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A numerical model based on the Boundary Integral Method (BIM) 1s presented for solving
the 1mpact problem of a general two-dimensional bluff body striking a water surface The
model solves the potential flow equation. including the full nonlinear kinematic and
dynamic free surface boundary conditions The numerical procedures are applied to
predict the wave field generated by heaving wedge-shaped bodies with varying wedge
angles and heaving amplitudes. The choice of the wedge shape has been commented
upon and 1ts reasons are given A series of sensitivity study cases were performed to
investigate the computational characteristics of the model Simulations are performed for
various parameters which govern the motion of an oscillating body Numerical results
were compared with available experimental data, and a qualitative agreement 1s achieved
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1. Introduction

One of the complex problems, which have
been addressed in hydrodynamics, is the
impact problem The problem arises in
ocean-going vessels or fast boats when the
hull impacts the free surface. This slamming
load can result in substantial damage in the
structures of ship hull and marine facilities.
Owing to its practical importance in ocean
engineering, the water-body impact problem
has attracted a large number of
investigators. The impact problem first
emerged in the stress analysis of seaplane
landings by the approximations of Von
Karman [1] and Wagner [2], these
approximations became the basic reference
for many subsequent investigators. Early
studies concentrated on predicting first-
order behavior for simple heaving motion [3],
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this was extended to nclude second-order
effects and other body motions [4,5,6] Lee
[7] developed a series of second-order
theories based on expansion of non
dimensionalized heaving amplitude

With the advent of computers, it becomes
possible to study the impact problem much
more effectively Computer calculations
allowed the investigators to analyze
nonlinear effects by simulation In an effort
to solve the nonlinear free surface problem.
Chapman [8], developed a numerical two
dimensional flow induced by the motion ot a
floating body Greenhow[9], presented a
numerical solution to the impact problem
based on the Cauchy’s theorem to calculate
the complex potential and its derivatives
along the boundary. Dommermuth [10] and
Pukhnachov [11] developed a numerical
method for nonlinear three-dimensional
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axisymmetric free surface problem using a
mixed Eulerian-Lagrangian Scheme.

A Finite-Difference Method (FDM), with a
modified Euler method for the time domain
was used by Howison [12] Spaulding [13] to
predict the wave field generated by heaving
floating bodies. The FDM is most suitable
method for rectilinear boundary on the free
surface. The principal deficiency of FDM,
when applied for the problem in hand, is its
inability to follow the moving boundaries
easily. The Finite Element Method (FEM) has
flourished in the field of complicated
geometry. The FEM requires that, the
problem to be solved is in a variation form. A
large number of investigations [14-17] used
the FEM for modeling wedge-shaped bodies
with varying wedge angles and heaving
amplitudes. With complex shaped bodies as
well as the free surface configurations, the
need for the boundary fitted coordinate
becomes essential for better simulations.
Wang and Spaulding [18] introduced a two-
dimensional potential flow for a general body
configurations in heaving motion. Mei and
Dick [19] provided an approach using the
body fitted coordinate system for the
complex geometrical bodies with a free
surface.

When the impact problem is solved using
numerical calculations, there are a number
of difficulties to cope with, some of which are
the accumulation of the numerical error and
memory limitation. The accumulation of the
numerical error can cause serious error,
which contaminate the numerical results, or
cause the results to diverge. This is defined
loosely as numerical instability. To prevent
this numerical instability, numerical
schemes should be chosen carefully and
operated within a proper parametric range.
The stability criteria of some numerical
schemes were derived [20,21] to overcome
the divergence of the results.

Many investigators treated the impact
problem analytically. Alexander [22], has
derived an analytical method based on the
hypothesis that the impact velocity is equal
to the relative velocity normal to the impact
surface of the moving body. More recently,
Wu. [23] developed analytical forms of the

nonlinear hydrodynamic force on a floating
body.

Several methods for solving the governing
equations of the impact problem with moving
boundaries discussed in [24,25], and the
typical one used in this study, is the two-
step approach with moving boundaries. In
the two steps approach, the governing
equation is solved first on a temporarily fixed
boundary, and then the free surface
boundary equations are solved to determine
the new boundary position and the values of
the normal derivatives on that boundary.
These two steps are iterated as a function of
time, each step can be solved in the Eulerian
sense, where all the physical values are
calculated at the spatial points, or in the
Lagrangian sense, where all the physical
values are calculated along the path of the
moving water particles. The goal of the
present study is to apply a numerical model
to predict the impact force on a heaved body
when nonlinear free surface dynamic
boundary effects are important.

