OWARD MINIMAL PLA IMPLEMENTATION OF FINITE STATE MACHINES

Layla Abou-Hadeed

Department of Computer Science and Automatic Control, Faculty of Engineering,

Alexandria University, Alexandria-21544, Egypt

ABSTRACT

This paper considers the state assignment problem of finite state
machines (FSMs) implemented using programmable logic arrays (PLAs).
Our goal is to reduce the required area of PLA by reducing the number
of columns. Rosenkrantz [1] proposed state assignments that make the
logic functions unate in state variables. The proposal depends only on
the number of states -defined by the FSM- not its transition table. This
paper shows that taking the transition table of the machine into
consideration may lead to the unateness of the input variables which
leads to further reduction in number of columns. The paper also shows
that relaxing the constraint on unateness in some state variables may

Keywords: PLA,

INTRODUCTION
. programmable Logic Array (PLA) is a
digital integrated circuit that can realize
iltiple-output function. To realize m-
tput function of n variables, a PLA ofn
puts and m outputs is required. A PLA
nsists of AND array to realize the selected
oduct terms and OR array to realize the
quired function [2]. This type of PLA, called
o-level PLA, is widely used in the
mthesis of combinational and sequential
rcuits due to its simplicity, flexibility and
gularity [3,4]. The PLA area is proportional
the product of the number of columns and
e number of rows. The rows represent the
terms required to realize the
and output functions. The
] s represent the input, state and
itput variables as follows: the AND plane
as two columns for each input and state
riables and the OR plane has one column
~f each output and state variable. The
crease of PLA area results in reduction in
reuit yield, degradation of time (speed)[5],
id causes a problem in power [4]. PLA area
n be reduced either by finding other
olution -for the multiple-output function-

] ult_\' of Engineering. Alexandria Universitv-Egypt AEJ 1999

Finite-state
assignment problem

lexandria Engineering Journal. Vol. 38. No. 6. B213-B218. November 1999

also lead to reduction in number of columns.

machine, Unate function, State-

that results in minimal area or by PLA
folding (topological minimization) [4].

This paper considers the state
assignment problem of FSMs implemented
using PLAs. The state assignment problem of
FSMs has been widely studied [1,6-8]. Itis
required to find a state encoding for a state
table description such that the resulting
circuit representing the machine has a
minimum area. For an implementation with
PLA, minimizing area is obtained by
decreasing the number of rows (and/or) the
number of columns. Many researches aimed
at minimizing the number of rows by
minimizing the number of product terms as
in References 7 and 10. Finding a state
assignment for a machine that reduces
number of columns may lead to a reduction
of PLA area depending on the changes of
number of rows (number of rows depends
also on the state assignments). Rosenkrantz
[1] proposed choosing assignments that
ensures the unateness of the functions in
the state variables. This can be realized by
selecting assignments that have no relation.
This proposal, although may lead to increase
in the number of state variables, but it may
reduce the total number of columns. This is

B 213

ABOU-HADEED

‘pecause only one column (not two columns)
is required for each state variable in the AND
plane. The disadvantage of this method is

that n state variables are required to realize :

machines with "¢, ,» States. In this paper,

we show that using the transition table of
the machine may lead to reduction -in
number of columns- better than that of
Reference 1. The idea is based on trying to
find an assignment that makes the function
unate in input variable (if possible). The
paper also shows that by relaxing the
constraint(s] of unateness in some state
variables may lead to designs with less
number of columns.

The rest of the paper is organized as
follows: the next section introduces some
notations and definitions. Then we present
the proposed approach, followed by the
introduction of an example. The last section
is for the conclusion.

SOME NOTATIONS AND DEFINITIONS
Let & denote a function that maps a
present state and input into next state. For
example, consider a machine that is
currently at state si. If the next state, under

input ii. is sz thend (s1,1i1)=s2 .

e Let the abbreviation A(s) denote the
assignment of a state si.

e The weight of assignment is the number
of 1's in this assignment.

o Let A(si) sA(s)) denote that each bit of A(si)
is less than or equal to the corresponding
bit of A(sj). =

e Let o/p(si) <o/p(sj) denote that the output
when the current state iss; isless than
or equal to the output when the current
state is sj for all values of input variable.

e Let S denote the set of all states of a FSM.

e "<"-graph: it is a directed graph of nodes

and edges where the nodes represent the
states of the FSM and an edge from state
si to s represents the condition A(si)

<A(sj). The “<”-relation is transitive, i.e. if

the condition A(si) <A(sj) exists, then
there must exist some path (consists of
one edge or more) from node si to node s;.

e Degree of FSM: it is the number of states
of the machine.

