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ABSTRACT =

Near field distribution and propagation constant of nonlinear single}-'modeuiptical fibers have been
investigated. The shooting method technique is used and implemented into a computer code for the
case of step index ‘and graded index fibers. Some reasonable and accurate approximations were made
to match the cylindrical geometry. An error function is defined to estimate the discrepancy between
the expected boundary values and the computed ones obtained by numerical integration through the
use of Runge-Kutta method. More accurate values are then depicted using the secant method. The
accuracy and convergence of the results have been considered by performing these methods in a
two-path iterative mannér. The effects of various guiding parameters and the nonlinear Kerr
coefficient on the modal field distribution and on the effective index are studied. Typical b-V curves
for both linear and nonlinear fibers are presented. The cutoff value of the normalized frequency is
investigated and approximate relations with the Kerr coefficient are deduced for both fiber types.
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I. INTRODUCTION

The attractiveness of lightwave communications is
the ability of silica-optical fibers to carry large
amounts of information over long repeaterless spans.
To utilize the available bandwidth, numerous
channels at different wavelengths can -be
mu]tlplexed on the same fiber and higher transmitter
powers are required to increase system margins. All
these attempts to fully utilize the capabilities of
silica fibers will ultimately be limited by nonlinear
interactions between the information-bearing light
waves and the transmission medium. These optical
nonlinearitiecs may lead to interference, distortion,
and excess attenuation of the optical signals,
resulting in system degradation [1]. Extremely
low-loss fibers; and- narrow-band lasers all move
toward the regime where nonlinear effects become
important [2]. "+ -
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During the last two decades, fibers operating in the
nonlinear regime have stimulated much research
interest, since the interplay between both the
chromatic  dispersion and the propagation
characteristics and the material nonlinearity has been
found to result in quite different propagatlon
behavior [3-6].

Several numerical methods have been developed
for the analysis of planar optical waveguides. Nearly
all these methods can be classified into two
categories, namely the shooting method [7] and the
matrix eigen system methods [3] and [8].

In the following study, the shooting method is
used to investigate nonlinear cylindrical optical fibers
with nonlinear Kerr-type core. This method involves
integrating the wave equation numerically to yield
the near field and its first derivative with respect to
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the corresponding unit directional vector, measuring
the expected error, and correcting the initial guesses
iteratively until the error reduces to a specified
order. Most of the field power is confined in the
core region while in the cladding region, the electric
field has a decaying form resulting in a really
reduced probability of the presence of Kerr-type
nonlinearity in the cladding region. So, cladding
nonlinearity is excluded without tears.

Although the initial work concerned with nonlinear
optical effects used relatively large core multimode
fibers, more recently such phenomena have become
very important within the development of low-loss,
single-mode fibers [9]. Single mode fibers are
preferred for long-haul transmission and high
bandwidth applications. The small core diameters,
together with the long propagation distances that
may be obtained with these fibers, has enabled the
observation of certain nonlinear phenomena at power
levels of a few milliwatts which are well within the
capability of semiconductor lasers.

In the present work, both step index and graded
index single-mode fibers are considered where
Kerr-type nonlinearity is clearly pronounced with
higher degree than multimode fibers which have
large core diameters; thus reduced power intensity.
Furthermore, in multimode fibers, optical power is
shared among several modes with the result that
each mode will have no power enough for
nonlinearity excitation. The effects of various
guiding parameters and the nonlinear Kerr
coefficient on the propagation characteristics and the
modal field distribution are studied.

iIl. THEORY AND NUMERICAL METHOD

The refractive index of a medium results from the
applied optical field perturbing the atoms or
molecules of the medium to induce an oscillatory
polarization, which then radiates, producing an
overall perturbed field. At low intensities, the
polarization is a linear function of the applied field
and hence the resulting perturbation of the field can
be realistically described by a constant refractive
index. However, at higher optical intensities, the
perturbations do not remain linear functions of the
applied field and Kerr nonlinearity may be observed
[9]. Since the electric field amplitude is a direct
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measure of the optical power intensity, the nonlinear
refractive index of the fiber may be represented as
the sum of constant refractive index term and
intensity-dependent term [7]:

0 (1) =nl () +a, |[E|?, a1

where n(r) is the zero-field refractive index, and q;
is the nonlinear coefficient which is positive for
self-focusing media and negative for self-defocusing
media. Both cases will be considered in the
following analysis. The physical meaning of either
positive or negative nonlinear coefficient could be
explained from the point of view of the nature of
the perturbation response of the dielectric material
to the applied electric field. The presence of doping
materials in the dielectric material could play the
main rule which governs the sign of the nonlinear
coefficient.

