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ABSTRACT

The existence of a fracture on the hole surface changes the wave impedance in the hole and it causes a
reflectiun of the wave at the location of the fracture. Thus, the dimension of the fracture may be estimated
by analyzing the reflected waves . The fracture impedance of the fundamental mode (Stoneley wave) is
obtained by analyzing the wave motion of a fluid layer laying between two elastic half space. A numerical
investigation of the fracture impedance for different typical rock materials is presented.
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1. INTRODUCTION

It is known that the existence of a fracture
intersecting a borehole will change the characteristic of
the wave motion in the borehole, many parameters have
been introduced in the literature to represent fracture
intersecting a borehole, e.g. the fracture dynamic
conductivity (Tang and Cheng 1989, the fracture
stiffness ( Chouet (1986) , the hydraulic impedance of
a fracture (Holzhouzen 1985, Paige and et al. 1992),
and the fracture impedance ( Mathieu 1984, Ashour
1994). The wave motion in a fluid-filled fracture was
studied by Tang et al. (1989) and by Homaby et al.
(1989) for acoustic logging applications. In their
studies, they assumed the formation is rigid and
modeled the fracture as a parallel-surface channel of
thickness 2h. Also, the wave motion in a fluid laying
between two elastic medium have been investigated by
V. Ferrazzini and K. Aki (1987) as a model for tremor
and for long-period events observed at volcanoes.
Paillet and White (1982) used the wave motion in
sandwich fluid layer between two elastic half space as
a simple model of wave motion in a fluid-filled
borehole. - Tang and Cheng (1988) carried out an
experimental study to investigate the mode trapping
characteristics of a fluid filled fracture between two
elastic half space. In this study, the wave motion in a
fluid-filled a horizontal fracture intersecting a borehole
is considered using cylindrical coordinates. The
formation is assumed elastic and isotropic. Then, the
characteristic equation (dispersion relation) of the wave
motion in the fluid is determined from which the phase

and the group velocities of the waves in the fluid filled
a fracture can be determined. Finally, an expression
of the fracture impedance is obtained.

II. FORMULATION OF THE PROBLEM

Consider a horizontal fracture intersecting a borehole.
Let us consider a fluid layer of thickness 2h and
infinite extent laying between two infinite elastic half
space. Define cylindrical coordinates (r, ¢, z) , where
r is measured from the borehole axis, ¢ is the polar
angle, z is the distance in the direction of the borehole
axis, z = 0 at the center of the fracture. The medium

in the borehole and the fracture is fluid with density pp

and velocity v¢. Here, R, is the radius of the borehole.
1- The acoustic field in the fracture

For a non-viscous fluid, the acoustic velocity is given
by

V=9, t))
where ¢ is the acoustic wave potential. For time

harmonic wave (e™'“"), the equation of the wave motion
in the fluid can be written as

2
o+ =0, )

Vg
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Applying the method of separation of variables, the
solution of the above equation after considerable
algebraic manipulations, let (w2/v A > kL2 can be
obtained as

¢ =[H§”(lgr)][Acos(k,z) +Bsin(,z)], ()

where H M K n)is Hankel functlons of first kmd and
zero orderand k,=w /v k and for the case (w? O 2

<k?
¢ =[H;"&D][A cosh(k,Z)+B sinh(k,Z)], (4)

where, kz2 =k? - w? ? and k, is the wave number
to be determined from the characteristic equation of the
wave motion in the fluid layer In Egns (3) and (4),
note that the¢ function H0 (krr) represents outgoing
wave.

Since the fluid motion is axisymmetric, the fluid
particle velocities have only two components, ucand wg
in the r and z directions, respectively. The fluid particle
velocities in terms of the acoustic wave potential ¢ is
given by

uf=2§, ®)
wf=%%. 6)

Since the wave propagation in the fracture is
symmetric with respect to the fracture axis, the radial
component of the velocity ug is even with respect to z;
ie, udz) = ud-z). From Eqn. (5), this require that¢
is symmetric with respect to z, ie., ¢(z) = ¢(-2).
These can be satisfied by setting B = 0 in Egns. (3),
(4). The substitution of Eqn. (4) in Eqns (5) and (6)

ur=- (HP&D}x{Akcosh(k,Z)}, ()

= {HS) (krr)} x {A k,sinh (](IZ)} s )

where (wz/vfz) < kzz and the pressure p can be obtained
from the relation

b _.

