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ABSTRACT

The nonlinear oscillations of a passively levitated vehicle, which is assumed to be moved in a vertical
direction and suspended by the magnetic repulsive force of a moving guideway, are analyzed
numerically and a computer program is developed. The objective of this paper is to point out the
effects of the nonlinearity of the magnetic lift force on the oscillations of the vehicle. The spring
. force is typical of an asymmetrical soft spring and the large amplitude free vibration resembles a
hopping motion. Harmonic vibration appears throughout the frequency range and % subharmonic
.. vibration occurs in the unstable region of the harmonic vibration when the exciting frequency is
; approximately twice the linear natural frequency For a suitable combination. of parameters
- (damping, exciting amplitude and exciting- frequency), many successive bifurcations of doubling
period as well as aperiodic vibrations are observed. The aperiodic vibration is identified as chaotic
vibration by applying the frequency spectrum, the Lyapunov exponent, the strange attractors and
the invariant mamfold inspections. .

Key words Magnetic Levitation, Simulation, Nonlinear Vibration, Chaos, Bifurcation, Harmonic Vibration,
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l INTRODUCTION

In the conventional study of random vibrations,
one usually assumes the existence of some random
input, either in the applied external force or in the
parameters of the dynamical system [1]. In the last
few years, researchers in a number of different fields
have obtained solutions to deterministic differential
equations, through simulation, which exhibit
chaos-like random vibration. Chaotic dynamics in
deterministic systems has established itself as a new
. phenomenon in nonlinear vibrations.  Chaotic
vibrations can occur in systems when strong
nonlinearities exist such as rotor-ball bearing system
[2], synchronous periodic and chaotic systems [3], a
system having an asymmetrical spring [4] and
magnetic levitation system [5].

The phenomenon of magnetic levxtauon (Maglev)
has fascinated philosophers through thc ages.  In
recent time, it has attracted much attention from
. scientists and engineers as a2 mean of eliminating
'~ friction or physical contact. Although the area of
frictionless bearings is important, it is the apphcatxon
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of contactless suspension and levitation to
high-speed ground transportation. Regardless of the
method employed, the vehicles are described as
"Hover Trains" or "Maglev Train". There are many
experiments for preparation and operation of a
superfast Maglev train. ‘It will be able to fly along at
a maximum speed of 550 Km/hr, while levitated by
a magnetic force induced by magnets. Maglev train
does not float while starting up or slowing down, but.
uses tires in the same way as an airplane. A
schematic section of the Maglev vehicle and
guideway is shown in Figure (1) [6]. Recent
developments in fabricating permanent magnets
from high coercivity ferrite materials have once again
raised interest in the idea of using such magnets for
levitation' of vehicles. Polgreen in 1968 was the first
to propose an application in the form of a vehicle
[7].

In this paper, the developed computer program is
used to numerically examine the nonlinear
oscillations of the magnetically levitated vehicle.
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Figure 1. A schematic section of the magnetic
levitation vehicle and guideway [2].

The vehicle has many degrees of freedom.
Simplifying, the guideway is assumed to oscillate
sinusoidally in the vertical direction. For the
magnetically levited vehicle which can be moved
freely in the vertical direction, the mechanism of the
excitation is shown in the case when the guideway
is oscillated in the neighborhood of twice the natural
frequency of the oscillation [8]. Furthermore, various
oscillations have been noted to occur owing to the
periodic change of the lift force which acts on the
repulsive-type magnetically levitated vehicle moving
on a guideway. For suitable combination of
parameters (damping, exciting amplitude and
exciting frequency), many successive bifurcations of
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doubling period as well as aperiodic vibrations a
observed. The aperiodic vibration is identified
chaotic using diagnostic tools [9-12] as: phase plan
history, Fourier spectrum, Poincaré map:
Feigenbaum number, bifurcation diagrams an
Lyapunov exponents.

2. EQUATION OF MOTION

The dynamic behavior of the system is analyzed, in
which a vehicle moves with light damping under the
influence of a nonlinear spring force. The vehicle is
symmetrical, on which the magnetic lift force
symmetrically acts about the vertical axis in the
static equilibrium state. A dynamical model of the
levitated vehicle moving as a single- degree
-of-freedom system is presented in Figure (2). The
length of the magnet which is fixed on the guideway
is assumed to be sufficiently large compared with
the length of the magnet of the vehicle. The gap
length between the magnets of the vehicle and the
guideway is assumed z. These magnets repulse each
other with the same magnetic poles, and the
guideway is excited sinusoidally in the vertical
direction.
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Figure 2. Modelling of the system.

