Resonance of non-linear systems subjected to harmonically
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In this research we study the behavior of a single-degree-of freedom with quadratic, cubic and
quartic non-linearity to modulated frequency input. Both response and different resonance
conditions are determined. The effects of different parameters on the system behavior are
investigated. A comparison is given between the reported work and the available publi§hed ones.
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1. Introduction

In physics the non-linear oscillators or in most
of engineering systems and machines, vibrations
due to rotating parts or machinery are
unavoidable. In many cases the supporting
structures for such systems or machines are
isolated from this vibration by mounting the
machines or the structures on a soft base having
lower stfiness which means lower natural
frequency than that of the machine or the
structure. This is done to avoid resonance
between the small-transmitted force and the
machine support, provided that the support
system is a linear one. If the support has some
non-linearity, dangerous resonance may OCCUr.
From the former extensive mathematical
studying and experimental results of dynamical
systems one can show that the nonlinear terms
are responsible for most of interesting
phenomena in the internal and external forced
response- of structures. The response of most of
the dynamical systems may include primary,
sub-harmonic, super-harmeonic, combination,
and sub-combination resonance; coexistence of
multiple  resonance; jumps; etc. [1-3].
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Combination external resonance may occur if
the excitation frequencies are commensurate
with the natural frequency (Dugundji et al. [4]).

Nayfeh et al. [1] studied similar system with
cubic non-linearity only to modulated high
frequency input. They considered two cases, the
first for weak non-linearity and the second for
strong non-linearity. They applied the multiple
time scales perturbation method for the first
case and used direct integration of the
governing equation for the second case. They
reported some resonance cases and showed the
response for such system. They also studied the
case when the system is subjected to constant
amplitude and  harmonically modulated
excitations. Some related work can be found in
refs. [2-5].

In this paper, we investigate response
stability and resonance of a single-degree-of-
freedom non-linear system with quadratic;
cubic and quartic non-linearity subjected to
modulated input. Both modulated high and
low frequency input is considered. Multiple
time scales technique is applied up to the
third approximation. The effects of the
different parameters on both system response
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and stability have been investigated. Some of
the deduced resonance cases are studied
numerically. A comparisgn is made with
similar published work.

2. The mathematical model of the system

We consider the system governed by the
equation,
_ N
e ~7 . ) —
i+2fou+e’u+) aQu
5

= (f' + g cos(L2,t)) cos(L2t), (1)
and N = 4 with the general initial conditions

u(O)=a.and u(0)=0,

where;
is the damping factor,
is the natural frequency,

pd = 2.3,4 are the non-linear coefficients,

IRl € Y

?

t

Q,Q), are the excitation frequencies, and

, & are the excitation amplitudes,

u,u,u are the displacement and its first and

second derivatives with respect to time,
respectively. In application of the perturbation

technique we ordered ,a,,a,,0,,f and g as

follows

'::;, Jz=¥;u2, 63=82(1_;,
E4=820L4, f=ef,

where £ is a small dimensionless perturbation
parameter. Then eq. (1) becomes in the form

u+2elou +olu+e &zuz +sz('&3u3 +64u4)
= (ef + g cos(Q,t)) cos(Q2t) . (2)
It can be seen from eq. (2) that the excitation

force is composed of three super-positioned
different excitation forces having different

frequencies. The three different excitation
frequencies are: () and (Q+Q)). This means
that the problem has become a non-linear
system subjected to multi-excitation input.

In the following eq. (2) will be solved
applying the multiple time scales perturbation
technique up to and including the third order
approximation. Different resonance conditions
will be extracted. Numerical techniques will be
applied to investigate system behavior under
different resonance conditions and at differ ent
magnitudes of each parameter.

3. Analysis

The response of the system described by
differential eq. (2) can be expressed in the form

@0

ll=z:t>;l Uj(TQ,Tl,Tz), (3)
=0

where;

To=t, Ty =st, Tp =¢2t. Let

J .
;_iz(D°+8Dl +e2Dy +.)0, (4
where;
D; =§rjf, j=0,12,..