In cylindrical waveguides, the core nonlinear
coefficient may be expressed as [3]:

2
m, Ny, (1)

o= 2N @)

N
where n, is the cladding refractive index, nyy (r) is
the distribution of the nonlinear Kerr coefficient in
units of m%W and 1, is the free space impedance. In
the following analysis, we will assume that the
nonlinear Kerr coefficient is constant along the core

radius. Although, nyy;, has a very small value (=
1010 - 108 [10]), the long interaction length in
optical fibers magnify this effect.

Under weakly guiding conditions, the wave
equation for the radial electric field component, in
both core and cladding, for single-mode cylindrical
waveguides, has the general form [9]:

2
%r_?+%%_f.+kf{n2(r)—ﬂz} E=0, Q@

where k, is the free space wave number, 8, (=8/ k)
is the effective propagation constant and n(r) is the
refractive index at the radial coordinate r given by
Eq.(1) in the core and has a constant value, ny, in
the cladding.

In nonlinear fibers, Eq.(3) has not a typical form
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d thus shou]d be solved numerically. Smce it is of
e second order, two boundary conditions are
eeded. In single-mode fibers, the LP,; mode has
maximum value for electric field at the core axis.
his value, which is assumed in our work to be
0*V/m [7], acts as the first boundary condition. The
second boundary condition to be taken into account
is that the tangential derivative of the electric field
is zero at the core center. Equation (3) has two
solutions; one in the core and another in the clad
and therefore, matching the electric field and its first
derivative is necessary at their interface.

Since we have assumed that nonlinearty does not
appear in the cladding, the fundamental mode in the
cladding region will have the form of the zero order
modified Bessel function [9]. Thus, the matching
condition may be represented by:

WK(W)

ldl-?.l
K(W)

Ea e ) 4)
where K is the first order modified Bessel function
and W is the cladding decay parameter having the
form:

W‘- ak, (ﬁcz - n22)1/2 . &)

Using the shooting method, two initial guesses of
the effective index are used separately. Beginning
with the assumed electric field and its zero first
derivative at the core center, the core differential
equation is integrated step by step using the
fourth-order Runge-Kutta method [11]. The electric
field and its first derivative are estimated each step
till reaching the core-cladding interface. The number
of segments, N, into which the core radius 1s
divided, is chosen-to'improve the results accuracy,
running time,; and solution convergence. The
Gaussian approximation has been used to estimate
both the electric field and its first derivative at the
radial coordinate corresponding to the first step of
integration. These are then used as initial values in
the following numerical integration process.

Performing the integration process till reaching the
core-cladding interface, an error function is used to
evaluate the mismatch between the exact value of
dE/dr and that obtained by numerical integration.
This error function is defined as:
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ERR . 2B KW, . )
War K,W)

This function is used twice, one for each of the two
used initial guesses of B.. Using the secant method
[11], the two obtained error values are used to
estimate a correction term for a new guess of the
effective index, 8., through the formula:

ERR2(B,-By
(ERR1 - ERR2)

6ncw = BZ - (7)

where 8, and @, are the two initial guesses of the
effective index, and ERR1 and ERR2 are the two
error values obtained. This new guess together with
one of the two initial guesses which gives smaller
value of ERR are used again in an iterative manner
to obtain the correct value of the effective index 8.,
thus obtaining an eigen mode. Since the
Runge-Kutta method determines the values of the
unknown field and its first derivative during the
integration process, the propagation characteristics
and the modal field distribution can be obtained
simultaneously.

However, the results obtained were found to
depend on the two initial guesses. Thus, a second
iteration process had to be used. This had been
operated by defining a variable which was equated
to one of the two introduced initial guesses and
comparing the obtained effective index value with it.
With a difference being exist, as expected, the
obtained value of 8 is introduced as a guess and the
process is performed iteratively till the drfference
being smaller than a preassigned value (10, which
corresponds to a negligible percentage error) This
procedure has been found to give results that are
independent of the initial input guesses in a
convergent manner. Having obtained the correct
effective index value, Runge-Kutta method is used
again to obtain the electric field distribution in both
core and cladding by integrating Eq.(3) with the
more accurate obtained value of .