The system possesses a nonlinear unsymmetrical
spring function composed of a magnetic repulsion
under gravitational force. The magnetic force is
assumed to be proportional to the reciprocal of
square of pole gap length, which may be valid in
principle for non-active magnetic levitation. The
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nonlinearties is assumed to be arise only from the
magnetic lifting force and that the dissipative force
acting on the system is linear, the equation of
motion is

dx , dx _
m ¥+c-&-t— +F(z) =-mg (1)

where m is the mass of levitated vehicle, x is the
displacement of vehicle (vs. absolute frame), t is

- time, c is the linearized damping coefficient,

F (z) = - B/ (1 + Bz)® )

E
? is the magnetic repulsive force [13], B and B8 are

| constants (> 0),
Z=X-a,sin wt 3)
is the gap length between pole faces (> 0), a, and w
are the amplitude and frequency of the guideway
excitation respectively, and mg is the gravitational

force.

Upon the introduction of the nondimensional
quantities

= [x- (zo +a, sin Qt)] / _Xo’
0 = [wt - ta’n'1 (yl)lh, @)
in which; o

Y =c/mw,, u=ww,

z, = (VB/mg-1)/p, x,=y/B/mg/B, (5

where 7 is the nondimensional displacement, z is

the equilibrium gap length, 6 is the time scale, x is

. the equilibrium distance, 7 is the damping factor, u
18 the frequency ratio, and

2
2

0, =\ 2pg2/m/B; ©)
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is the asymptotic linear (z - z_), natural frequency,
equation (1) can be reduced to the following
nondimensional equation of motion

2
%9—2+Y%% +¢ (1) =Psinu® ©))
in which ;
1 1
m)==|1- (8
e 2[ (1+n)2]

P = au yu?+y?,

where ¢ (n) is the nonlinear spring function, P is the
exciting amplitude, and a is the nondimensional
amplitude.

a-aolxo

3. SPRING FUNCTION AND FREE
VIBRATION

The nonlinear spring function ¢(n) of the magnets
is

o(n)= [1-1/(1+9)?)/2= (1+4/2) /(1 + 0)*  (9)

where 7 is the nondimensional displacement. The
spring function is illustrated in Figure (3) (solid
line). It posses the property of strongly nonlinear
with unsymmetrical soft spring which has the unit
rigidity at the origin and is pounded in displacement
as well as in restoring force. The limits of the force
pattern ¢(5) for the displacement 7 as shown in
Figure (3) are

l<yp< oo, - < ¢ <1/2,
limﬂ_,_l+ o () =-00 +,
limn . () =05- (broken line), (10)

the slope at the origin ;

de(p/d 7)|,7 -o=1 (dotted line).
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Figure 3. Spring property.

Since nonlinear term is involved in equation (7), no
analytical method can be directly applied, but
numerical method is applied. A computer program
for solving the differential equation (7) is developed
using Runge-Kutta-Gill (RKG) method with
shooting technique [14] to capture a desired
subharmonic motion by iterating on the initial
conditions.

The equation of motion of the free vibration, i.e.
for y = 0 and P = 0 in equation (7), is

2
d'n 1 ], = ! =0 (11)
de* 2| (1+q)?

The computations of the free vibration were
carried out and the peak-to-peak amplitude
(PP-Amplitude) versus the frequency is plotted in
Figure (4). Frequency responses of amplitudes ;
Nmax.> MTmin.> Tmean’ Tmax. ~ Tmean and Mmin. ~ Tmean’
for the free vibration are also shown in Figure (4).
Wave forms for several amplitudes (Frequencies; u
= 0.669, 0.814, 0.917 and 0.970), are shown in Figure

(5).
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Figure 4. Frequency response of the free vibration
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Figure 5. Wave-form of the free vibration.

4. EXCITED STEADY VIBRATION:!
(HARMONIC AND SUBHARMONI(C
RESPONSES)

The numerical results of the PP-Amplitude as :
function of the frequency ratio u is plotted in Figure
(6) for combinations of the system parameters
damping factor (y = 0.1 and 0.2), and excitation force
nondimensional amplitude (a = 0.1 and 04). Ir
figure (6), the stable solutions are presented by solic
lines while the unstable solutions are shown bs
dotted lines. The small circles show the boundary
between the stable and unstable states. Associated
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numbers indicate the order of synchronization; "1"
for "harmonic response” and "1/2, 1/3, 1/4" for
*Subharmonic response". The response curves
‘corresponding to fractions of order greater than 4 and
those of the successive period doubling are omitted
for simplicity. Harmonic response converges to zero
for u = 0 and to 0.2 for u = oo. In the vicinity of
u~2 it loses the stability and the strong 1/2
subharmonic occurs exactly over the unstable
harmonic region.
The effects of varying the damping ratio; y = 0.1
and 0.2, where the exciting amplitude is held
- constant, are shown in Figure (6a,b) for a = 0.1,
“and in Figure (6¢,d) for a = 0.4. The effects of
varying the excitation amplitudes; a = 0.1 and 0.4,
where the damping ratio is held constant, are shown
in Figure (6b,d) for y = 0.1, and in Figure (6a,) for
y=0.2. The figure shows clearly that higher
damping suppresses the higher order subharmonic
responses. The subharmonics 1/2, 1/3, and 1/4 are
presented for the following combinations of the
damping factor and exciting amplitude; (y = 0.1,a =
0.1), (y = 0.2, a=0.4), and (y = 0.1, a = 0.4), in Figure
- (6b,c and d) respectively while the harmonic
response was observed in the previous combinations
in addition to (y = 0.2, a = 0.1), as shown in Figure
(6a) in which the subharmonic are not exists.

