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This paper introduces an analytical method to study the effect of a tensioned vertical flexible
membrane wave-absorber. Three configurations of the membrane are considered. The
membrane may be partially immersed from the water surface to a given depth, submerged
from a given depth and extends to the bottom or submerged from a given depth but does not
extend to the bottom. The method is based on using the shape modes of the membrane and
the eigenfunction expansion of the flow potential. The model takes into account the wave
direction. It was found that the performance of the membrane depends on, the tension, the
wave direction, the membrane length and location.
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Tensioned flexible membrane breakwater for obliquely incident

1. Introduction

A variety of mathematical methods have
been used to study the water wave diffraction
problem by fixed vertical thin barriers within
the framework of the linearized theory of water
waves. Among the different methods are; the
complex variable technique, the integral
equations procedures based on Havelock
expansion and Green integral theorem. In
this paper we treat the problem of usinga
flexible tensioned vertical membrane as a

breakwater.

Different concepts for using flexible
membrane, as a wave absorber have been
introduced for many coastal and ocean

applications. The improvement in longevity,
durability and robust behavior of the fabric
materials, increased their importance as a
construction material for coastal and ocean
work. Some of the applications that may make
use of the flexible membranes are
breakwaters, military deployment, protecting
coastal and offshore structures and
submerged oil storage tanks.

"~ In this paper we study the behavior of a
vertical flexible membrane as a wave absorber.
The tension, T, in the membrane is much
larger then the dynamic tension resulting from
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the waves, hence the tension will be assumed
constant. Six different configurations of the
membrane are considered. It may be

I) extended from the water surface to the bed,
II) deployed from the water surface to a given
depth,

IIl) submerged from a given depth zt to depth
Zp less than h, the water depth,

IV) submerged from a given depth and extend
to the bottom, and finally, and

V) extending from the water surface to the
bed, with one or several horizontal gaps, fig. 1.
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Fig. 1. Definition sketch for the diffcrent membrane
configurations.
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From practical point of view the last
configuration is hard to construct and deploy.
The first and second types are located in the
region with the highest wave energy. They are
expected to absorb energy more than the third
and fourth configurations with the same
tension and material. They may be used to
trap oil spill. However, the third and fourth

configuration may be preferred for aesthetic
reasons. The third configuration has the
advantage that it does not affect the
movement of the bed load, sand transport. In
all cases the mathematical formulation is the
same, except for the limits of the integration,
as will be seen in the paper.

2. Mathematical formulation

The wave crest makes an angle 2 with the
membrane, which extends along the y-axis.
The x axis is normal to the membrane and
point to the east. The vertical axis z is directed
upward and the origin of coordinates is
located on the still water surface. The

membrane has a length 1 = zt . z, inthez
direction, fig. 2.
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Fig. 2. Definition sketch for the axes

The wave numbers ki and ky in x and y
directions, are given by,

2 2
kx:L:= niose=kcos 0> (1)

2 -2msin.s 0

Kk = ksin 0 > (2)

where, k and L are the wave number and
length in the direction of the wave
propagation. The potential Ny, to the left of the
membrane (x < 0) is given by Sharaki [1],

®p =¢p, exp (-io t), (3-a)

0= Ao fo(z)fexp (ikxX)+ Rcexp (-ik x|
+ 3f.(z)Anexp (A nX) (3-b)

n=1

The potential ¢r to the right of the
membrane (x > 0) is given by,

dr =¢R exp (-io t), (4-a)

dr= Aofo (2) Tc exp (ikgx)

+ $,(z)Bpexp (-4 nx) (4-b)
n=1
where,
i) = cosh[koo(z+h)]\/—2;5 ’ (5-a)
b 4 8sinh?(k;h) |
R
__cos [kal+h)]VZ . (5b)
fn(z)= - &
p_ Bsin Jknh)}
g

are normalized orthogonal functions, that is

0
[fi(z) fj(z)dz = &;; , (6)
-h
where,
6 Kronecker delta function (8 =1 i=j, §;j=
0 i#j),

g the gravity acceleration,
An the coefficients of the evansent modes to
the left of the membrane n = 1,2,...,
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Bn the coefficients of the evansent modes to
the right of the membranen = 1,2,...,

Tc the transmission coefficient,

Rc the reflection coefficient,

o the radian frequency of the incident wave,
and ,

=—iAmig , (7)
o o f (0)

is obtained by using the definition of the
surface elevation and Am the amplitude of
the incident wave

The quantities T, k, and k,are connected
by the relations,

2
ko, tanh (k, h) = @ » (8-a)

g
(02

kp tan (kp h) = -=— n-0.5)n <k, h< nn, (8-b)
g

kx and 8, are given by Das et al. [2],

k2 =k2 -k2Z, (9-a)

AA =k +k2. (9-b)

If we replace k, by zero, (2=0), we get the
case of normal incident wave.