~p=iwpr A HP (k, 1 coshk,z. (10)

2- The elastic fields in the formation

Next, the wave motion in the elastic formation is
considered, the displacement u can be expressed in
terms of a scalar potential ¢ and vector potential ¥ as:

U=V +vx§ ay

For vertical polarization wave [SV], the potential
\_k=¢é’ where &, is the unit vector along the
increasing in ¢ direction. Thus, the displacement has
only two components

-9% _ov
' or o0z (12)
_9¢  10C¥)

% az+r or %

For time harmonics wave, it can be shown that ¢ and
¥ satisfy the following wave equations:

and using the following recursion relation (Hildbrand P,
1976), "24’*;;4"0 (14)
c
dH @)
& =-H; @ Y 2 A "'+——t=0 (15)
2 v2
yields
where, v, and v, are the velocities of the compressive
and shear waves respectwcly,
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. vc = M & v'= _E »
\J P P

where, A and pu are the Lamé elastic constants and p is
the density of the formation. The components of the
stresses tensor in terms of the potential ¢ and potential
¥ can be written as:

= 9(9¢_2d¥
% hzwz"ar[ar ar] (16)
—u|-0 (90 _2¥), o(3b 138
O “[az(ar 8z)+ar(at rar(rw)](”)
- s2p 2|99 101y
el T# 2par[az+r ax] {15

‘From the condition that the displacement and stresses,

* therefore the potentials vanish at (z —o0), the solution

of the wave equations can be written as
¢=AH (ke ™ z>0 (19)
¥ =B,H, (ke 250 (20)

where H (") and H, (! are Hankel functions of zero and
first order of the first kind respectively, and

kZ=k?- = 1)
vc
2 2 w?
k" =k - ;‘;- : (22)

Substitution from Eqns. (19), (20) into Eqns (15), (17)
and (18), the normal stress ¢, and the shear stress o,
can be written as

o= {Afar2pKl-ak]]e
-2pk k,B,e ! k,1) (23)

o =nf2kk Ae ™ -B[kI+k’|e MIH{ k1) (24)

and the normal displacement u, is

u=[Ake ™ +Bke “H kD) (25

3- Boundary conditions and the dispersion relations:

From the continuity conditions at the fluid-solid
interface one can write the following three boundary
conditions at z = h:

1- The continuity of the normal stress:

pP=a + (26)
2- The shear stress must vanish.

6,=0 27)
3- The continuity of the normal velocities.

du

e (28)

Substitution of Eqns (12), (13), (23), (24) and (25) into
Eqns (26 ), (27) and (28) , the following set of
equations in the three unknown A, A, and B, can be
obtained for the case (w?/vp?) < k,?

iwp,coshk h k2(A+2p)-Ak” -2pkk

0 2kk,  -Gg k)
k sinhk,h -iwk, iwk
Al Jo
x|Az[=|0 (29)
B, [0

For non trivial solution, the determined should vanish,

~ one can obtain the following dispersion relation of the

wave motion in the fluid layer after some algebraic
manipulation:
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Applying the method of separation of variables, the
solution of the above equation after considerable
algebraic manipulations, let (W 2) > kz2 can be
obtained as

¢ =[H (1) ][Acos(k,z) +Bsin(k,2)],  (3)

where H M K. 1) is Hankel functlons of first kmd and
Ze1o order and k,"= w /v k and for the case (w O 2)
< k

¢ =[H (1) |[A cosh(k,Z)+B sinh(k,2)], (4)

where, k,2 =k? - w? /v{ and k, is the wave number
to be determined from the characteristic equation of the
wave motion in the fluid layer In Eqgns (3) and (4),
note that *.¢ function H0 (k,r) represents outgoing
wave.

