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ABSTRACT

A Fuzzy Logic approach to the design of adaptive algorithms is
presented. The proposed scheme easily combines the benefits of
several adaptive algorithms into one algorithm. This is achieved by
soft transition among different algorithms based on local context. A
function is defined to map the input space into a normalized
consistency domain. A fuzzy measure of the local signal properties is
obtained using membership functions defined on the consistency
universe of discourse. To increase the algorithm decision capability,
a procedure for on-line tuning of the membership functions is
provided. The proposed technique is applied to the design of a class
of 'mixed-norm stochastic gradient adaptive algorithms. This
combines the required advantage of each algorithm into one
algorithm. The benefits of the Least absolute Difference (LAD) or (sign
algorithm (SA}), the Least Mean Square (LMS), and the least mean
Fourth (LMF) are utilized. The resultant algorithm provides more
accurate final solution, very low misadjustment, and high robustness
in the presence of impulsive noise. The performance of the proposed
algorithm is demonstrated in a system identification simulation.
Results show the superiority of the proposed fuzzy-based algorithm
in the presence of Gaussian and impulsive measurement noise.
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INTRODUCTION
je algorithms have found many
ations in the field of signal
g [1]. Many adaptation strategies
oposed in the literature based on the
tion of a specific error norm. Each
inherently possesses its advantages
Recently, mixed-norm
s were proposed to combine the
of two algorithms [1-2]. In Reference
obabilistic approach is used to
a mixing parameter of the two
Reference 2 proposed a
regularized approach aimed to
Least Square (LS) and the Least
deviation (LAD) (the sign algorithm
1 adaptive descent algorithm in the
Bayesian theory.
‘paper proposes a fuzzy-logic
to the design of mixed norms
algorithms. The proposed approach
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nonlinear, identification.

can actually be used for a variety of
applications. For example, soft transitions
among parallel algorithms, variable structure
algorithms or algorithms with different
window sizes. [llustrative examples are given
through the design of mixed-norm adaptive
algorithms.

The paper is organized as follows: the
next section describes a generalized mixed-
norm adaptive algorithm. The architecture of
a fuzzy rule-based system is given in the
following section. Next, a consistency
function is defined which gives a measure of
the desired signal properties. The definition
of fuzzy sets on the consistency universe of
discourse is also given, together illustrative
examples followed by the results. The
conclusions are presented at the end of the

paper.
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FILTER DESIGN
Traditionally, filter design is based on' the
minimization of a cost function of the form:
J=F(e) ' (1)
where e is the error between the filter output
and a certain desired input.
Let us comnsider the following combination of
error norms:

N
k)= 2 oifi(ex) (2)
i=1
where
files)y i = 1,2,3,..,Nare functions of the
error. EFach function reflects a desirable
action of the filter. For

example, fjlex) = E{ei) means that the filter

during convergence tries to minimize the
LMS error.

o, i=1,..,N

are in general, real positive scalars, called
mixing parameters, and should satmfy the
fo]lowmg two conditions:

Z e (3-a)
wigf0, 1]i=L.,N ... “(3-b)
The ﬁlter update equanon takes the form:

Wik+1)W(k)+aW(k+1) (4)

Where AW(k+1) =uVJ(k)
and VJ(k) is the gradient of Jfk)and can be
written as:

‘rls

vdk) = Vaifi(ek)

1=1

= > aiVijlek)
1=1
From (4) and (5),

zZ
9

N
Wk +1)=W(k)+p) a;Vfjey) (6)
, i=1
Therefore the filter response depends on the
gradient of fi(ex) and the mixing parameters

CL;.i =1,.., N
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The scalars o need to be carefully chos
which -is not an easy task. The choice of
mixing parameters depends on the proper
of currently input data to the filter. S
properties can not be sharply defined:
can be evaluated only vaguely. (e.g
specific data point near an outlier?, very n
?)

There are some strategies for calcula
the parameters o;. Reference 1 suggest
probability test at each point to deter:
one mixing parameter .. This metho
based on the probability that a data po
greater than a threshold level, which is a
unknown quantity.

However, fuzzy rule-based systemss
this problem easily and effectively
combining the consequent of the
Simply, we make soft decisions based
each condition, aggregate the dec
made, and finally make a decision base
the aggregation. This gives smoother
more effective result compared to a me
that makes hard decision at each point.

FUZZY RULE -BASED SYSTEM

Let us consider the filter update give
Equation 4. Define the rule base s
consisting of N-rules. The i rule is given

Rule®: If sk is A Then AW,;=H

note that A;is the linguistic value associ
with the lingustic variable sk (k is
sampling index)
e.g. A = “ the local data point is nea
outlier® :
and H; is the value of increment
calculated accordmg to the definition of
in Equation 2.

i.e. H= p Viley)

The total increment AW+, can be comp
from the output of the fuzzy rule-base as

-

S 2 AW

AWR_ 1 = lf_lﬁ____

2%
]

whereo, is replaced by t., which is the de
of satisfaction of the antecedent in th
rule.



