| ABSTRACT

COLLISIONLESS PLASMA PRESHEATH
IN A NON-UNIFORM MAGNETIC FIELD

H.H. Abou-gabal

Nuclear Engineering Department, Faculty of Engineering,
Alexandria University, Alexandria, Egypt

The plasma equation for the flow of a collisionless plasma with a finite-temperature particle source
along a non-uniform magnetic field to a boundary is formulated. The dependence of the electrostatic
potential profile on the magnetic field strength profiles, on the spatial distribution of the particle
source and on the ions type is investigated. Different magnetic field profiles even with the same
mirror ratio at the sheath edge give rise to different potential profiles. In the case of a non-uniform
magnetic field, the particle source profile has a considerable effect on the potential. The energy
gained by the ion when crossing the sheath increases as the ion mass increases.
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Nomenclature

<gv> ionization rate coefficient
B, magnetic field strength at x =0
e electron charge
K Boltzmann constant
m electron mass
M ion mass
n, neutral atom density
n, electron density at the midpoint
q ion charge
1 electron temperature
; ion temperature
v, perpendicular component of the ion velocity
vy parallel component of the ion velocity

1. INTRODUCTION

The problem of plasma flowing along a non-
uniform magnetic field to a boundary is important
for the research on fusion in magnetically confined
plasmas as well as on plasma-aided ‘manufacturing
processes. The electrostatic potential, developed in
the plasma when it comes in contact with a surface,
plays an important role in the interaction of the
plasma with the divertor or limiter plates in
tokamaks or stellarators [1,2]. In ‘the electron
cyclotron resonance (ECR) etching apparatus, a
divergent magnetic field is used to extract plasma
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from the microwave chamber and to confine it near
the specimen {3].

The problem of plasma flow to a wall and the
formation of a sheath has drawn attention since the
first analysis was done by Tonks and Langmuir in
the context of discharge plasmas [4]. Harrison and
Thompson [5] treated this problem by solving -
analytically the plasma-sheath equation in plane
geometry, assuming a collisionless plasma with a
cold-ion source. Emmert et al. [6] improved the
solution of the plasma-sheath equation by
considering a finite-temperature ion source. Bissel
and Johnson [7] solved the plasma equation
considering a Maxwellian particle source, which
differs from the source chosen by Emmert et al.
They indicated that the form of the particle source
has an influence on the results. However, these
analyses are restricted to cases of unmagnetized
plasmas or plasmas in a uniform magnetic field. Sato
et al. [8] formulated the plasma- sheath equation for
a collisionless plasma in a magnetic field that
expands to walls with a monotonically decreasing
axial profile. They adopted the same expression
used by Emmert et al. for the ion source function
and assumed Boltzmann electrons. In order to obtain
an analytic solution, they introduced some
simplifying approximations, which restrict the

B 123



ABOU-GABAL: Collisionless Plasma Presheath in a Non-Uniform Magnetic Field

analysis to small mirror ratios. Their results are
obtained for a mirror ratio at the sheath edge less
than 2. In practice, one often needs to consider
magnetic field profiles with higher mirror ratios.

In this paper, an approach similar to the technique
used by Sato et al. is followed to formulate the
plasma equation in a nonuniform open magnetic
field. However, all the integrals involved in the
calculations of the plasma density, of the particle and
energy fluxes to the sheath are performed
numerically. This method does not require any
simplifications and is capable to meet the practical
needs for a solution to the plasma flow problem in a
magnetic field with moderate to high magnetic
mirror ratio. Moreover, the dependence of the
potential profile on the magnetic field profile, on the
spatial distribution of the particle source and on the
ions type is investigated.

Section 2 contains the formulation of the integral
form of the plasma equation in a nonuniform open
magnetic field. In Section 3, the method of solution
is presented while the results are presented and
discussed in section 4. The conclusions are given in
section 5.

2. PLASMA EQUATION

In this paper, we consider the collisionless plasma
flow to a solid wall in the presence of axisymmetric
magnetic field that is also symmetric about x=0 and
decreases monotonically for x>0 as shown in Figure
(1). The walls at x= + L are assumed to be perfectly
absorbing and electrically floating. The potential
$(x) in the steady state is expected to drop
monotonically in the axial direction for x>0 and the
value at x=0 is defined as zero.