Substituting eqs. (3) and (4) into eq. (2) and
equating the coefficients of the similar powers of
£, we obtain the following ordinary differential
equations:

D(z)uo + m2u0 - %g[cos((Q —Q)Tp) +cos((Q+€2)T )] .
(5)
[)5u, + wzu, = —azu(z) -2CDgug
=2DpDyug + 1 cos(€21y), (6)
and,
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Diu, +®’u, = —20L,u,U, — U, — oL,u;
-2D,D,u, - 2D,D,u, - D’u,
-2¢Du, -2£D,u, . (7)

The general solution ofeq. (5) can be given
in the form,

. G(Q-Q))Tp)
ug'= G(T}, e ®T0) 4 Lol &~ p) : 02
(@2~(Q-€2))

(1(§2+Q1 )To)
cc, (8)

5 2
(o *(£2+Q1)

where ¢c are the complex conjugates of the
given terms in (8) and G is a complex function
of T} and T,, to be determined from the next

approximation.
Substituting % into eq. (6) and solving for

AWy yields -,

(2i (Q-Q))T,
- (_L g2l PTo)

10 (02~Q-Q) ) (0?-4(Q-Q))?)
(2,21 @+Ty)

o4
16 (o —(Q+Q 32) (02 ~4(Q+QY )2)
gze(zl (Q-Q)Ty)

1
16 ( -(Q-szl)z)(m2—4(§z—sz])2)
2, (21 (QHQT)

L L
10 (@2 (4 )2)(w2—4(sz+sz %)

_i
2 (02 —(Q O )2)(0 Q) 2o+(Q-Q,)))

1 d4 c(l (co+§2+§21)T0)
- (mz—(Q+Ql)2)(Q+Ql)(2m+(Q+Ql))
i " c(vgi Q1) . 626(2,' oT,)

T (mz—(Q+Q,1)2) (032_.492) 3 02

4 2= (02 -(Q-9))?)

2 g (40, ) LTy

Ty (@2 ~(Q+Q, )2)(m -(Q+Q )2)

£ e(1 QTO)

AP S :
+5 (mz_Q2) +cc+ ST , (9)

where ¢Cc are complex conjugates of the
preceding terms. ST denotes the secular terms.
To obtain a bounded solution the secular terms
must be eliminated.

Substituting eq. (8) and eq. (9) into eq. (7)
and solving the resultant differential eq. we
obtain #, (See eq. (10) in Appendixl).

Substituting eqgs. (8,9,10) into eq. (3) we
obtain the general solution of the differential
eq. (2) up to the third order of approximation.

4. Resonance conditions

The resonance conditions have been
extracted from the solution, (see Appendix 2):
It isclear that there are another secondary
cases if Q>Q,

resonance conditions are possible and can be
predicted from a higher-order approximation.

resonance and more

5. Results and discussion

Results are presented as respbnse, ie., as
displacement ¥ against time /. fig. | shows the
basic case used ' for comparison with other

“cases. The selected ‘wvalues for the different

parameters are as follows:

£=02, ay =025, a3 =0.15,
®=25,Q=20,and Q; =1.5.

A =L

From this figure, it is clear that the response
consists of two waves the first is the carrier and
the other one is the modulation. The frequency
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of the carrier is about 0.5, while that of the
modulation is about 3.5. Having a thorough
look at these two numbers representing the
frequencies of vibration we mnotice that the

carrier frequency is close to ({2 — gll ) and the

(2+Q,). The

is about

modulation is close to

maximum steady state amplitude
+1.5. The system behavior looks stable one.

In the following subsections, we will discuss
the effects of each parameter on both system

of the

response and stability. Also some
resonance cases will be investigated.
: M (\l ’h hlhl
g l I ul I IU |$| Jvl anl Iﬂ l)
I I

. ) 20 40 60 100

TIME
Fig. 1. System response (Basic case).
5.1. Effects of the damping Coefficient 5
This parameter was varied over ‘the range
-02<¢ £0.2. fig. 2 shows the response for

two different cases where 5:0,0 and —0.02
respectively. fig. 2-a shows that for small values

of { the maximum steady state amplitude is
time-dependent and it is increased by about
20% compared to the case shown in fig. 1. No
change appearing in either the carrier frequency
or the modulation frequency. fig. 2-b shows the

response when 52—0.2, where the steady

state amplitude increased to about 13 times of
that shown in fig. 1, and the oscillations have
become sustained ones. Also the carrier wave
disappeared, due to the presence of forth
excitation force represented by the negative

damping. The frequency of the steady state
oscillation is neither related directly to the
natural frequency @ or to the three different

excitation frequencies Q. (Q £, ).

