, the first four natural frequency
coefficients for both thin square plates (H/a =
0.001, 6 = 0, y =1 ) and moderately thick
trapezoidal plates (H/a = 0.1, 6 = 10, y = 1) are
presented. For each case of boundary
conditions, the results that correspond to four
successive values of polynomial degrees are
computed. From the expressions of the basic
functions which satisfy the essential boundary
conditions, one can expect that, for simply
supported and clamped plates, two
dimensional polynomials of degrees (p) whose
values are less than those considered for the
cantilevered plates will result in efficiently
accurate solutions. So, for cantilevered plates,
the results that correspond to values of p ,
starting from p = 7 up to p = 10 are given,
while, for both simply supported and clamped
plates, the values of p are taken to be in the
range from p=6 up to p = 9. As shown in table
1, the results for both thin square plates and
thick trapezoidal plates are monotonically
converged to their accurate values as the
degrees of the polynomials increase.

The present results for thin square plates
are found to be in good agreement with those
obtained by thin plate theory solutions. For
moderately thick trapezoidal plates, the
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Table 1
Convergence of results for square and trapezoidal plates
Boundary H/a 0 P M A2 A3 Aa
condition

7 3.481 8.522 21.317 27.213

8 3.477 8.519 21.311 27.202

0.001 0 9 3.475 8.517 21:305 27.201

10 3.474 8.514 21.301 27.200

CFFF* Ref.[14] 3.475 8.513 21.301 27.205

7 3.862 11.454 20.990 33.968

0.1 10 8 3.861 11.449 20.985 33.886

9 3.861 11.443 20.981 33.877

10 3.861 11.443 20.979 33.861

6 19.745 49.510 49.512 92.554

7 19.739 49.509 49.511 79.398

0.001 0 8 19.739 49.348 49.348 79.398

9 19.739 49.348 49.348 79.317

SSss* Exact 19.739 49.374 49.374 78.957

6 23.125 49.501 59.728 88.023

0.1 10 7 23.109 49.217 59.638 85.672

8 23.065 49.081 59.614 85.170

9 23.063 49.074 59.602 85.097
6 35.999 74.286 74.286 108.587
7 35.999 73.431 73.431 108.586
0.001 0 8 35.988 73.431 73.431 108.262
9 35.988 73.412 73.412 108.262

ccee Exact 35.99 73.80 73.80 108.27
6 40.202 68.093 80.853 106.879
0.1 10 7 40.199 68.073 80.845 106.720
8 40.198 68.066 80.841 106.680
9 40.197 68.064 80.840 106.674

* One edge is clamped and the other three ones are free.
+ The four edges are simply supported.
++ The four edges are clamped.

present results are new in literature, but the
good convergence of such results
demonstrates their accuracy.

For certain values of the trapezoid angle 6
and its aspect ratio y, the symmetric
trapezoidal shape becomes an isosceles
triangular one. To demonstrate the accuracy
of the present solutions for thick plates, the
problem of the isosceles triangular Mindlin
plates is solved. In table 2, the first four
natural frequency coefficients for isosceles
triangular plates (0 = 30° y = V3 /2) are
determined. The present results are compared
with those available in [14, 15]. As can be
shown, they agree well with both of the two
sets of the available results and the maximum
percentage difference between the three sets of
different solutions does not exceed 0.5 %.

In table 3, the results for both thin and
moderately thick cantilevered trapezoidal

plates, which correspond to three different
values of aspect ratios are given. For each
aspect ratio, three different values of H/a are
considered and for each value of H/a, the
solutions are determined for three different
values of 6. The present results, for thin plate
(H/a = 0.001, y = 1) are found to be in good
agreement with those obtained in [16] by thin
plate theory solution. The variation of the
natural frequency coefficients A against the
three varying parameters y, H/a, 0 is found to
be as follows: For certain values of y and H/a,
the increase of 6 leads to a corresponding
increases of A. The increase of the value of
H/a tends to decrease the value of A, while the
values of both 6 and y remain stationary. The
increase of y, for stationary values of both 6
and H/a tends to the decrease of A. Such
behavior of A against the three varying
parameters may be explained as follows: For a
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single degree of freedom vibrating system, the
natural frequency is given by o2 = K/M ,
where K is the stiffness and M is the mass.
For the same value of K, o? is inversely
proportional to M. For a freely vibrating plate,
the stiffness is mainly dependant on its
boundary conditions , while the mass of the
plate is depending on the plate thickness and
the plate surface area. As 0 increases, the

decreases. The increase of both y and H leads
to an increase of the mass of the plate. In
tables 4, 5, the results for simply supported
and clamped Mindlin trapezoidal plates are
presented. The variation of the natural
frequency coefficient A against each of the
three varying parameters is found to be nearly
the same as that of the case of the
cantilevered plates.

area, and hence, the mass of the plate
Table 2
Comparison of results for isosceles triangular Mindlin plates
Boundary H/a Ref. M A2 A3 A4
condition
0.001  Present 8.920 35.089 38.482 89.603
[15] 8.922 35.092 38.485 89.598
(12] 8.922 35.086 38.482 89.606
CFF 0.1 Present 8.647 31.435 34.836 75.522
[15] 8.646 31.410 34.809 75.398
(12] 8.646 31.435 34.839 75.522
0.15  Present 8.414 28.445 31.877 65.116
[15] 8.413 28.457 31.831 64.987
0.001  Present 52.637 123.081 123.081 210.941
SSS [15] 52.634 122.836 122.836 210.550
0.15  Present 42,332 85.873 85.873 128.943
[15] 42.311 85.326 85.326 128.365
0.001  Present 99.031 189.025 189.025 295.403
cec [15] 99.023 188.998 188.998 295.247
0.15  Present 64.696 104.841 104.841 145.984
[15] 64.591 104.741 104.741 145.330
360 Alexandria Engineering Journal Vol. 41, No. 2, March 2002
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Table 3
Resuits for cantilevered trapezoidal Mindlin plates
Y H/a 0 A A2 A3 A