B214

Alexandria Engineering Journal, Vol. 38, No. 6, November 1999

THE PROPOSED APPROACH

Our proposed approach allows u
assignments that may have relation in
form of "<" to enlarge the degree of
machines that can be realized using n s
variables. The transition table is stud1
extract the relation between st
assignments that must be satisfied to ensi
unateness in input variables (if possible)
in (all/some of) state variables. We
consider machines with one inputva
and one output variable.

Unateness in Input Variables
In contrast to the state variables,

functions may/may not be unate in inpu

variables depending on the specification o

the machine. The unateness in inpu

variable I can be realized if the following
conditions are satisfied:

e If there exists a state si Where th
outputs under inputs =0 and I=1 are
and 1 (1 and O) respectively, then the
does not exist a state sj whose outpu
under inputs 1=0 and I=1 are 1 and0
and 1) respectively.

the following condition:
e A(3(si,I=0)) <A(3(si,I=1)) V si e S |
A(3(s1,I=1)) <A(d(si,I=0)) V si € S.

be trivially proved from the definition
unateness of a function[9].]
e If some conditions -relating :to
input variable- contradict others {
example A(si)<A(s) and A(sj)<A(si)), tt
there exists no assignment that leads
unateness in that variable and
conditions relating to that input va ic
are omitted.

Unateness in State Variables
The state assignments -in addition
satisfy the conditions imposed by in
variables- are required to satisfy so
conditions .to ensure that the logic functio;
are unate in state variables. ‘
To ensure the unateness in state variable
the following conditions must be satisfied:
e if o/p(si) <o/p(sj) , then A(si) <A(sj).
o if A(si) <A(s)) then A(3(si,])) < A(3(s;.]).

has to be noted that the second
condition must be applied recursively
until no new condition is added. A “<”-
graph can represent the relations that
must be satisfied to ensure unateness in
state variables and (if possible) in input
variables.

conditions for unateness in both state
ables and input variables lead to one of
e cases:

There exists an assignment that

atisfies these conditions without
acrease in the number of state variables.
ome conditions contradict others (for

xample A(si)<A(sj) and A(sj)<A(si)), in this
ise, one or both of them must be
laxed. This leads to state assignments
id functions that are not unate in some
riables.

has to be noted that relaxing the
ion of unateness in input and state
les may lead to better solutions as the
ng theorem states.

1

" FSM with n state-variables -
gented using PLA- that is unate in n-1
es has less number of columns than
1- state variable that are unate in all

e n-state-variables case, the PLA

n-1 columns for the unate

s, in addition to two columns for the

riable. i.e. n+1 columns are required

ut. Also, n columns are required to

te state variables. Consequently, 2n+1

mns are required.

For the n+tl-state-variables case, the
responding PLA requires n+1 columns for
ut and n+1 columns for output, giving a
al of 2n+2; i.e. making the function not
ate in some variables may be better than
asing the number of state variables to
the function unate in all state
ibles.

Jrawing “<”-graph that relates the

tates of the machine according to the

nditions may indicate the existence of

Towards Minimal PLA, Implementation of Finite State Machines

a path that can not be satisfied with the
-current number of state variables as the
. following theorem states:

Theorem2

Consider a ‘"<"-graph as mentioned
above. To get a suitable state assignment
that satisfies the conditions represented in
the graph, it is necessary that the length of
the maximum path of the graph (in terms of
number of edges) is less than or equal to the
number of state variables. e

Proof
The proof is based on the fact that the

maximum possible assignments that can be

linked in one path is n+l1 (for n state
variables) . These n+1 assignments are the
assignments that have the following weights

0,1,...n such that the hamming distance

between assignments of weights k and k+1 is

1 for O<k<n.

In this case, we have the possibility of
either increasing the number of state
variables or relaxing the constraints of
unateness in some variables.

Example of such a path: A(ss)<A(s4) ,
Afsa)<A(ss), A(ss)<A(s2) and A(s2)<A(s)).

No assignment of three variables can
satisfy these conditions. This is because
000 must be assigned to s, 001 to sz, 011
to s3 and 111 to s+. No assignment can be
found for ss such that A(ss)<A(ss) and
A(ss)<A(s4).

The proposed steps for choosing the state
assignment:

1- For the input I, find the conditions that
guarantee the unateness of the functions
inl

2- i some condition(s) contradicts other(s),
then omit all conditions.

3- Find the conditions that guarantee the
unateness of output function in state
variables.

4- For the conditions resulting from step 1
and 3, apply the following condition
recursively:

if A(si) <A(sj) then A(3(si,I)) < A(3(s;,I)) v I.
S5- Draw the “<”-graph for the resulting

conditions.