é 1 * | \ 1| lh |||‘ [ "llnlh
3 ' | l
. \ \ll

0 20 40 60 80 100
(b) TIME

Fig. 2 (a). £ = 0.0, (b) & = -0.02:

5.2. Effects of the non-linear parameters

Fig. 3 shows three different cases where
a, =-1.5, a3 =-0.5 and a; =-0.25 infig
3-a, 3-b, and 3-c,
fig. 3 that the increase isabout 20--25% i
the maximum steady state amplitude. There is
no effect on the frequencies of oscillations. fig.

3-d shows the case where all the non-linear
parameters are negative, i.e., the spring is a soft

respectively. It is clear from
] w()
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one. Itis clear that the steady sate amplitude is
52 <0 but
frequencies are the same as those shown in
fig. 1 if @3 <0 or @4 < 0. This means that the

nonlinear parameters affect on both the steady
state amplitude and the oscillator frequencies.

increased for the oscillator

5.3. Effects of the excitation amplitudes

To study the effects of the excitation
amplitude, / was varied from O to 5. The

results are shown in fig. 4. For f =0 fig. 4-a
the oscillation frequency did not change, but the
maximum steady state amplitude is directly
proportional to the excitation amplitude f . As

shown in fig. 4-b for large values of f_,the

shape of oscillations looks chaotic rather than
the superposition of modulation on a carrier.

When the other excitation amplitude g is

increased to about 5 times its values shown in
fig. 1, the maximum steady state amplitude is
increased to about 4 times its original value
shown in fig. 1, and the oscillations have
become tuned ones as shown in fig. 4-c.

5.4. Effects of the excitation frequency £

To investigate the effects of such parameter,
it was varied over the range 0.04<# <24 fig,

S shows some of the results. It is clear that
away from the resonance cases, the maximum
steady state amplitude 'is a monotonic
decreasing function in ), but the dynamic
chaos is a monotonic increasing function in € .

5.5. Effects of the excitation frequency Ql

This parameter was varied over the range
£
0.02< —;U—l <2.8. It is clear from fig. 6 that, for

small (2| values, the oscillations are tuned,
having carrier and modulation frequencies.

As (2| is increased the dynamic chaos is also
increased, becoming very severe for large values
of Q. Away from different resonance cases, the

maximum steady state amplitude is a
monotonic decreasing function in the frequency

Q,, while the dynamic chaos is a monotonic
increasing function in the excitation frequency

Q.
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5.6. Resonance cases

As we have seen before, the investigated
system is characterized by a great number of
resonance cases. (Appendix). In the following
we will discuss some different resonance
cases.

5.6.1. Primary resonance
56.1-1 Q=~w, ) variable. In fig.7 we can

see that from the variation of this parameter,

i.e., ; at the primary resonance % ~ 1, that

the maximum steady state amplitude is a
monotonic decreased function in Ql' In
addition the

increasing function in €, . Also for small values

. U . .
dynamic chaos is a monotonic

of 0 compared to @ and €2, the oscillation
have two clear frequencies one for carrier and
the second for the modulation. When Ql is
increased the nature of the vibrations is

changed and only the peaks of oscillations have
become tuned ones.

6.6.1-2 Q) ~ @, Q variable. fig 8-a shows the

response when % = (0.04 , where it has become

a tuned one. The carrier frequency is about 0.1,
ie., equals (). The maximum steady state
amplitude is about 80% greater than the basic
case shown in fig. 1. fig. Z.B-b shows the case

when —3=0.4, where the maximum steady

state amplitude is decreased and the dynamic
chaos is increased. fig. 8-c, illustrates the case

where % =0(0.8, where the oscillations have

become unsymmetrical, but still periodic and
tuned with increasing chaos. The steady state
amplitude is reduced to a value of about 80% of
that shown in fig. 1. Itis clear from fig. 8 that
the maximum steady state amplitude is a
monotonic decreasing function in € and the
dynamic chaos is a monotonic increasing

function in £ even at the primary resonance
condition 2} = w.