II1. Numerical Results and Discussion

According to the algorithm presented in the
previous discussion, a computer program has been
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developed to investigate the performance of the
cylindrical optical fibers that exhibit nonlinear
behavior. This computer program has been used to
solve for the waveguide characteristics and to study
the effect of all parameters that governs the modal
field distribution and the propagation characteristics.
These parameters include the core radius a, the
cladding refractive index n,, the relative refractive
index difference A, the wavelength A\, and the
nonlinear Kerr coefficient nNL- The effect of the
number of segments N, into which the core region
i1s divided, on the obtained value of the effective
index is also considered. '

Step-index fibers will be considered first. In
Figure (1), the modal field distribution is displayed
against the radial distance for different values of core
radius, a, at the defined set of other parameters.
From Figure (1), it is noted that an increase of core
radius results in raising the electric-field curve in the
core region and lowering it in the cladding region.
This reflects the fact of increasing the confinement
of the optical power in the core region. In a similar
manner, the other affecting parameters were studied
and it was found that more confinement is obtained
at higher values of A and lower values of A.
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Figure 1. Field distribution in the fiber core: Efféct
of core radius. (Step index fiber).
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Concerning the cladding refractive index, n, , it
was found that decreasing the value of n, results in
lowering the electric field curve in both core and
cladding regions. Another important fact to be
considered is that with decreasing n, value, which
has positive effect on increasing the modal field
confinement, another negative effect may appear
simultaneously for self-defocusing fibers (positive |
nyp, Eq.(2)). However, this negative effect is
practically negligible due to the small values of ny.
Thus, the effect of decreasing the cladding refractive
index on increasing V value is practically larger than
that on decreasing o value.

The effect of various nonlinear Kerr coefficients,
nyp, on the modal field distribution is shown in
Figure (2). From Figure (2), it is noted that positive
values of npyp, has a focusing effect on the modal
field distribution while negative nNL has a
defocusing effect. This could be explained easily by
noting that positive nonlinear coefficient increases
the overall core refractive index.
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Figure 2. Field distribution in the fiber core :
Effect of Kerr coefficient (step index fiber).

The variation of the normalized propagation
constant, b, with the affecting parameters (combined
in the V number) is studied at different values of
nyp» and the obtained results are shown in Figure

3).
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Figure 3. Variation of the normalized propagation

constant with the normalized frequency. (Step index
fiber).

The normalized propagation constant depends only
on the normalized frequency at a constant nonlinear
coefficient. It is noted from Figure (3) that for each
curve, the most right end point represents the cutoff
value, V_, after which the fiber operates as a
multimode. For zero nyy, V, is nearly equal to the
typical value of 2.405 in consistence with the well
known value [9]. Positive values of nyy, result in a
decreased V, value while negative ones increases it.
A simple formula can be approximated for the

relation between V_ and ny;, for step index fibers as:
V, = 2.244 - 2.49x107 ny; +1.843x10M ny 2
- 1x10'8_<.nNL < + 1x108 (¢

It is concluded from Figure (3) that, nonlinearity
-increases field confinement and thus the normalized
propagation constant, b. Thus, for a certain value of
b, the V-number for nonlinear case is less than for
the linecar one. Since the cutoff condition is
restricted to a certain value b, so we expect that the
cutoff value for the normalized frequency V,_ for
nonlinear waveguides will be less than that for linear
ones. This expectation has been tested and proved
to be right. Of course, increased nonlinearity results
in further decreases in the cutoff value. Decreased

Alexandria Engineering Journal, Vol. 35, No. 4, July 1996

ALY, ABOUELWAFA and WAHBA: Near Field and Propagation Constant of Nonlinear....

V, value for nonlinear operation reflects the ability
of the nonlinear optical waveguides to operate under
higher wavelengths while keeping single mode
operation. This may encourage the use of optical
sources operating in the infrared and far infrared
regions.