Alexandria Engineering Journal, Vol. 38, No. 8, November 1999 B 213

o [t has to be noted that the second
condition must be applied recursively
until no new condition is added. A “<”-
graph can represent the relations that
must be satisfied to ensure unateness in
- state variables and (if possible) in input

'he conditions for unateness in both state

bles and input variables lead to one of

ee cases:

exists an assignment that
these conditions without

e, onne or both of them must be
relaxed. This leads to state assignments

. FSM with n state-variables -
'mented using PLA- that is unate in n-1
oles has less number of columns than
- state variable that are unate in all
les.

r the n-state-variables case, the PLA
8 n-1 columns for the unate
in addition to two columns for the
riable. i.e. n+1 columns are required
ut. Also, n columns are required to
e state variables. Consequently, 2n+1
s are required.

the n+l-state-variables case, the
onding PLA requires n+1 columns for
nd n+l columns for output, giving a
2n+2; i.e. making the function not
some variables may be better than
the number of state variables to
he function unate in all state

ing “<”-graph that relates the
s of the machine according to the
tions may indicate the existence of

Towards Minimal PLA, Implementation of Finite State Machines

a path that can not be satisfied with the
-current number of state variables as the
- following theorem states:

Theorem?2

Consider a ‘"<"-graph as mentioned
above. To get a 'suitable state assignment
that satisfies the conditions represented in
the graph, it is necessary that the length of
the maximum path of the graph (in terms of
number of edges) is less than or equal to the
number of state variables. ¥

Proof
The proof is based on the fact that the

maximum possible assignments that can be

linked in one path is n+l (for n state
variables) . These n+1 assignments are the
assignments that have the following weights

0,1,...n such that the hamming distance

between assignments of weights k and k+1 is

1 for O<k<n.

In this case, we have the possibility of
either increasing the number of state
variables or relaxing the constraints of
unateness in some variables.

Example of such a path: A(ss)<A(s4) ,
Afss)<A(ss), A(ss)<A(s2) and A(s2)<A(s1).

No assignment of three variables can
satisfy these conditions. This is because
000 must be assigned to s, 001 to sz, 011
to s3 and 111 to s« No assignment can be
found for ss such that A(s3)<A(ss) and
A(ss)<A(s4).

The proposed steps for choosing the state
assignment:

1- For the input I, find the conditions that
guarantee the unateness of the functions
in L

2- If some condition(s) contradicts other(s),
then omit all conditions.

3- Find the conditions that guarantee the
unateness of output function in state
variables.

4- For the conditions resulting from step 1
and 3, apply the following condition
recursively:
if A(si) <A(sj) then A(3(si,I)) < A(3(sj,1)) V I.

5- Draw the “<”-graph for the resulting
conditions.

Alexandria Engineering Journal, Vol. 38, No. 8, November 1999 B 213

ABOU-HADEED

6- Find a suitable assignment that satisfies
all the conditions.

7- If no such assignment, either relax some
condition or increase the number of state

variables and then find a suitable
assignment.

EXAMPLE
I=0 I=1

With respect to the input variable, the

assignments can lead to unateness in
variable [if the following conditions are
satisfied

A(s1)<A(s2), A(s1)<A(sa3), A(s1)<A(s4),

A(ss)<A(s4), and A(sas)<A(s4).

So, if we find an assignment that satisfies
the previous conditions, then the logic to
compute the output and next state will be
unate in [.

With respect to state variables: the
output function imposes the following
conditions A(s1)<A(ss), A(sz)<A(sa), A{ss)<A(s4),

and A(s3)<A(ss). Considering these conditions’

in additions to the above conditions for
unateness in input variable leads to the
following conditions: A(s1)<A(s2), A(s2)<A(ss),

Also)<A(ss), A(s1)<A(ss), Alsi)<A(ss),
A(s2)<A(ss), Al(ss)<A(ss) , A(s1)<A(s¢),and
A(ss)<A(s4).
AND
x, ! 1 (o] 0 1
X3 Xs 0] (0] 1 1
I 1 0 0 0
X, X 0 1 0 0
X3 0 0 1 0
X1 1 1 0 0
i X, X, X,
B 216

M oow~ooo

w

The corresponding

“<”-graph is @
shown in what follows: :

2R ARL

No solutions of three state variables ,
satisfy the unateness in both input variah
and state variables. So, one have the choi
of either increasing the number of sta
variables to 4 or relaxing the constraint}
unateness in some variable(s). The fif
case will increase the number of colum
by 2 (one for input and one for output) ar
the other case will increase the number;
columns by 1 (for input to get
complement). So, the final solution .
preferred and the assignments are &
follows: s:=000, s2=001, s3=101,s4=111, ag
s5=110. The resulting functions are unal
in I, x1, x2 but not in x3. This leads|
number of columns=9 and" number |
rows=6 (shown in the following figure
which gives 54 units which is better
that of [1] (66 units).