5 3.663 10.072 21.770 33.823

0.001 10 3.909 12.207 22.216 37.641

15 4.261 15.297 22.790 43.255

5 3.663 10.070 21.768 33.813

1 Ref.[9] 10 3.910 12.207 22.217 37.640
15 4.262 15.300 22.793 43.266

5 3.520 8.575 17.978 25.759

0.2 10 3.750 10.211 18.352 28.173

15 4.071 12.486 18.794 31.547

5 14.314 23.160 45.367 85.278

0.001 10 14.672 25.161 50.852 89.143

15 15.075 27.551 57.475 90.277

5 13.799 21.177 39.919 71,757

0.5 0.1 10 14.136 22.899 44.530 73.455
15 14.512 24.943 50.062 74.304

5 12.638 18.145 32.507 51.976

0.2 10 12.929 19.475 35.913 52.542

15 13.249 21.032 39.421 53.173

0 0.8607 3.703 5.363 12.053

0.001 5 0.9740 5.2952 5.569 14.958

10 1.197 5.970 8.377 15.624

0 0.8558 3.548 5.274 11.444

2.0 0.1 5 0.9688 5.027 5.476 14.045
10 1.190 5.861 7.841 15.042

0 0.8480 3.318 5.058 10.455

0.2 5 0.9596 4.620 5.252 12.605

10 1.177 5.614 6.980 13.761

Table 4
Results for simply supported trapezoidal Mindlin plates
y H/a 0 A A2 A3 A4

0.001 5 21.777 51.445 57.208 87.456
10 24.684 54.761 67.093 100.96

15 28.966 60.836 78.677 110.82

5 20.480 46.561 51.503 74.994

1.0 0.1 10 23.060 49.073 59.595 85.083
15 26.860 53.662 68.801 92.159
5 18.293 38.587 42.168 58.030
0.2 10 20.389 40.322 47.851 64.558
15 23.441 43.440 54.084 69.270
5 50.304 82.755 136.77 168.79

0.001 10 51.503 87.438 146.78 170.31
15 53.064 93.377 158.07 173.33
5 45.651 71.409 111.04 133.82
0.5 0.1 10 46.567 74.907 117.88 134.67
15 47.720 79.296 125.58 136.33
5 37.975 55.698 80.862 94.798

0.2 10 38.612 58.010 84.978 95.291
15 39.421 60.882 89.562 96.240
0 12.337 19.739 32.082 41.946
0.001 5 16.643 25.100 37.509 55.037

) 10 22.098 36.865 54.950 66.811
0 11.902 18.690 29.886 38.926
2.0 0.1 5 15.949 23.480 34.453 49.676
10 20.939 33.977 48.463 59.433
0 11.083 16.812 25.946 33.167
0.2 5 14.612 20.744 29.341 40.583
10 18.783 29.050 39.615 47.767
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Table 5
Results for clamped trapezoidal Mindlin plates
y H/a 0 A2 As A4
0.001 S 39.813 76.539 85.303 120.05
10 45.555 81.829 100.52 139.08
15 54.241 92.378 118.45 148.87
5 35.643 64.316 70.517 94.686
1.0 0.1 10 40.198 68.066 80.841 106.68
15 46.820 75.010 92.369 113.04
D 28.669 47.754 51.347 66.614
0.2 10 31.674 50.072 57.313 73.219
15 35.853 54.169 63.851 71.150
5 99.416 131.96 189.72 257.07
0.001 10 100.85 137.86 202.73 258.50
15 102.80 145.69 219.02 261.05
5 77.734 99.837 135.95 166.57
0.5 0.1 10 78.737 103.61 143.18 167.38
15 80.086 108.45 151.75 168.70
S 53.744 67.981 89.514 102.02
0.2 10 54.421 70.190 93.424 102.55
15 55.312 72.940 97.841 103.49
0 24.579 31.829 44.820 63.986
0.001 S 33.380 42.763 46.846 75.667
10 43.068 62.587 83.135 100.41
0 22.971 29.132 40.182 54.982
2.0 0.1 5 30.228 38.236 48.315 62.233
10 38.083 53.245 69.030 80.644
0 19.240 24.205 32.473 41.499
0.2 5 24.548 30.281 37.618 47.311
10 29.956 40.023 50.126 57.106
4. Conclusions References

The free lateral vibration of thin and
moderately thick trapezoidal plates that have
three different arrangements of boundary
conditions are analyzed by applying the pb-2
Rayleigh-Ritz method. From the preceding
analysis, it is possible to conclude the
following remarks:

1. The convergence of the present solutions is
achieved through using some successive
values of the degrees of the two dimensional
polynomials contained in the Ritz functions.
The accuracy of the present results is
demonstrated by comparisons with most of
those available in the open literature.

2. The effects of variations of the plate aspect
ratio, the trapezoid angle and the thickness to
root width ratio on the frequency coefficients
has been investigated. The results indicate
that, the frequency coefficients increase as the
trapezoid angle increases while they decrease
against the increase of both the thickness and
the aspect ratio.
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