5. PERIOD DOUBLING AND BIFURCATIONS

When the frequency u is slowly changed, the
period-doubling starts from the boundary between
stablefunstable response curves and it bifurcates into
successive period-doubling. The period-doubling or
flip bifurcations did not occur in a narrow range of u.
The bifurcation diagram is shown in Figure (7),
which indicates the Poincaré points of displacement
e, 7 (ud = 27 x integer) vs. frequency u. The
damping factor =02 is constant and the
' nondimensional excitation amplitude a is gradually
increased, so that a = 0.12 ~ 0.40, while the
frequency is swept down from u = 3.0 to 1.0, except
for a = 0.40, also the frequency is swept up from
u=1.0 to 3.0 by step size 0.005.

Two types of period-doubling bifurcations are
observed. For the moderate level of excitation;
 a=0.12 ~ 0.36, a finite number of period-doubling
. bifurcations were found. For the high level of
excitation; a = 0.37 ~ 0.40, chaotic motions occurred
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through an infinite number of period-doubling
bifurcations. In figure, discrete lines corresponding
to a value of u imply the steady vibration (harmonic
and subharmonic), and random points to chaotic
motion.
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Figure 6. Frequency response of the steady
state vibration (harmonic/subharmonic
vibration).
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The response curves in the regions of u = 1.65 ~ case of ¥y = 0.2 and a = 0.4 are magnified in the
1.75, u = 1.80 ~ 1.85 and u = 1.700 ~ 1.710 for the three lower diagrams of Figure (7). A series of
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bifurcations is found such that a harmonic vibration
changes into subharmonics of order 1%, %, and 1/8
successively and so on. They occur in such a manner
that the subharmonic of order ¥ appear first in the
region of the unstable harmonic one, that of order %
next in the region where the % subharmonics turn
unstable, and that of order 1/8 appears where the
one of ¥4 becomes unstable, and so on.

Figure (8) shows the waveform/Lissajous-figure of
 the velocity/displacement in the bifurcation process.
- The figure shows that a harmonic response exists for
‘u = 1.2470, while for u = 1.2473, the 1/2
- subharmonic oscillation exists. As u increases, higher
order subharmonics; 1/2, 1/4 and 1/8 are observed.
When the frequency is swept down, a harmonic
oscillation exists for u =5 .0, while for u = 2.6560
the 1/2 subharmonic oscillation is observed. As u
- decreases, higher order subharmonics; 1/2, 1/4, and
1/8 will take place. Finally it reaches the chaotic
motion at the middle of the unstable zone according
to the fine change of the frequency from both
fringes of the zone towards the interior.

Frequency values which correspond to successive
bifurcations (see Table (1)), satisfy fairly well the
Feigenbaum relation

5 = L M 0%

i

(12)

b 02 B

where u,, is the transition frequency from 2"-period
solution to 2™*!-period solution. For further increase
of u, the period-two orbit becomes unstable and a
period-four cycle emerges only to bifurcate to a
period-eight cycle for a higher value of u. This
- period-doubling process continues until u approaches
the values u, = 3.56994 ...... Near this value, the
sequence of period-doubling parameter values scales
according to a precise law:

lim;_, o, & = 4.66920..

The limit ratio is called the "Feigenbaum number"
[15].

6. NONPERIODIC MOTION AND CHAOS

Chaotic motions are detected by direct numerical
integration and stability analysis in a narrow
frequency zone. The nonperiodic motion is
understood to be a chaos by applying diagnostic tools
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as: Fourier spectrum, Poincaré mapping and
Lyapunov exponents. One of the clues for detecting
chaotic vibrations is the appearance of a broad
spectrum of frequencies in the output when the
input is a single-frequency harmonic motion.
Examples of FFT analysis, are shown in Figure (9),
for the case of y = 0.2 and a= 0.4. In Figure (9) (a),
Fourier spectrum is shown for the case of chaotic
oscillation at the frequency u = 2.0. It exhibits
continuous spectra except at the frequency of the
harmonic excitation synchronized with the frequency
component and its higher multiple components
where line spectra are generated. The oscillation
may therefore be confirmed to be a nonstationary
oscillation composed of uncountable frequency
components.