5.6.2. Incident resonance (Q ~ Ql ~O)

The results of incident resonance are shown
in fig. 9 for different sets of frequencies. fig.9-a

shows the case when w=Q=0Q, =05 1Itis

clear from the figure that the dynamic chaos are
decreased, but the maximum steady state
amplitude has increased to about 175% ofits
corresponding values shown in fig. 1.

For Q=Q;=w=1.5 shown in fig. 9-b, the
maximum steady state amplitude is increased
to about 80% of the value shown in fig. 1 with
noticeable multi-valued amplitudes. When the
frequencies increased to 2.0, the maximum
steady state amplitude is increased to about
42% of the corresponding value shown in fig. 1
and the dynamic chaos are reduced as shown in
fig. 9-c. fig. 9-d shows the case when
Q=Q,=w=25, where all amplitudes of
oscillation are positive and the equilibrium
position is shifted positively. The maximum
steady state amplitude of oscillations is reduced
to about 70% of its original value shown in fig.
1. The maximum steady state amplitude is
tuned with some chaos. The main results for
this case of resonance are; first as frequencies
are increased the maximum steady state
amplitude is decreased. Second, the dynamic
chaos is also decreased as the frequencies are
increased. Third, equilibrium position is shitted
positively. It is worth to go back to eq. (2), where
for this case the excitation force is

& f cos(Q1) + 3 g[1+cos(2Q0)],

which means that the excitation force consists
of three components [¢ f cos(27)] and its
second harmonic [%j? cos(2Q21¢ )] and a

constant excitation force equal to %E which is

thought to be responsible for this positive shift
of the equilibrium position of the system.
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Fig. 8. Primary resonance O: = o (a) £ =0.04, (b)9 =0.04, (0)9 =0.08.
® © @

5.6.3. Sus-harmnic and super-harmonic
resonance
Too many cases of sub-harmonic and super-
harmonic resonance are shown in Appendix.
Some of these cases are investigated
numerically. Each case will be discussed.

5.6.3-1 Qz% . fig. 10 shows two different

cases. Fig. 10-a shows the case when (2 is
i
reduced to T , where the maximum steady state
amplitude is increased to 135% of its
corresponding value shown in fig. 1. fig. 10-b
shows the case when @ is increased to 4(),
where the maximum steady state amplitude is
reduced to 10% of its original value shown in
fiz. 1, keeping the nature of oscillations, i.e.,
two frequencies for the carrier and the
modulation. Of course, practically we will

. 56.3.2. =20,

consider the first case shown in fig. 10-a as this
case in the most probable to occur with the
system rather than changing the stiffness of the

system to make () ~ -“% .
Here, keeping the system

stiffness constant, we let Q=2 . As Q is
increased, the maximum steady state amplitude
is decreased to about 50% of its comparable
value shown in fig. 1 and the system chaos are
increased producing tuned oscillations. Fig. 11
shows the results for this case.

56.3-2 Q~ %w .

Fig. 12. The maximum steady state amplitude is
similar to the comparable value shown in fig. 1,
but the type of oscillations is changed to a
chaotic tuned one.

This case is shown in
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MJM qumr.t!mm“ il
< Ay
1 ﬁ ffthit

mechanical system subjected to harmonically
modulated excitation is considered. This type of
problems is found in machines and structures
subjected to time-dependent excitation force
such as the unbalance rotating machinery. The
second order non-linear differential equation
describing such system with quadratic, cubic,
and quartic non-linearities is solved applying
the multiple time scale perturbation technique,
up to and including the third order
approximation. Due to the presence of three
frequencies in the equation, over SO resonance
cases are obtained. They are primary, sub-
harmonic, super-harmonic and many

Alexandria Engineering Journal, Vol. 40, No. 2, March 2001

combination resonance cases. Some of these
resonance cases are investigated. The effects of
all equation parameters on both system
response and chaos are studied numerically.
System response is composed of two main
waves. First is the carrier and the second is the
modulation. All possible cases are considered,
i.e., both high and low modulated frequencies.
From the above comprehensive study; the
following may be concluded:

1. When the damping coefficient 47 is

increased, the maximum steady amplitude
and dynamic chaos are decreased. Negative
damping coefficient increases the maximum
steady state and chaos dramatically and
may lead the system to instability. This
means leading the structure or the machine
to catastrophe failure.