The horizontal velocity on both sides of the
membrane (x = 0) are equal, so one must have

ox ox

o, _ PR (10)
Using egs. (3-b and 4-b), multiplying by f, and
integrating along the water depth, one gets,

Ao(l-Rc)=A, Tc, (11-a)
(11-b)

The equation of motion of the membrane is
given by Graff [3] and Hartog [4],

. a2 3%
J S TR <
Motz ax2

=AP)

where,

T the tension

Pm the mass per unit length of the membrane

£ the displacement of the membrane in x
direction

AP the pressure difference along the two faces
of the membrane.

For harmonic motion, one can write, using

€gs. (3-b and 4-b)

—og =T (2% 42
(oL ¢R)—wpw(ax2+<1 g)

zp < z <z, (12-a)

¢, - o =0 otherwise, (12-b)

where pyw the mass density of the water, and
=T (pm / T)0S .

Due to the surrounding water, Am must be
increased to take into account the effect of the
added mass. The added mass for a rigid plate
is given by, ma = mpy / 4, Sarpkaya [5]. In
principle, the added mass depends on various
modes and wave frequency.

The solution of eq. (12-a) may be given as
the sum of the homogenous and particular
solutions. The constants of the solution can be
found by fulfilling the boundary conditions. To
be consistent with the expressions introduced
for the flow potential, a sum of the

eignfunctions is used as the solution of eq.

(12-a), Kim and Kee[6].

o0

g(z,t)=z zcmz sin oy, (z+zd)exp(—iwt)'
a

m

(13)

m=1

with a;; =mn/1 .Cnis constant for the mth
membrane mode.

The natural frequency, ®Tm of the mth
membrane mode is given by,

om = (mn/1)(T/pm)°S ,

Equating the velocity along the two sides of
the membrane, one gets,

o0, DR 3Ezt)

—i . 14
ox ox ot sy )
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Substituting the serial form for both the
membrane and flow potential in eq. (14),
multiplying by sin on (z + zb) and integrating
from z = - zptoz=-2z.We get M equations,
where M is the number of the eigen shapes of
the membrane to be used.

N
ikx‘t\o(l_RC)Iom'*Z:)L nAnlhm

n=1
=;2“”1—2—cm m=1,2,.M, (15)
2 (@ -am)
where N is the number of the evanescent

modes used to represent the flow potential ,
and

laim= ]}n(z)sinam(z+zb)dz n=0,1,2,.. - (16)
0D

Working the same way with egs. (12), but
using the orthogonality conditions of fi and
integrating along the total depth h, we get ,

M
1T
Rc = ey MR 17-a
o M
1
Ap= E Ked =1,2,---,N 17-b
o 20)Pwm=1 a5 s : :
Egs, (15 and 17) form a set of M+N+1

equations in N+M+1 unknowns. The
unknowns are the reflection coefficient, Rc,

the coefficients of the evanescent modes, (An
n=1,2...N) of the waves and the amplitudes of
the shape modes of the membrane (Cn m =
1,2...M). We can write the system of equations
in a matrix form as follow,

M} {x}={F} (18)
where,

{X}={RcAy) A; Ag-~ANCyCy T,

{F}={0 0--0fy £y My |7,

fj=—ikx Ay Ioj’

[M] = [Mll M12],
My; Ma;
M1 1] (v 1 sy = diag ()

-i T

=1 .
[M22],, = 0.5 io L diag (2 _a%) )

[M21](M)(M)=IM21 lﬁZII ’
My =-ikx fol o2+ lom|T ,and

ﬁmzll nln mJ(M)(N) ‘

Since both M1 and Mj; are diagonal matrices,

‘then we do not need to inverse M. In addition

taking into account the fact that, only the last
M elements of F are non zero, one can use
simple matrix algebra to find the reflection
coefficient as follow. If the inverse of M is given
by IM and we partite it in the same way as M,
then,

IM12 = Mi2 M35 [Mlz Mp5 M21 - l] - (19)