The notation used in the figure 1s‘
follows: 1 ‘denotes connection and
denotes no connection.

OR

WX o ~o0o0 o0 —
-~ O O O = O
Q= = OO O O

Alexandria Engineering Journal, Vol. 38, No. 6, November 1999

CONCLUSION

This paper shows the possibility of
ding better assignment than the general
sighment proposed in Reference 1 by
nsidering the transition table of the
achine. The idea is to try to ensure the
nateness in input variables (if possible). It
also tries to relax the condition of unatenss
in some state variables if this can lead to
less number of columns. The paper also
discusses some guide lines that must be
considered to get suitable assignments, but
finding an efficient algorithm for such
searching problem is still an open point.

REFERENCES

D.J. Rosenkrantz, “Half-Hot State
Assignments for Finite State Machines”,
IEEE Trans. On Comp., Vol. 39, no. 5,
pp. 700-702, (1990).
C.H. Roth, “Fundamentals of Logic
Design”, 4th Edition West Publishing
Company, pp. 234, (1992).
M.J. Ciesielski and S. Yang, “PLADE: A
Two-Stage PLA Decomposition”, IEEE
Trans. On Computer-Aided Design of
Integrated Circuits and Systems, Vol.
11, No. 8, pp. 943-954, (1992).
C.Y. Liu and K.K. Saluja, "An Efficient
- Algorithm for Bipartite PLA Folding:
- [EEE Trans. on Computer-Aided Design
of Integrated Circuits and Systems, Vol.
= 12, No. 12, pp. 1839-1847, (1993).
- G.D. Hachtel, A.R. Newton and A.L.
~ Sangiovarrni-Vincentelli, "An Algorithm

for Optimal PLA Folding" IEEE Trans. on

Towards Minimal PLA, Implementation of Finite State Machines

Computer-Aided Design of Integrated
Circuits and Systems, Vol. CAD-1, No.
2, pp. 63-77, (1982).

6. I[.Pomeranz and K.T. Cheng, "STOIC
State Assignment Based on Output/
Input Functions"|lEEE Trans. on
Computer-Aided Design of Integrated

Circuits and Systems, Vol. 12, No. &,
pp- 1123-1131, (1993).

7. T.Villa and A. Sangiovanni-Vincentelli,
"NOVA: State Assignment of Finite State
Machines for Optimal Two-level Logic
Implementation”, IEEE Trans. on
Computer-Aided Design of Integrated
Circuits and Systems, Vol. 9, No. 9, pp.
905-924, (1990).

8. C.R. Mohan and P.P. Chakrabarti,
"Earth: Combined State Assignment of
PLA-Based FSM's Targeting Area and
Testability”, IEEE Trans. on Computer-
Aided Design of Integrated Circuits and
Systems, Vol. 15, No. 7, pp. 727-731,
(1996).

9. A.D. Friedman, "Logical Design of Digital
Systems", Pitman Publishing Limited,
pp. 148-149, (1975).

10. G. De Micheli, R. K. Brayton, and A.
Sangiovanni-Vincentelli, "Optimal State
Assignment for Finite State Machines",
IEEE Trans. on Computer-Aided Design
of Integrated Circuits and Systems, Vol.
CAD-4, No. 3, pp. 269-284, (1985).

Received October 27. 1998
Accepted September 18. 1999

Alexandria Engineering Journal, Vol. 38, No. 6, November 1999 B 21

ABOU-HADEED
A) AL A Ky ool Y3 g YD S Bl 58 2

. ane }.‘i s

3 a1 daels - Y1 Sl g Apnladl SV 08

gl AL ddlie S phas plisiwly dadl OB 30 5 YW= B aaf ¢ g ge ol A
e sl o BBy Besl sus e o3y dsusiend) B gaacll gl dld) dd p ond) LA
SN s de Tl demm 1 S g A Ol s 3 agsli agdladl J)gudl Jar Jo desws A1 a-an
A el JuEs) J g M

O pies 3 Agalo-{ adladl J1 gt Jeor Oy Jan 3 oS8 WL ol JUsY Jgur dos phas &l Coudl g
i b o o o2l O LIS Coudl (WS Ahestl sue 3 ST adf Doy s Magg
FRVS WO B S (BVT VIO IR TS S8 W Ol

B 218 Alexandria Engineering Journal, Vol. 38, No. 6, November 1999