2. Increasing the non-linear parameters

0,03, and @y decreases the steady state

amplitude but do not change the nature of
the oscillations.

3. The steady state amplitude is directly
proportional to the excitation amplitudes.
Large values of the excitation amplitude

increase system dynamic chaos.

4. For the excitation frequency {2 and Ql,

away from the resonance cases, the steady
state amplitude is a monotonic decreasing

function in {2 and €2, . The dynamic chaos
of the system is a monotonic increasing
function in 2 and €2, .

5. When Q issmall compared to 2| or Q,

is small compared to {2, then the carrier
frequency is the smallest of them, i.e.,

either () or ()] respectively. When they
are approximately of the same order, the
carrier frequency is the difference | Q- Qll

and the modulation is (2 +0)).

(9%}
—
W
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6. If Q=Q,, then the system response is maximum  steady state amplitude s
decreased and the dynamic chaos are

chaotic one with maximum steady state
amplitude is increased compared to the 8
basic non-resonance case shown in fig. 1. ]

increased.
Comparison with the given results in the
references we find that for the combination

7. For the incident resonance )~ ~ @ resonances for two modulated and not
as all frequencies are increased, the modulated excitations
Appendix A '
| G3eBieTo) 5 ia,Gre®@T0) | i(Q-Q))a,g2e (-2DT0)
U =-3 7 +26| -5 2 “ie 242, 2 2.2
® w 8 (0?-(Q-Q)*)* (0?-4(Q-Q))*)
1 Q40 )ayg?eH(HaT0) 1 i(@+Q-0))ayg el (TIEDT0)
8 (0?2 -(Q+Q)H)? (02 -4Q+9))*)? 2 (0 -(Q-2))*)(Q-0))’ Ro+(Q-Q,))*
i i(@+(Q+Q) )ayg (@A) : i Qayg e®9T0) L i f U870
2 (0% -+ (Q+Q)? Qu+(Q+02)? 2 (@ -(Q+Q2)))@?-40%)? 2 (0?-Q)?)?
N 1_(_Q_Ql)2é-ge(i(Q-Ql)To) +l(Q+Ql)2§ge(i(Q+gl)T0) __I_G4e(4i“’T°) _i,-(;(;'e(bwTo)
2 - @-@-anhHt 2 (-0 15 2 3 ©
% G2g? e@i(@rA-QTo) : g2a, 39+ UT0)

8 (2 -(Q-2))% (0+2(2-9))) G +2(Q2-Q,)) T8 (p? - Q+QH (@2 -4Q2) (0? -(302+0))?)

| Gg3 e(2i(a.)+3(Q—Q|))To) I g4 el1(4Q2-2Q1)Tp)

g v + -
B (02-(Q-0)H2Q-Q)Rw+3(Q-Q)) 4 (02 -(Q2-9))?) (0 -(Q+Q))?)(w? -(40-20,)?)

G3 g e(1B@HQ-Q)T)) I g eiI(@-aTo) | iQ el

+__
(@ -(Q-01)*)? Qo+(Q-Q)) 40+(Q-Q))) 25 (0?* Q-0 (@2 -16(Q2-2))?) 2 (w?-0)*)?