2. Formulation of the problem and
governing equations

Consider an infinitely long two
dimensional symmetrical body which is
forced to oscillate vertically on a free surface.
For the time being the body shape may be
assumed to be arbitrary and the body motion
can be cyclic or linear with constant velocity
in the y-direction, while the free surface is
given by:

v(x,t) =0, (1)

where X = i(x, y) is the position vector in

the right hand coordinate system. The y-axis
is defined to be positive in the upward
direction, while the x-axis represents the
calm water level. The origin is at the
intersection of the vertical centerline of the
body and the undisturbed water surface. fig.
1 depicts the above-described setup. The
fluid is assumed to be incompressible,
inviscid, and the flow is assumed to be
irrotational. Based on the above

assumptions, a velocity potential ¢(5(,t) can
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be introduced, and the velocity vector of a
fluid particle is given by,

a=V¢. (2)
Y
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Fig. 1. Coordinates and geometry of the free surface
problem.

Furthermore, the effect of surface tension
at the free surface is neglected, and water
depth is assumed to be deep enough
allowing the bottom (sea-bed), effect to be
ignored. The water surface is assumed to
start form rest. Following the above
assumptions the  mathematical model
describing the problem under investigation is
based on the conservation of mass principle.

It is well accepted that, inside the fluid
domain, mass is neither created nor
destroyed. Thus, this statement is expressed
mathematically by the Laplace equation, in
the fluid domain, namely;

v2 ¢ =0. (3)

In order to solve the impact problem,

Laplace equation must satisfy the following
boundary conditions:
1. The kinematics free surface boundary
condition. This condition is applied on the
free surface and it expresses the fact that,
the normal velocity of the water particle on
that free surface is the same as the normal
velocity of the free surface itself. In other
words, once a particle is on the free surface,
it remains there, this kinematic boundary
condition can he written as:

D(Y'n)=_2 i VheV Ly
3y «6t(y n)+VoeV(y-n)

.on Y=T1(X»Y)’ (4)

where, D /Dt denotes the substantial or

material derivative. This condition is used to
follow the free surface as a function of time.
2. Dynamic free surface boundary condition.
Based on Bernoulli’s equation, it is assumed
that, the pressure on the free surface must
be atmospheric. Thus such condition is
expressed as;

2 2
§+%¢+% (%) +(%J +gy =0. (5)
Where,

P is the pressure, and
p is the fluid density.

The above condition at y = n(x, y) becomes:

L AR S TR
RSB g VA ARy 6)

This condition is to be used to determine the
value of the potential on the free surface.

3. Body Boundary Condition. This condition
states that, a fluid particle cannot penetrate
the solid body surface but rather it stays in
direct contact with this surface. Hence, the
normal velocity of the particle on the body
surface is the same as that of the body
surface itself. Mathematically, this condition
is expressed as;

Uei= Vjeon. (7)

The above condition is applied on the body
surface whose equation is;

Sp(x,y,1)=0 . (8)

Where,

U is the body velocity,

Vi is the fluid particle velocity vector on
the body,

n is the unit normal vector directed
outwards from the domain of the
interest and into the body, and

S is the body surface (see fig. 1).

4. Far field condition. Since the field occupied

by the water is unbounded, the far field
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condition states that, the normal velocity far
away is assumed to tend to zero, hence we
can write;

%9

—+ -0 as|rf| > », 9)
on

where |r| is the distance from the origin.

In practice the term far away is taken as
a long distance from the origin, and thus
special care must be exercised during
computational procedures.

3. Solution procedure

Before such procedure is discussed, it is
worth mentioning that numerical simulation
is adopted as a method for solution.
Furthermore, simulation times are taken
short enough so that no significant waves
generated by the body have to be propagated
into the far field boundaryS,. Such

simulation times, however, allow the
computation of the physical quantities of
interest, mainly, the potential values, and
the pressure on the body during impact as
well as the position of the free surface. There
are a number of methods to solve the
Laplace equation and the accompanying
boundary conditions. In the present work the
following procedure is implemented.