Where IMi2 is (N+1) x M matrix, and the
Reflection coefficient Rc is given by,

Rc= IM, (LL:M)*F2/ A, - (20)

The dimensional analysis of eq. (20) shows
that the reflection coefficient is directly
proportional to both the membrane tension
and length and inversely proportional to the
wave frequency. This means that, increasing
the tension and the membrane length
decreases the transmission coefficient.
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3. Results and discussion

In what follows, we use normalized tension
Tn and normalized membrane mass per unit
area pn, where Tn =T/g pwh?2and pn = pm /

Fig. 3 shows the transmission coefficient
for a membrane deployed from the surface
with length equal one half the water depth, for
the case of normal incident wave. The values
used for the normalized membrane mass and

tension are pn=0.01 and Tn = .05, 0.1, 0.2 and
0.4, respectively.  While fig. 4, shows the
results for a rigid plate immersed to one half
the water depth. The rigid membrane is
simulated using very high tension, T, = 400.
Edmond [7], calculated the transmission
coefficients using the same values for Tn and

pn. Edmond results are shown in figs. 3 and
4. From the figures, it is clear that the present
method agrees well with that of Edmond. In
the present method the number of evanescent
modes used for the potential are 60 and the
number of the mode shapes used for the
membrane range between 20 and 40. Edmond
[7] used 200 terms to represent the membrane
and 80 terms to represent the potential. This
means the proposed theory converges faster.
The transmission coefficient for the membrane
is less than that for the rigid barrier, for long
waves (small kh). This may be explained as
follows. The membrane acts as a wave maker,
where the waves generated by its motion
cancel or reduce the incident waves. To
simulate the rigid barrier, very large tension is
used.

Next we consider the case for a membrane
covering the whole depth. Fig. 5 shows the
transmission coefficient, given by both the
present theory and that of Kim and Kee [6], for
a membrane extending over the full depth .
The normalized tension Tn is 0.064, 0.127,
0.255 and 0.51. The mass of the membrane is
S5kg/m?2. The figure shows that, there is very
close agreement between the proposed method
and that of Kim and Kee [6]. Edmond used
eigen function expansion, which is similar to
the one introduced, While Kim and Kee used a
numerical approach based on Green function.
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Fig. 4. Transmission coefficient for rigid plate.
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Fig. 5. Transmission coefficients for membrane spanning
the full depth.
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In contrast to the first case, the transmission
coefficient for the rigid plate is zero. For some
frequency the membrane loses all of its
efficiency. Kim and Kee called this the
resonance frequency. Fig. 6 shows the
transmission and reflection coefficients versus
the angle of incident waves for the case of rigid
plate extended from the bottom with a total
length 0.85h. The results for the same case,
as given by Losada et al. [8] are given in fig. 6.
Again, there is a very close agreement between
the proposed method and that of Losada et al.
Losada approach is based on an eigenfunction
expansion method.
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Fig. 6. Transmission and reflection coefficients versus incident wave
angle.

Fig. 7 shows a contour plot for the
variation of the transmission coefficient with
both the angle of the incident waves and the
wave number for the case of a membrane
deployed from the water surface down toa
depth equal one half the total depth. The non
dimensional tension T, used in the analysis is
0.2 and the non dimensional mass per unit
area of the membrane p, is 0.01

Fig. 8 shows a contour plot for the
transmission coefficient of a membrane
deployed from the water surface down to the
bed. The non-dimensional tension T, and the
non-dimensional mass per unit area p, used
in the analysis are 0.2 and 0.01, respectively.
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Fig. 7. contour plot of the transmission coefficients versus
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Fig. 8. Contour plot of the transmission coefficients versus
incident wave angle and wave number -L/h=1.0T,=
0.2.

4. Conclusions

An analytical method is introduced to
predict the performance of a flexible tensioned
membrane as a breakwater within the frame
of linear wave theory. The method can be
extended to cover the case of a rigid wall.
Different configurations of the membrane can
be handled using the present method. The
results of the present method agree with the :
different methods for both flexible membrane
and rigid wall. The membrane length, tension
and location affect the performance of the
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membrane to a great extent. The mass of the
membrane  has small effect on its
performance. The transmitted waves result
from both the motion of the membrane and
the diffraction from the gaps. In some cases
they cancel one another. In this case the
performance of the membrane outweighs that
of a rigid plate. To achieve this result the
length and tension of the membrane must be
tuned with the wave frequency.
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