4 o (i(4Q+2Q1)Tp) 4 _(4iQTgy)
+L g A g'e
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= l GZgZe(Zi(a)+Q)T0) B }_ GZgZe(2i(w+(Q+Ql)T0)
4 (@2 -(Q-0)H)(@ - (Q+0))?) (@+2(30+2Q) 8 (02 —(Q+Q))?)? (0 +2(2+Q))) Bw+2(Q+Q)))
- _3, GZg2e(21'(w+(Q+Ql )Tg)
8 (02 —(Q+0))?)? (@+2(Q+0)) B +2(Q2+€)))

G g3eli(@+30+Q1)To)

-y
16 (02 -(Q-Q)) ) (@? -(Q2+0)))? BQ+Q) ) 2w +3Q+Q))

| g4e(4"(Q+Ql )Ty) (3¢ G0+ QDT0)

256 (02 -(Q-0Q,)?)* (02 -16(Q+Q . (@2 —(Q+0Q))?) 20+HQ-Q)) (40+ Q- )

314 Alexandria Engineering Journal, Vol. 40, No. 2, March 2001




M. Eissa, H. M. Abdelhafez / Resonance of non-linear systems

G geli(@+30-a1)T0) 3 g iG@+A+Q1T0)

] L
16 (0% —(Q-0)?)? (0?~(Q+Q)?) 30-Q)) 20 +3Q2-Q)) (0% ~(Q+02))%) Qo+(Q-Q))) (4o+(Q2-)))
G gleli@+3(Q+Q))T0) G g (@ +2)Tg)

sl -
48 (02 -(Q+Q))?)? (Q+Q)) Qu+3(Q+Q)) 32 (@ ~(2+9Q)?) (0% ~(Q+Q))?) Q(0+Q)

3 ng e(i(@+2Q)T0) Ll 3 SI(3Q2+Q1)Tg)
32 (0?2 -(Q+9))?) (@? -(Q+0)) ) QU +Q) 64 (@2 -(Q2-9y)? )(w —(Q+Q,)*)% (0?-(302+2)%)
3 Gg 2,(((@+2(Q+Q1 )To) ad Gg 2 Bi(Q+Q)T0)

—a(a) -(Q+Q)H)? (Q+Q)) (0 +HQ+Q))) Toa (@2 =(Q+0Q))?) (0?-9(Q+Q))?)

Gg (1(2a)+(Q+Ql))T0) {18 G2 eli(20+(2-Q1)T0)

T4 (2 -(Q+Q,)? )(w+Q+Ql)(3w+(Q+Ql)) T4 (0% (-0 )@+ ) B +HQ—€)))

3Q-Q1)7 3 _(Bi(Q-Q)T
3 gz (i(3Q2-21)7Ty) il P PRE S D7)

+
64 (o2 —(Q- Ql) 12 (0% —(Q+Q))? ) (@*-(32-€2)%) Tea (@2 -(Q+02))*)} (@?-9(Q2-Q )?)
Bi(Q-Q1)Tp) (,gz e (@+2(Q=-Q1)T0)

1 gle 3
+ -—_ -—i
64 (02 -(Q+Q?)} (0% -9(Q-9))%) 4 (0?1 -(2-91)*)? (Q-Q)) (@ +(Q-Q)))
| G3a2 e(Bia)T()) 1 (}'azg e(i(2w+(Q+Ql)T0)

24 ot 2 (0% -(Q+2))H)(Q+9)) Q+(Q+2) ) (@+(Q+2)) Bo+(Q+Q,))
iG'(0+HQ-)arg lil@+(Q2-Q1)T0) 3 ng (i +(Q-Q1)T0)

(@2 -(Q-Q)H(Q-Q)? Qu+(Q-2)? 4 (0*=(Q-0))* N w+(Q-Q))) Bo+(Q-£)))
(i(@+2(Q2-Q1)T) (1(2Q-9)Ty)

1

2

L glaje b g glaze
32 (0% -(Q-0))2(Q-0))? Qu+Q-2)(@-(Q-Q;) 8 (0?-(Q-Q)%) (0% -0%)(0? -(20-0,)?)