Stage (1): A temporarily fixed boundary is
assumed. The governing Laplace equation is
solved on that boundary using the Boundary
Integral Method (BIM). The BIM uses the
information (the potential values or the
derivatives of the potential) only and on the
boundary. In the impact problem, either the
potential values are given (a Dirichlet
boundary condition) and the normal
derivatives of the potential values are
unknown on the free surface. While, the
narmal derivatives are known and the
patential values are unknown on the body (a
Neumann boundary condition). Thus the
values of the velocity potential obtained;
hence the values of the normal derivatives of
¢ being calculated.

Stage (2): Using the free surface boundary
conditions one can locate the new position of
the free potential at such new location, Thus

applying the kinematic free surface
boundary condition we get the new location
of the free surface. Subsequently on the new
free surface, one can determine the up-dated
values of the velocity potential using the
dynamic free surface boundary condition.

The above two stage are repeated as
simulation time progresses. It should be
mentioned that, in stage (1) the BIM is used
as the governing equation solver. As for the
time stepping scheme used in stage (2) The
Runge-Kutta method is used. The following
is a description of both equation solvers.

3.1.The boundary integral method

The mathematical formulation for the
Boundary Integral Method (BIM) begins with
the divergence theorem;

”VOUdV=Hﬁ0ﬁds. (10)

Where,

U Is the fluid velocity vector that is
continuous and differentiable in the
domain (V), and

n Is the outward normal vector.

This theorem states that, the total
increase of the volume of fluid is the same as
the total flux through the surface. The
divergence theorem is applied to Green’s first
identity.

Ve(GV)=GV2h+VGeV, (11)

hence, produces the integral
Green’s second identity.

”“‘WzG av% Jav - H(¢—-G ]ds (12)

The above volume integrals are taken
over the fluid domain, while the surface
integrals are taken over its surrounding
surfaces.

In two dimensions, the volume integral
becomes a surface integral and the surface
integral becomes a line 1ntegra1 The fluid
domain of the interest V is surrounded by a
body surface Sp, free surface S¢, free

equation,
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surface at infinity S, and the other far-field
contour including bottom S. (see fig. 1).

Two quantities are introduced in eq. (12),
¢ is defined as the velocity potential which

satisfies Laplace’s equation and G as the

solution of the Poisson equation. the fluid
domain;
v2p =0,
and

W ooy 8@
V2G(x;§)=—6(x—C)=——Q. (13)

Another solution G*can be obtained by
adding any analytic homogeneous solution to
the particular solution, as follows;

G(i;&):—%lnl g = ———lnr (14)

G' (i;§)=—§1—(lnr i 1nc)=-%1nrc, (15)

T
and
vG(%:8) =5 :;2 ) (16)

In the equations above,

% 1is the field point,

C is the source point, and

¢ is some constant used to normalized the
two dimensional Green’s function which has
an important effect on the stability criteria of
the numerical scheme.

The Green’s functions G and G* are both

solutions of Poisson equation. G* has an
arbitrary constant Inc, which will be
important in the stability criteria of the
numerical scheme. Substituting egs. (13 -16)
into eq. (12), new surface integral equation
for the potential ¢ of the point X in domain V
‘is produced. The Velocity potential in two
“dimensions is expressed as:

(x5 t)=- j(¢%- ad’)dl I

on 271

flo.) TELLE) 2 6 e gt an

i

If G'instead of Gis used in the integral
equation, then,

SR B i X D e
Wz o) J{"’ on e an]dl_ on

I¢(E,t)E@M%’Q
%-C

+%(&,t)lncii—§' dl.

(18)

As X approaches the boundary, the
potential value on the boundary is derived in
a principal value integral form such as,

d)(;{’t):__l'
Y
I ¢(&J)E((|;M;2i)+%(§,t)ln|i-§’ dl, (19)
x_
0%, t)=-—
T

I¢(€,t)ﬂ‘&—~h((§(|—2_—é)+%(é,t)lnc’i—al 1+,
x-
(20)

Where, xandleSandi is an outward unit

normal vector.