The effect of the nonlinear Kerr coefficient on the
normalized propagation constant, b, is displayed in
Figure (4) for wide range of values of nyyj . It is clear
that, nonlinearity has no significant effect on the
value of b till a certain value of nyy, which has a
significant contribution to the perturbed core
refractive index. Upon reaching this value, the
normalized propagation constant will increase
strongly with the ny;.
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Figure 4. Variation of the normalized propagation
constant with kerr coefficient.

We noted that the obtained value of the effective
index, B, , depends on the number of segments into
which the core cross section was divided. In contrast
to the case of planar waveguides [7], where the
effective index was found to decrease, in a
convergent manner, with the number of segments N.
In our work in cylindrical waveguides, it has been
found that 8, increases, also in a convergent manner,
with N. However, it should be noted that, increasing
the number of segments is not necessarily an
optimum choice to increase the accuracy of the
obtained results because this may lead to an increase
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in build up error during the integration process. Also,
it is clear that decreasing the number of segments
affects the accuracy of the results. In the present
work, to make a compromise, it has been found that
N=100 is a best choice. Figure (5) represents the
relation between be and the number of segments
N. The difference between the two obtained values
of B, with two values of N (=100) could be
neglected without significant error.
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Figure 5. Effect of the number of segments on the
effective propagation constant.

As already known, when nonlinearity does not
exist, the modal electric field will have the form of
Bessel functions of first kind and zero order, J, [9].
To ensure the accuracy of the method used, the
nonlinear coefficient is set equal to zero and the
obtained results are compared to that obtained by
the well known solution of linear step index fibers.
The effective indices obtained from the two
techniques were found to differ only by 0.03 %.

In graded index fibers with the nonlinearity
presented, the overall core refractive index can be
written as:

X)) =n? {1-2A @)Y + o, |[EI?, 9

where q is the profile parameter which gives the
characteristic refractive index profile of the fiber core
91 A
Since for graded index fibers; the numerical
aperture NA i1s a function of the radial distance from
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the fiber axis and decreases with it, they; therefore,
accept less light than the corresponding step index
fibers (q = o) with the same relative refractive
index difference. This is shown schematically in
Figure (6), where results of graded index fibers are
displayed, from which it is noted that the modal
field confinement decreases with decreasing q.
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Figure 6. Field distribution in the fiber core.
(Graded index fiber). (Solid lines for linear and
dashed lines for nonlinear fibers).

In Eq.(9), there are two competing effects on the
overall core refractive index value at any radial
coordinate, r £ a. The negative effect results from
the grading technique which s achieved
manufacturally. The positive effect is due to
nonlinearity. Importance of the first effect varies
inversely with the value of the profile parameter q.
The positive effect depends on the square of the
absolute value of the electric field. For q = 2, as
shown in Figure (6), nonlinear distributions shown in
dashed curves, reflect the confinement of the
electric field. For triangular profile, nonlinearity
results in an opposite effect. This is due to the faster
decrease of the first term than the second one in the
right hand side of Eq. (9). However, large
nonlinearity may result in more confined electric
field distribution. In a similar manner to the step
index fibers, the normalized propagation constant, b,
for graded (parabolic) index fibers is obtained and
displayed with V in Figure (7).
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1

Also, similar to Eq.(8), the cutoff normalized
frequency, V_, for graded index fibers is

c?
approximated as:

V= 2.829 - 9.168x107 ny + 3.068x10'5 Ny 2 .

& IXIO < nNL + IXIO
IV. CONCLUSION

. (10)

The nonlinear wave equation is solved for
single-mode fibers using the shooting technique.
The effects of various waveguide parameters on the
modal field distribution and the propagation constant
are studied for both step and graded index fibers.
From the parametric study, we can predict that for
nonlinear waveguides, the normalized propagation
constant, b, depends totally on two; mstead of one
as in the case of linear waveguides; parameters : the
V number and the nonlinear Kerr coefficient nyy .
The efficiency of method used lies in the accuracy
and convergence of the obtained results. It is found
that, nonlinearity has more effect on the propagation
constant than that on the field distribution.
Approximate relations for the dependence of the
cutoff value, V_ , on nyy, are deduced for step and
graded index fibers, Eqs.(8) and (9). Results
concerning nonlinear optical fibers encourage the use
of optical sources operatmg in the infrared and far
infrared regions.
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