1 g3a2 e B1(Q-Q1)Ty) N (';2ga2 2w+ Q-2)Ty)
64 (0?1 -(2-0?) (@2 -4 Q-9 (@?-9Q-0))Y) 12 (@2 -(Q-Q))H) 20 (0+(Q-Q)) Bw+(Q-Q))
| l(]é«ge(l(a)-i’(ﬁ QTo) l Ga .8 e(I(tzH-Z(Q Q1)7Ty)
2 (02 -(Q-Q))? 2+ Q-0))) Tee (@2 == (@2 -4(Q-Q)) ) (Q-Q)) (0 —(2-; )
1 igg(Q-Ql)e(ZI(Q Q1)7p) E Gazge(i(zw"’(g'nl)TO)
8 (02-(2-0))? 0?2-4(Q-0)H) 2 (0% -(Q-9))*)(Q-Q)) (@+(2-Q))) Qo +(Q-Q; ) Bw+(Q2-Q,; )
1 i¢ g2 (Q-Q;)e 0 I i¢ g% (Q+Qy)e® )

8 (02 —(-0?)? (@2 -(Q+0)2) (@2 —402) 8 (02 ~(Q-Q)2) (@ ~(Q+Q) )2 ) (0% -402%)

3 o(i(32-01)70) : iG ¢ g el@HRaDTo)

_1 @28

*4 (0? - - (0 ~(Q+Q)?) (@* -4(Q-0)) (@2 -Ga-0)T) 2 (@ -(Q+Q2)*)? Qw+(Q+Q))
_1 ayg® ot OR=RIR) L1 igRe@rqy)e@ )

¥ w? - Q- =(Q+Q)) ) (02 =407 (02 -(30-0))?) B (0 =(Q+Q))? ) (@’ -40+0))?)

Alexandria Engineering Journal, Vol. 40, No. 2, March 2001 315



M. Eissa, H. M. Abdelhafez / Resonance of non-linear systems

¥ Gzazge(i(2w+(£2+1‘21)T0) +.L gfe(i(ZQ+Ql)T0)
12 7l ORI 8, 2 TS e e g
(@ =(Q2+Q) ) o (@+(Q2+£€2))) Cw+(Q2+)) (0% -(Q+Q) ) (@ -Q%) (@ -4(2+Q))°)
ol a2g2 e (@+2(Q+Q))Tp) 3 1 Gga, e Bilw+22)To)
32 (0% -(Q-01)?) (Q+0)? (@+(Q+Q)) Qe +(Q+Q;)) 8 (@2 -(Q+Q))*)(@? -40%)Q(w+0)’
1 Ga2g2 e(i((u+2(Q+Ql)T0) | Gfe(i(w"-Q)TO)

48 (0?2 -Q+Q)H)? (Q+0Q)) (0* -4(Q+Q) ) (@+(Q+Q)) 2 (@2 -01)Q2w+Q)
L g3a2 e Gi(Q+Q)T)) 1 iG(+Q+Q) g an (@ H(Q+0))Ty)
64 (02 -(Q+Q))} (02 -4(Q+Q2))H) (@2 -9Q+Q)? 2 (@2 -(Q+Q))*)(Q+Q))? Qu+(Q+0Q,) )’
a2g3 (I(3Q+Q)Tp)

.
04 (02 -(Q-0)H) (@2 -(Q+Q))*)? (0% -4(Q+0Q))?) (@ -(3Q+Q))?)
2 o (i(@+2Q)Tp)

a8
32 (02 -(Q-0))?) (0?2 -(Q+02)*) (Q-)) o +(Q-Q) ) Q(@+Q)
] 'a2g2 e(i(a)+ZQ)T0) =
32 (02— (-0 (@? -(Q+Q))H) (Q+Q)) Qo +(Q+Q; ) Q (@ +2) )
Appendix B
Resonance conditions
Primary resonance
Q1 =0
Secondary resonance

Trivial resonance o=0,0=0
Sub-harmonic resonance Q=0
Super-harmonic resonance 1 1 1 3

Q=t—0, Q=t—0, Q=t—0, D=t—0 ‘

2 3 4 2 |

Combined resonance 1

Q*Q =-2o, Q+0: =:t—(0, 2001 =t o,

3
Q* 0 =-3o, 1 1
gt =t=—0, 20+ O, .'.tEO),
Q0 =4, ;
' R 315(‘)' 30U =-2w,

Q+0 =i-l—m,
2

2
ara =txt—o, 1
3 30+ =ItE(D

External resonance Q=+0Q,
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