CONSISTANCY FUNCTION

¢ procedure given in the previous
1 is used to design a class of mixed-
stochastic gradient adaptive algorithms
- system identification ~applications,
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in which the desired response is corrupted
with an additive impulses and Gaussian
noise. The system identification structure is
shown in Figure 1.

Impulse and/or
~Gaussian poise

Ik
Syvstem

System Input
Gaussian noise

Xk

» Unknown FIR Sysiéﬁl:

output

Vi

.

Adaptive
filter

v

Adaptive filter
algorithm

output
| E—

1 Figure 1, the adaptive filter has finite
lse response. The input xx is a zero-
n Gaussian noise, yx is the system
ut, & is an additive impulsive
surement noise, and dx is the adaptive
r algorithm desired input. Figure 2
strates part of the input signal to the
em and the desired signal with impulse

To get a measure of the property of the
ptive filter desired input dx, a consistency
ction C(dx) is defined. This function shows
w a certain data point dx is consistent with
2 previous data points. It also gives a
sure of how far is the data point from an
er. C(dyx) is defined such that:

b) : dg ~>[0]] (10)
1e possible choice is

£
; (11)

j' M
= .Z(dk —dg_i)? (12)

ndicator of the noise corruption of the data
oint dk. The smaller the value of the
unction C(dx) , the more likely the data point
s near an outlier

. Errore;

| Figure 1 Adaptive system’ identification problem

MEMBERSHIP FUNCTION
Theoretically, any number of fuzzy sets
can be defined on the consistency universe of
discourse. In this work the number of sets is
equal to the number of algorithms to be
mixed. The fuzzy sets representing “Very

small”’, “Small”’, “Medium’, ...... consistency
with corresponding membership functions
BvS s BS s WNE s wevssss can be used.

FUZZY FILTER ALGORITHM A

This filter algorithm underlies the LMS
and the SA algorithms. The filtering scheme
is based on the minimization of the cost
function:
Jlk) = arBfe} b+ a2E¢] ek |} (13)
Only two membership functions representing
“Small” and “Large” consistency are defined
on the C-domain, as shown in Figure 3-a.
The membership functions are chosen as
bell-shaped function defined by:

- B 25
wC)=1-e le-Cl (14)
where ¢ and P are scalars controlling the
center and width of the membership
function, respectively. Hence
B,25
-

us(C)=1-e (15)
HL =1-us
A suitable value of fis found to be 0.5.
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The system Input signal

Amplitude o
’ ........................ I . ]—Systemlnputxk ]

0 100 200 300 400 S00 600 700 800 900 1000 1100

Samples
(a) The identification system input signal xx, Gaussian noise with zero mean and variance 23

The Adaptive system Desired Input signal

Amplitude

[—Desired input (System output+Gaussian noise+impuise noise) 1

I
?
50}

-100

-150
0 100 200 300 400 500 600 700 800 900 1000 1100

Samples '
(b) Adaptive filter algorithm desired input dx, consists of the svstem output + Gaussian noise of variance 9 + Impulsiv
noise

Figure 2 System input and the noisyv adaptive filter algorithm desired input of the adaptive algorithm

The width of the membership function can It is worth mentioning that the on-li
be adapted according to the consistency of adjustment of the membership functions
the data points by setting changing the value of § according to equati

(16) highly improves the algori
B=Bo + 0.1C (16) response.
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Membership Function for algerithm A

2 r-----------s---m-- Membership Functions
—~Us —ut

Consistancy
(a) Two partitions

Figure 3

_j The LMS algorithm provides faster initial
onvergence, faster time variation, and
ccurate final solution, depending on the

onvergence factor A , in the absence of

npulse noise. i.e. when data points are far
m outlier or equivalently for “large”
onsistency. The SA possesses slow initial
onvergence, but is robust when the signal is
orrupted with impulse noise, i.e.
onsistency “Small”.

- The inclusion of the membership

Inctions ps and p; in the rule-base provides
fective soft mixing of the two algorithms.

he rule-base simply consists of two rules:

W . ¥ c is small AW, =H, (17)
If C is Large AW, =H, (18)

e total incremental AW is given by:

) QS(C*)H1+}_LL(C*)H2 (19)
#s(C)+ur C7)

ere

= sign(ey) x(k) (20)

=2y ey x(k) (21)

d  uc’)=t; the degree of satisfaction of
e number 1.

the degree of satisfaction of rule
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MEMBERSHIP FUNCTION For ALGORITHM B

Membership Functions
—Us —Um —U!

(b) Three partitions

Consistency versus membership function.

The filter update is given by:
Wics1 =W + W
N t Hl +toHo
)+t
Equation 22 minimizes the cost function
given by Equation 13 for:

P's(c )
us(C)+pp(C)

(22)

Ay =

up(C)

o = N *
us(C ) +pL(C)

Clearly o,
oy, a2 €[0,1]

and o> satisfies o, + o= 1, and

FILTER ALGORITHM B
This filter algorithm underlies the SA,
LMS and the LMF filtering algorithms. The
filtering scheme is based on the minimization
of the cost function:

J(k) = a1E{] ey |} + aoE{ef} + agEfe] } (23)

Three membership functions representing
“Small’”, “Medium” and “Large” consistency
are defined on the C-domain, as shown in
Figure 3-b.