On the other hand, spectra for the case u = 2.02
and 2.375 shown in Figures (9b) and (9c) , are
presumed to be nearly periodic oscillations. They are
composed of many discrete line spectra
corresponding with the frequency component of the
harmonic oscillation and its higher harmonics, and
many additional secondary components. The minor
appearance of continuous spectra is considered to be
due to noise, e.g., perhaps caused by unsuitable
window processing. The results show the oscillation
to be a nearly periodic oscillation which must
produce essentially discrete line spectra.

The Poincaré mapping in the phase plane
composed of displacement vs. velocity is shown in
Figure (10) for the case of y = 0.2 and a = 0.4, which
exhibits the chaotic attractor. The figure shows an
attractor for some frequencies u = 1.8, 1.9 and 2.0,
which corresponds to nonstationary oscillations. They
seem quite complicated, but the zone attractor is
seen in the vicinity of the unstable periodic solution,
and then they may be considered strange attractors
which represent characteristically the salient features
of the chaos. The invariant manifold also shows
evidence of the chaotic phenomena, i.e., the
existence of the homoclinic points.

The Lyapunov exponent, is computed and the
results are shown in Figure (11), which are
accompanied by some bifurcation diagrams (see
Figure (7)), for reference. One of the Laypunov
exponents is positive which verifies the existence of
chaotic motions. The spectrum of Lyapunov
exponents at u = 2.0 is 0.01, 0.0, -0.03. The
Lyapunov exponents test the sensitivity of the
system response to changes in the initial conditions.
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" Table 1. Feigenbaum number.

a| peried Na $ s

0 1 1.247253880 —

TR 1.570294086 —

i 1.809680488 | 3.250099
3| e 1.608843392 | 3.404603
T 1.705278847 | 4.538841
R 1.708658113 | 4.851293
(] 64 1.708855387 4.868617¢
1 1 1.707018851 | 4.668379
a]| period ua I RT]

8 1 7.656816458 e

7R 2.279690680 -—
i 2.195509235 | 4.479915
i e 2.177252909 | 4.61108¢
4 18 2.173182060 | 4.495882
5] a2 2172312120 | 4.814878
e o 2.172123085 | 4.854858
1| 1 2172082571 | 4.865018

Note: 3 . =(ui-vi-1)/{uyei=ui). where
ve:transition frequency froa 2*-period-
solution 1o 2*°'-period-solution

P The total vibratory characteristics of the system is

ummarized as a "chaos diagram" shown in Figure

12), which indicated the occurrence regions of

everal types of vibration including; harmonic,

ubharmonic and chaos, drawn in a parameter plane
f frequency and amplitude of the excitation,

l. CONCLUSIONS

Nonlinear oscillation of a dynamical system with
1 gle-degree-of-freedom, which contains nonlinear
nagnetic repulsive force between levitated vehicle
nd moving guideway, is analyzed using computer
imulation. From the numerical results the following
onclusions are drawn;

§. The spring function of the magnet possesses
. the property of strongly nonlinear with
unsymmetrical/soft  spring and the large
amplitude free vibration resembles a hopping
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motion.

2. Harmonic vibration appears at all the range of
frequency and the subharmonic vibration occurs
on the unstable region of harmonic vibration.

3. As the excitation amplitude increases higher
order subharmonic oscillations are observed.
One characteristic precursor to chaotic motion is
the appearance of subharmonic periodic
vibration.

4. Two types of period-doubling bifurcations route
to chaos were observed. For the moderate level
of excitation amplitude, a finite number of
period-doubling bifurcations were found, while
for the high level of excitation amplitude,
chaotic motions occurred through an infinite
number of period-doubling bifurcations.

5. As frequency ratio is changed, the system
bifurcates to periodic motions with twice the
period of the previous ' oscillation.. One
outstanding feature of this scenario is ‘that the
critical value 'of frequency ratio at which
successive period doubling occur obey the
"Feigenbaum numbC{", after which the motion
becomes chaotic.

6. Other diagnostic tools were used to identify
chaotic motions of the magnetically levitated
vehicle as; fast Fourier transform, Poincaré maps
and Lyapunov exponent.

7. Finally the total vibratory characteristics of the
system is summarized as a "Chaos Diagram",
which indicates the occurrence regions of several
types of vibration including chaos, drawn in a
parameter plane of frequency and amplitude of
the excitation.
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