This equation shows that the velocity
potential ¢at (%,t) can be expressed in
terms of the boundary values only, without
any information from inside the volume. In
other words, the BIM reduces the space
dimension by one, which is the essential
benefit of the BIM. For the free surface
problem, this method is adequate since the
physical values of interest are usually only
on the boundaries.
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4. The time stepping schemes

Once Laplace’s equation is solved in the
fluid domain, the normal derivatives of the
potentials on the free surface and the
potentials on the body surface being
obtained. @ With this information, the
kinematics and the dynamic free surface
boundary conditions determine the new
location of the free surface for the next time
step and estimate the potential on the new
free surface. The new location and the new
potential on the new location are used as a
boundary condition of stage (1), and the
result of stage (1) is used for the next stage,
and so on.

The following notations are adopted.

vt is the time increment,

n™,n™*! s the free surface location at time
intervals t® and t™! new time
level,

o™ , ™1 s the velocity potential at both
time levels t® and t"*!,
respectively, and

on is the normal derivative of the
velocity potential ¢™ at time level
-,

Using the above notations, the fourth
order Runge Kutta method is expressed as,
n+l n 1 k k ) 21

¢ =¢ +g(k1+2k2+23+ 4) (21)

and

L pttiy é (1, +215 +213 +14) (22)

Where, k; andl; are the intermediate

increments of ¢ and n, respectively. Using
the explicit scheme, all the intermediate
dé (such as kj, kg, k3 or k4)anddn (such as
Ki, Kz Ksz, or K4) are calculated from the
-previous values. The increments k; andl;

‘are calculated from the values of the (n)
step. kgpandly are calculated from the

values of k; and l; intermediate step, and so
on in a similar fashion for. k3 and 13, and
k4 and 14 . Details of such increments can be

found in standard

textbook.

numerical analyses

5. Solution of the boundary value problem

To apply the free surface boundary
condition in the Lagrangian step of the two-
stage method, the unknown ¢," on the free

surface is calculated using the Boundary
Integral Method (BIM). The BIM starts with
Green’s second identity and results in an
integral equation for the potential on the
boundary. The potential ¢(X) of the domain

V is depicted as;

(%) = - j((pg - ng“lJ dl . (23)

Where G is the Green’s function of equation
(14). Discretizing the surface with line

segments, the potential ¢ at the (ith)
segment is approximated as:

" 9G o
¢ (%)= - D10, ijjd‘j‘ (g)j IGij dlj.
AX‘l AXJ'
(24)

Where, iz i
¢; is known on the free surface, and
obj .
— is unknown on the free surface.
J

o
Either d)j or (%) is known and the other

J
one is unknown on the remaining surfaces
s and Spottom-

6. Pressure calculation
As the body starts to move from rest, the

body experiences a changing hydrodynamic
force imposed on it. The fluid forces are

6 Alexandria Engineering Journal. Vol. 41, No. 1, January 2002
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estimated by the pressure integration over
the wetted surface. An exact force prediction
leads to reliable structural analysis for safe
design of ship structures.

The equation for the pressure calculation
on the body is derived from Bernoulli’s
equation for inviscid, incompressible, and
irrotational flow.

P o 1
Lot TN
i beV-gy
do -~ 1
=-—"4+UeVp -=-VopeVp -gy. 25
% Vo 5 beVd -gy (25)
Where,

U is the velocity of the body, and
V¢ is the velocity of the particle.
This equation consists of three parts:
1. the unsteady time varying pressure

%

component, —
P ot’

2. the dynamic pressure component with
the nonlinear term, U e V$—-0.5V¢p e V¢, and
3. the static pressure term which is

proportional to the depth, -gy.

On the body, the normal derivative of %
is derived using rigid dynamics and a vector
identity,

(2)-6-50

d dn
=ne—Vy +V s
P Tl

=ﬁ>.(§v¢+(ﬁov) V¢) + V¢ +(@x @)

=ﬁ-(vg + V(00 v4)+ % v¢)
Vo e(@xn), (26)

where; ® is the rotational velocity of the
body. A
. 1 d¢ . )
Since UeV¢$ and ey satisfy Laplace’s
equation. With Laplace’s equation and the
various boundary conditions, the boundary

value problem is solved for %% on the body
and % (@) on the free surface. Once Al on
on dt

the body is obtained, the pressure on the
body is calculated with eq. (25).