The ion’s constants of motion are the energy

E=%M(vf+‘v|2)+q¢(X), (1)

and the magnetic moment
1 2
k=2 Mv,/B), 3]

where B(x) is the magnetic field strength at the
point X. '
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collector
plate

X=-L
ﬁgure 1. The geometry of the model and axial

profiles of the potential and of the magnetic field
strength.

X:O X=+L

Considering the plasma near the axis, neglecting
radial dependence and integrating out the
gyromotion, the kinetic equation in the phase space
(x,E,u) is described by

ov”(xﬁ,u)gf(—?‘———’g:‘ﬂ = SxEw, 0O

where

v/(xEp) = (2[E-pBX)-q 2@IMI2, @

¢ = +1 denotes an ion moving to the right while g=-1
denotes an ion moving to the left, f(x,E,u,0) is the
ion distribution function and S(xE,u) is the
distribution function of the ion source. Symmetry is
assumed about x=0 in the sense that
Sx,E,w)=Sx,E,u) and ®(x,E,u) = &(-x,E,u). The
boundary conditions for Eq. (3) are f(-L,E,u,+1)=0
and f(L,E,p,-1)=0.

The monotonically decreasing effective potential
uB(x)+q®(x) causes all the originating ions to be
accelerated towards the walls. The E-u space can be
separated into two regions, the reflected region and
the passing region [8]. In the region such that
E<uB,, any originating ion cannot reach the center
of the plasma, instead it is reflected at the turning
point, x (E,u), when o=-1 and x>0 or when g=+1 and
x<0. x(E,u) can be determined from
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E - uB(x) - q®(x)=0. &)

In the region such that E>uB , all the originating
ns pass through the plasma along the field lines
ithout a change in direction of the motion. The
istribution function f(x,E,x,0) can be obtained by
tegrating Eq. (3) using the appropriate boundary
conditions. The sum of f(x,E,u,+1) and f(x,E,p,-1) in
each region of the E-u space can be written as [8]

2 / S(X B ll) E> }J.B
¥ o v/ E )’ ’
f(x,E,p1,0) =)
; )" e SEED B oyp
k xE.p) VB(X/,E,M) ° )

‘where x' is the point at which ions originate.
Using the normalizations

‘e-E/KT ‘Il--e<I>/KT, TsT [T, s = x/L,

Z=q/e, R=B0/B, V=9 N Vy=9yvg

2KT.
> and defining p’=uB /KT, Eq. (1)

where v, =

2 2
can be written as € = —= + — ~Z (s). Similarly, we
£ %

can writg Egs. (4)-(6) as following
Vis,en)=[re - WIRE) + ZT ()],
te - W/RG) + ZTY(s) = 0,

where s;=x/L. and

r

, L S@s’e,pn)
o e

te>p/,
V,(s'e1)

3

f(s,e,n’,0) =]
(4]

oL ds/._s_(§_’5i"2. te<y’.
Va s(enh Vl(s’,e,u/) @)

The ion density ny(x) is obtained by integrating
f(x,E,u,0) over the E-p space. Normalizing the ion
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density to n, and making use of the above
normalizations and the Jacobians,

AVZVPIAVEV ) =vg ad AVLV)/e,n)=1/2V|RE),

the normalized ion density, N;(s) can be determined
from

/ f(S e’ll O) (8)
V)

et 3 faefan

N.(s
i 2n R(s) ©

Substituting Eq. (7) into Eq. (8), we obtain

. S(s’.,1)
Ivi (S) = e ds L
R(s) { f f V(s € u')f Vs "e.n)
0 tR)e+Z¥(s)] , 4 1 1 1 8(s ’,E:lll)
+ de dp'——— ds'———=—
f -Zy(s) 'fo VI(S,G,IJI)L'(C'“,) Vl(s Iyegp'l)

f ffk(s)[e*z\v(s)] o 1 fl 5‘1,,/ S(S’;e,u') }
V|(5,€:l*,) Her V|(s ATy 9
The electrons are electrostatically confined due to
the presence of the sheath. This ensures enough
collisionality to randomize their motion and hence
their distribution function can be described by a