The LMF algorithm has faster
convergence in the absence of impulse noise,
i.e. when data point is far from outlier or
equivalently for “Large” consistency. The
LMS possesses slower initial convergence as
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compared to the LMF algorithm, but is more
robust when the signal is corrupted with low
level impulse noise, i.e. consistency is
“Medium”. The SA possesses slow initial
convergence, but is robust when the signal is
corrupted with moderate and high level
impulse noise, i.e. consistency “Small”.

The rule-base simply consists of following
three rules:

RY . 1f C is Smal AW = Hy

R@ . If C is Medium AW, =H,

else

RG) . If C is Large AW3 =Hg (24)

The total incremental \W is given by:

szus(c*)ﬂljumc“)fiz +uL(§:*)H3 (25)
Rs(C ) +uM(C ) +pL(C )

where .

Hy=pp signiex)%(K) (26)

Hp =2up ey X(k) (27)

Hg =pg ep X(K) (28)

and pg(C')=t, is the degree of satisfaction of
rule number 1.

um(C)=t, is the degree of satisfaction
of rule number 2..

u(C)=t3 is the degree of satisfaction

of rule number 3..
The filter update is given by:

Wyt = Wi + AW .
tiH; +t3Hy +tgH3 (29)
) +ty +13

=W'k +

Equation 29 minimizes the cost function
given by Equation 23 for:

g SRIC (30)
ug(C ) +upm(C )+pL(C)
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o um(C)

2= * e *
1s(C7) +um(C)+u(C)

g o= u(C)

ps(C7) +um(CT) +uL(C)

Clearly o , oz and ag satisfies, o+ 0
= 1, and ay, 02 and a3 € [0,1]

RESULTS .

The performance of the fuzzy-logic b
algorithms A and B is demonstratedt
identification simulation problem as sh
in Figure 1. Adding impulse noise an
Gaussian noise to the system outpt
forms the desired input signal dk
unknown system is an FIR filter
coefficients [0.1, 0.2, 0.3, 0.4, 0.5, 0.4
0.2, 0.1]. The length of the sliding windc
9. In all simulation studies in this paper,
adaptation gains are chosen such f
algorithms are stable and the in
convergence rates of all algorithms
almost identical when no impulsive nois
present.

In order to evaluate the performanc
the different algorithms, the logarithm }
normalized weight error vector norm (W]
is used [1].

WEN =10 log (HW_ - Wik |,
WO

Graph of the WEN for algonthm A
shown in Figure 4 where the desired signa
corrupted only with Gaussian noise. Figur
indicates the convergence of filter A when |
desired signal is corrupted with bo
Gaussian and impulsive noise. Simi
graphs of filter algorithm B are shown
Figures 6 and 7. '

As shown from Figures 4 to 7 {
performance of the fuzzy based algorithn
outperforms, in the steady state error, t
individual SA, LMS, and LMF algorithms.
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" Algorithm A,weight-_ccmvergence, Gaussian nof$e

o 10log(weight error sum squarg@rgigrft sum gq_.)‘ o

y Weight Error Norm
—SA —LMS —FMN

-30
-40
-50 -
0 100 200 300 400 500 600 700 800 00 1000 1100
' ’ Pixels x 50
Figure 4 The weight error norm. Desired input corrupted by Gaussian noise of variance 9

Algorithm A weight convergence, Gaussian noise+ Impulse noise

o 10log(weight error sum square/weight sum sq.)

R T Weight Error Norms :
g --SA —LMS —FMN

0 100 200" 300 400 500 600 700 800 900 1000 1100
Pixels x 50

5 The weight error norm. Desired input corrupted by Gaussian noise of variance 9 + impulsive Noise
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Figure 7
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Algorithm B weight convergence, Gaussian noise

" 10log(weight error sum square/weight sum sq.)

y Weight Error Norms
—SA  --LMS —LMF

—FMN

-40
0 100 200 300 400 500 600 700 800 900 1000 1100
Pixels x 50
Figure 6 The weight error norm. Desired input corrupted by Gaussian noise of variance 9

Algorithm B weight convergence, Gaussian + Impuise noise

Weight Error Norms
—S8A —LMS —LMF
—FMN

0 100 200 300 400 500 600 700 800 900 1000 1100
Pixels x 250

The weight error norm. Desired input corrupted by Gaussian noise of variance 9 + impulsive Noise
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CONCLUSIOHNS

A systematic method to the design of
-log1c based adaptive algorithm, which
nimizes a generalized mixed norm cost
action, has been introduced. The potential
the proposed method is illustrated by
sig two fuzzy mixed-norm algorithms.
e proposed fuzzy-logic approach can
tually be used for a variety of applications.
r example soft transitions among parallel
yorithms, variable structure algorithms or
rithms with different window sizes.

' The performance has been demonstrated
system identification simulation problem.
sults clearly indicate that the FMN
gorithm converges to true parameters with
ry small steady state weight error in the
esence of Gaussian and impulsive noise.
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