The slamming force on the body can be
obtained by direct integration of the pressure
distribution over the wetted surface of the
body. This force can be determined using the
definition of added mass and conservation of
vertical momentum as;

d
F(t)=—(MzU) 27
(t)= - MaU) (27)
where, M, is the infinite frequency added

mass in heave for the submerged portion of
the body, which can be calculated by the
commonly used form [24].

M, =C, Y% and C, =(1-a/2nP n/2. (28)
With o is the deadrise angle of the wedge

surface and Y is the depth of the wetted part
of the wedge, fig. 2.

¥

S | St S¢ l Smo

N
AT

So U So

Sc Seabed

Fig. 2. The body geometry and the coordinate system for
the wedge section.

The instantaneous velocity of the wedge

during the impact is given by;

. ¥
i = 1+M, /M’ (=9

where,
V, is the falling velocity of the body at initial
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impact ,
M is the mass of the body, and
M, is the infinite frequency added mass in

heave as mentioned above.
7. Discussion and application to wedges

Although, the present method is valid for
an arbitrary shaped body sections, the wedge
section was selected as a case study. The
body geometry and the coordinate system for
the wedge section is illustrated in fig. 2. Itis
worth mentioning that the wedge model
chosen in the present work is considered as
the prototype shape for transverse sections
of the fast vessels, that are subjected to
slamming forces resulted from their
proposing motion. The wedge section is the
standard element in the structural
construction of high-speed vessels especially
with varying deadrise angle. Furthermore,
the wedge shaped section represents the bow
section of a ship, that section is mostly
subjected to that type of impact forces along
the longitudinal axis of the ship. Moreover,
the availability of experimental results
related to the chosen wedge model allowed
the verification of the accuracy and efficiency
of the numerical scheme presented in this
work. On the other hand, the choice of the
wedge model allowed the efficient
investigation and numerical modeling of the
jet flow phenomenon. That jet flow has a
predominant effect on the distribution of the
impact loads over the vessel hull as well as
the location of its peak.

In the body-wave interaction problem,
the domain boundary is composed of two
major parts of computational surface. First,
the body surface Sg and the free surface Sy

(figs. 1 and 2), and these two surfaces meet
in one line. This line referred to as the
intersection point for the case of two-
dimension study. In a  simplified
mathematical model, the intersection point is
represented as having a sharp corner, which
induces a jump in the physical value and
introduces singularities in the mathematical
calculations. The problem arises because of
‘the need to satisfy two boundary conditions
‘at this point, namely the body boundary

condition and the free surface boundary
condition. To eliminate these singularities, a
special treatment of the velocities at that
point is needed. The tangential velocity
component at the intersection point was
determined by the modified Lagrangian
polynomials interpolation scheme. While, the
normal velocity component is determined by
the body boundary that is to be the same as
the normal velocity of the body.

Since the length of the wetted surface
varies during the motion and is deepened on
the deadrise angle, hence it has been
normalized for plotting conveniences. So,
the wetted body surface is subdivided to two
regions. The first region represented by the
normalized distance from (-1 to 0), namely
the submerged portion of the model. The
second region is represented by the
normalized distance form (O to 1), namely the
portion of the model located above the calm
water surface. For verification purposes,
both numerical results, obtained using the
present numerical scheme and
corresponding experimental data form [26,
27] are plotted.

The pressure distributions on the wetted
surface of the model with different deadrise
angles are shown in figs. 3 to 6. It can be
noticed that, over the first region, good
agreement between the numerical results
and corresponding available experimental
data does exist for all ranges of the deadrise
angles. From these figures it is apparent
that, almost constant pressure distribution
is experienced over that region, with slightly
varying gradient as the deadrise angle
increases. From physical point of view the
static component of the pressure, eq. (25), is
predominant on that region. Hence, this
explains the direct proportional relation
between the value of the deadrise angle and
the gradient of the pressure distribution over
that region. Furthermore, the dynamic effect
of the pressure component is mainly
manifested on the magnitude of the pressure
rather than the variations of the pressure
gradient. This is noticed from the figures
where higher values of pressure are obtained
with smaller deadrise angle, and vise versa.

8 Alexandria Engineering Journal. Vol. 41, No. 1, January 2002
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Fig. 4. Comparison of the pressure distribution on a wedge surface with dead rise angle = 30 degrees.

Alexandria Engineering Journal. Vol. 41, No. 1, January 2002
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Fig. 6. Comparison of the pressure distribution on a wedge surface with dead rise angle = 80 degrees.