Maxwell-Boltzmann distribution. For this
distribution, the electron density at a point X is given

by
n(x)=n_exp(e 2(x)/KT),),
when normalized, 1t becomes
N,($)=n,(x)/n, = exp(- ¥ (s)). (10)
Considering that the plasma dimension is large
compared with the Debye length, we can use the
quasineutrality approximation to get ZN; = N,
which is called the plasma equation.
3. SOLUTION OF THE PLASMA EQUATION
To calculate the ion density, we use the same

expression for the ion source chosen by Emmert ez
al. [6], namely
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‘ M

S(x,E,p) =<ov>n n h(x)——

4n(KT)?

where h(x) expresses the spatial variation of the ionization rate.
Normalizing Eq. (11) and substituting it into Eq. (9), we obtain

ORI ){f e[ dn
" f_oz " de f;, sR(S)[e+Zy()] L
4+ f ftR(-v)[e*Ztv(S)] /

where A = <gv>n L/v,,.

In this work, an iteration method is used to solve
for the normalized ion density distribution and the
potential distribution function. An initial guess for
the potential profile, ¥(s), is assumed. Integrations
in Eq. (12) are performed numerically using both
Trapezoid and Gauss Quadrature methods [9] to
obtain the ion density distribution. The plasma
equation is used to get a new potential profile which
is resubstituted in Eq. (12) and so on uniil
convergence 1s reached, namely when

l‘pnew—wold‘ < e
1I’ol::l

3

for the whole region. ¢ is a convergence criterion
parameter.

In general, the ion source in the sheath can be
neglected because of a small thickness of the sheath
and a remarkable decrease in the ionization rate
which is dependent on the electron density.
Therefore, the requirement that the electron current
and the lon current must be equal at the wall
enables us to determine the wall potential, ¥_. The
ion current, T, can be evaluated by the followmg
integration

Ix)=2x X{; f v$de f dvlvlyf(x,vL,vI,o). (13)

The electron current, T, can be expressed as [8]
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1 fl
Vi(s.e,p) shew)

Vs, ek

.
=t

-[E-q2(x)]
KT, i

1

V.(x,E,u)CXP(

f ds'h(s"e -tle+Z(sh]
,u’)

ds'h(s"e ~tle+Zy(s)] a

1 1 ds'h(s"ye ~tle+Z(sH] },

&

1n
KT
I=|—2| n e 1
€ (21:111) ° (

Equating Egs. (13) and (14) and performing th
necessary normalizations with the use of th
appropriate Jacobians, the wall potential, ¥, can be
obtained from

PR 4nm At € / ~t[e+Z¥(sh)
¥, -ln|| 2F { [ de[“aw'[ as'hishe
¢ RifesZ¥y] 4 ; -dle+Zysh (15)
% f_z"de fo dy fw‘ 4 h(s e

o reRfevZy] , 41 ’ -ele+Z¢ (]
* ./; def“ < j;xe-u’)dg e e }}’

where ¥(s) is the converged solution for the
normalized potential profile obtained as described
above, Ry=R(1) and ¥;=¥(1) are the mirror ratio and
the normalized potential respectively at the plasma-
sheath boundary.

Similarly, the equality of these two equations allows
us to obtain the mean velocity of the ions at the
boundary, <v >, as

KT
27m

<vp,=Z g, (16)

From Eq. (13), we can also obtain the normalized
particle flux at the boundary as
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f1=ﬂ.—. 2 At{ fo “de fo“dp/fo Lds k(s ")e ~*le- 246

n,C, 1+

0 tRle+Zy] . 41 / -sle+Zysh]  (17)
* f z‘hdef 0 dp L.(e.u’)dg Al e

wRife+Zy)) , ;1 / A L)
¥ f f dy fwmds' h(s"e }

where C =[K(T, ~I-T)/M]1’2 is the isothermal sound speed.

The norma]xzed energy flux of the ions entering the sheath,
Q; = Q;(1)/[n (KT .+KT;)C,], can be calculated by integrating the product (M/2)fv? v, over the phase space.
After performmg the necessary normalizations and variables transformations, we obtain

I/

(1+0)*

o it

1

A’{f;defo“d“"’z(l,e,u’)_fo s n(sHe ~le+2¥h]

le[HZh] ,V2(1,€ u,)f dslh(sl)e ~tle+Zy(sh] (18)

=, [ Rle*Z¥] , /2 1 / ~t[e+Zy(sh]
fo de f j dp/V2(1,e,1h f M,)ds h(s")e }

where V2=V J_2+V ,,2 at the plasma-sheath boundary.
The integrations in Egs. (15), (17) and (18) are
solved numerically using both Trapezoid and Gauss
Quadrature methods [9].

4. RESULTS AND DISCUSSION

A hydrogen plasma with equal ion and electron
temperatures, 1.e. 7=1, is considered. Considering the
fact that the ionization rate depends on the electron
density, the expression for h(s) presented by
Harrison and Thompson [5] is adopted here, namely,

h(s) = exp(-v ¥(s)),

which allows the ion source to be proportional to the
v power of the electron density. In the following
calculations » is set equal to 1. The magnetic field
mirror ratio profile R(s) is assumed to be expressed
in the same form used by Sato er al. [8] and which
Is written as

R(S) = exp(ay(s)),

where o is a posmve constant. In this paper, we
refer to this form as Sato profile.

Figure (2) shows the dependence of the normalized
potential at the sheath edge, ¥,, and that at the
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wall, ¥, on the mirror ratio R, at the sheath edge.
For comparison, the corresponding values computed
by Sato et al. are also shown. It can be seen that our
results are in good agreement with Sato et al. results
especially at low mirror ratios.

4.0 prevrvereer TrTTYYYTYT TrrrTTYTYY TrrrrTYYTY TrrTTTTTYTY
4

3.0 b

- - - Sato
s — This work

-
o aaaaataaslazaasaaaadataaaaaay tasaasaasalerasazaas

1.0 1.2 1.4 1.8 1.8 2.0

Figure 2. Computed normli&cd potential at the
sheath edge, ¥,, and that at the wall, ¥, as a
function of the mirror ratio at the sheath edge, R,
compared to Sato et al. results.
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To illustrate the effect of the magnetic field mirror
ratio profile, we consider, in addition to Sato profile,
two other forms which are

1. exponential form given by
R(s) = exp(as), a=1.3558 and

2. parabolic form, namely,
R(s) = -(1-a)s?+1., a=3.88

These three forms of the magnetic field mirror ratio
profile are plotted in Figure (3). The mirror ratio R,
at the sheath edge is the same for the three profiles
and is set equal to 3.88. The dependence of the
normalized electrostatic potential profile on the
magnetic mirror ratio profile is illustrated in Figure
(4), while the dependence of the normalized plasma
density on it is illustrated in Figure (5). As shown,
different magnetic mirror ratio profiles even with the
same mirror ratio at the sheath edge lead to different
profiles for both the potential and the density.

40
38 E
3 Sato profile
8.0 F — - exponential
: parabolic
25 E
o~~~ E
0 3
E{ 20
15
1.0
°“'6'o 0.2 0.4 0.6 0.8 1.0

S

Figure 3. The magnetic field mirror ratio profiles
with R, = 3.88.
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- in the pre-sheath for the three mirror ratio profiles of

Sato profile
— — exponential
parabolic

0.8 . 0.8 1.0

Figure 4. Normalized electrostatic potential profiles

Figure (3).
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02f
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Figure 5. Normalized plasma density profiles for the
three mirror ratio profiles of Figure (3).

In Figure (6), the normalized potential at the
sheath edge, ¥;, and that at the wall, ¥, are
plotted versus the mirror ratio R at the sheath edge
for the three magnetic mirror profiles. As seen in the
Figure, both ¥, and ¥ increase with R; for the
three profiles. This can be explained by the fact that
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R; increases, the influence of the acceleration
due to the magnetic field gradient becomes
e obvious. The faster motion of the ions results
shorter transit times and hence lower ion density.
f quasi-neutrality ‘to be maintained, the
malized electrostatic. potential should increase
cordingly. It can also be seen from the Figure that
e potential drop in the sheath, A¥ = ¥,

ofiles. The variations of the normalized ion mean
locity, U, = <v,>; / C,, the normalized ion particle
X, I'; and the normalized ion energy flux, Q,, at
e sheath edge with R, are shown in Figures (7),
) and (9) respectively.