Alexandria Engineering Journal. Vol. 41, No. 1, January 2002
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Moreover, for higher values of deadrise
angle the maximum pressure magnitude is
concentrated at the keel point as shown in
fig. 6.

On the other hand, the second region of
the model is mainly affected by the free
surface configuration. The jet effect causes
the pressure distribution to exhibit a
noticeable increase in pressure magnitude
especially for smaller values of deadrise
angle. This is probably due to the impact
load of the jet with the body surface. The
noticed hump in the pressure distribution
decreases with increase in deadrise angle.
This can be explained by the fact that with
increasing deadrise angle the jet flow leaves
the wedge surface tangentially upwards and
hence the pressure gradient along the body
surface in this region falls rapidly. Noticeable
differences between the numerical results
obtained and the available experimental data
exist in that region. As might be expected,
very severe difficulties are encountered when
the deadrise angle has a large value, because
of the fast moving jet flow as shown in fig. 6.
This is due to the lack of exact mathematical
formulation in modeling the jet resolution,
and hence poor numerical simulation in that
region. This issue is a difficult one to address
due to the sensitivity of the jet profile and its
formation.

In order to demonstrate the capability of
the present method in resolving the
phenomenon of the jet flow, the influence of
the decreasing angle on the jet formation is
investigated. Fig. 7 shows the flow for a
wedge with deadrise angle (a=60 degree)
entering the fluid with high speed. For high
speeds of entry it is reasonable to expect
self-similarity since locally near the wedge
the fluid particle acceleration will be much
greater than gravity, especially in the early
stages of entry. Starting from the initial
conditions with just the wedge vertex in calm
water, the free surface quickly becomes self-
similar and compares well with the results of
Dobrovolsksys [26]. While in the jet region,
the fluid particles move slightly further up
the wedge surface and will behave
-approximately as a free projectiles moving
‘under gravity alone. So, the real simulation
would be further complicated. This

instability would eventually preclude further
time stepping of the solution. A remarkable
difference can be shown in fig. 7. This
disagreement with the results  of
Dobrovolskaya [26] in that region, certainly
indicates a weakness in the present scheme,
probably associated with poor numerical
resolution of the jet.

I

1.0 u/ / Numerical Values
\:: E ///// = == = After Dobrovol's [26]
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Fig. 7. Comparison of the jet flow on a wedge surface
with deadrise angle = 60 degrees.

The impact force as a function of time on
the wedge surface is also compared with the
experimental data of Zhao [25] for the wedge
with deadrise angle (30 degree) fig. 8. The
numerical values show a good agreement
with the experimental ones especially at the
beginning of the motion and moderate
values of time. As the jet flow starts to be the
predominant behavior of the flow, higher
values of time, a remarkable difference can
be shown which is related to the poor
numerical simulation of the jet flow. For the
reason to examine the effect of deadrise
angle on the impact force over the body
surface, the force coefficient is plotted as a
function of the deadrise angle as shown in
fig. 9. The force coefficient is defined as,

Where,
v is the wedge entry velocity, and
y" is the depth of the wedge vertex.

As might be expected, the inverse
relation between values of the force
coefficient and the deadrise angle is quite
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clear as shown in fig. 9. The variation in the
gradient of this function from a limited slope
over the region of small deadrise angle to a
sever slope over the region of moderate and
high deadrise angles, reveals that, the
activity of the jet flow is proportional to the
value of the deadrise angle.
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Fig. 8. Comparisons of impact force as a function of time
for wedge with deadrise angle 30 degrees.
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Fig. 9. Forces coefficient as a function of deadrise angle
for wedge shape.

8. Conclusions

The proposed approach is readily capable
to handle time-dependent free surface flows
with fully non-linear free surface boundary
conditions and arbitrarily shaped heaving
body geometry. The model satisfied the
boundary conditions on the exact
instantaneous position of the moving body
and the free surface. The captive mode was
tested by water entry of symmetric wedges in
a gravity field. Pressure distributions were
calculated at different deadrise angles as well
as the impact force. Moreover the
.computational procedure has been tested by
comparison for the detailed sensitivity

performed on jet flow phenomenon. However,
the difficulties in resolving the jet flow
numerically must be recognized, since its
position and profile are very sensitive.
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