L S U —

Al
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Sato profile
— — exponential
..... parabolic

GALAASAA RN N N N N ARl QR A AR E RS SRR RS

Caaasaasaalsass

0.0 Ciaaaaasastasaaasaaataaaaaaaa s aaaaaatsanasansy
0

1 2 3 4 5

R,

(-

¥,, and that at the wall, ¥, as a function of the
‘.1rror ratio at the sheath edge, R;, for the three
mirror ratio profiles. ;

F”gurc (10) shows the normalized potential profile
nn the presence of a monotonically falling
cxponenual mirror ratio profile with R;=3.88 for
three different particle source spatial distributions
namely,

L h(s) = exp(-v ¥(s)), with p=1,

2. uniformly distributed source in the
; 0<5<0.5,

!:3. uniformly distributed source in the whole range.

range
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igure 6. Normalized potential at the sheath edge,
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Figure 7. Normalized ion mean velocity at the
sheath edge, U, as a function of the mirror ratio, R,
for the three mirror ratio profiles.
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Figure 8. Normalized particle flux at the sheath
edge, I';, as a function of the mirror ratio, R, for the
three mirror ratio profiles.
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Figure 9. Normalized ion energy flux at the sheath
edge, Qy, as a function of the mirror ratio, R, for
the three mirror ratio profiles.
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Figure 10. Normalized electrostatic potential
profiles in the pre-sheath for three different particle
source spatial distributions.

As can be seen, when the magnetic field is not

.uniform , the potential profile as well as the
potentials ¥, and ¥ are functions of the spatial
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distribution of the particle source and not just on the
integral of the source distribution. Also the potential
profile for the case of a uniform source of width 0.5
in a uniform magnetic field is shown. In this case,
the potential changes only over the source region
and is constant elsewhere. Note that when the
nonuniform magnetic field is applied, the potential
continues to vary in the sourceless region. This is
mainly due to the expansion of the magnetic flux
tube.

in addition to the hydrogen plasma, singly ionized
helium, nitrogen and argon plasmas, all with 7=1, are
considered in an exponential magnetic field profile

with R,=3.88. h(s) is kept equal to ¢ ™*¥® with p=1."
Table (1) shows that ¥, increases as the ion mass
increases. However, all the other normalized
quantities do not vary, this can also be deduced from
the equations. Therefore, the normalized potential
drop in the sheath increases with the ion mass
leading to the fact that heavier ions will gain more
energy when crossing the sheath toward the target
plate.

Table 1. Values of potential ¥, for different ions

types.
Ions . .
Hydrogen 3.5247
Helium 4.2146
Nitrogen 4.8409
Argon 5.3649

5. CONCLUSIONS

The plasma-sheath equation for the flow of
collisionless plasma to a solid boundary in the
presence of an expanding magnetic field has been
formulated. The ion source distribution function
with a finite temperature chosen by Emmert ez al.
has been used for the formulation. Integrations
involved in the plasma equation and in the
evaluation of relevant quantities have been solved
numerically for various magnetic field profiles. This
allowed the solution of the equation for magnetic
profiles with mirror ratios higher than those used by
Sato et al. Results show that the electrostatic
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ential formed in the plasma is greatly affected by
e applied magnetic field profiles. Increasing the
agnetic field mirror ratio at the plasma-sheath edge
ads to the increase of the normalized potential at
ie sheath edge and of the normalized wall potential
ut to the slight decrease of the normalized potential
top in the sheath. The potential is also affected by
he particle source profile. In a nonuniform magnetic
eld profile, the potential is always varying even in
he sourceless region. Consideration of different
ingly ionized ions leads to the fact that the only
lormalized quantity that is only influenced is the
normalized wall potential which increases as the ion
mass increases. This results in the increase of the
normalized potential drop in the sheath.
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