Since the fluid motion is axisymmetric, the fluid
particle velocities have only two components, ugand wg
in the r and z directions, respectively. The fluid particle

velocities in terms of the acoustic wave potential ¢ is
given by

uf=%‘f, ®)
-9
= 6)

Since the wave propagation in the fracture is
symmetric with respect to the fracture axis, the radial
component of the velocity ug is even with respect to z;
ie., ufz) = ug(-z). From Eqn. (5), this require that¢
is symmetric with respect to z, ie., ¢(z) = ¢(-2).
These can be safisfied by setting B = 0 in Egns. (3),
(4). The substitution of Eqn. (4) in Eqns (5) and (6)

ur=- (H&D}x{Akcosh(k,Z)}, (@)

we = {H (0} x{A k sinh (k,Z)), ©)

where (w2/vf2) < kZ2 and the pressure p can be obtained
from the relation

o .
P. 7 = P -5?:19&4’,

~p=iwp A HM (k1) coshk,z. (10)

2- The elastic fields in the formation

Next, the wave motion in the elastic formation is
considered, the displacement u can be expressed in
terms of a scalar potential ¢ and vector potential ¥ as:

U=V +x¥ e (D)

For vertical polarization wave [SV], the potential
¥=¥&, where &, is the unit vector along the
increasing in ¢ direction. Thus, the displacement has
only two components

9% _ov
* or Oz (12)
u=i4_’+l_‘?ﬂ.)_ (13)

2 9z r Ot

For time harmonics wave, it can be shown that ¢ and
¥ satisfy the following wave equations:

and using the following recursion relation (Hildbrand 9_2 s
1976), Yty b0 (14)
c
dH @) |
— = (7) Py - ‘V+__¢=o (15)
5 v,
yields
where, v, and v, are the velocities of the compressive
and shear waves respecnvcly,
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S| A*2p) o LB
; Py "N,

where, A and u are the Lamé elastic constants and p is
the density of the formation. The components of the
stresses tensor in terms of the potential ¢ and potential
¥ can be written as:

b _d
% “24”2”6 [af . (16)
i a¢ _dy ¢,
O™ "[az(a: az) ar(ar (4!))](17)
12,220, 1019
0= Fo+20 ax[az . ax] (18)

‘From the condition that the displacement and stresses,
* -therefore the potentials vanish at (z —»o0), the solution
of the wave equations can be written as

b=AH!Kkne™ 250 (19)
¢=B2Hll(k,r)e_k" z>0 (20)

where H, (") and H,(! are Hankel functions of zero and
first order of the first kind respectively, and

[ 5]

()

2 _
kZ=k?- — 1)
vc
2_,2_ @
&hkia g 22

Substitution from Eqns. (19), (20) into Eqns (15), (17)
and (18), the normal stress ¢, and the shear stress o,
can be written as

o= {AJd +2ui - a1T]e ™
~2pkk,Bye JH, (k1) (23)

o, =B{2kk A e ™ -B[i+Kkl]e MH Gn) (24)

and the normal displacement u, is

u=[Ake™ +Bke S H (kD (25

3- Boundary conditions and the dispersion relations:

From the continuity conditions at the fluid-solid
interface one can write the following three boundary
conditions at z = h:

1- The continuity of the normal stress:
p=-0o, - (26)
2- The shear stress must vanish.

g, =0 (27)

1z
3- The continuity of the normal velocities.

dul

el (28)

Substitution of Eqns (12), (13), (23), (24) and (25) into
Eqns (26 ), (27) and (28) , the following set of
equations in the three unknown A;, A, and B, can be
obtained for the case (w?/vp?) < k,?

imp,coshk,h K2(A+2p)-2k> -2pkk,
0 2k k, - k)
k sinhk h -iwk, iok,
Ayl o
x|A;|=|0 (29)
B,| [0

For non trivial solution, the determined should vanish,

~ one can obtain the following dispersion relation of the

wave motion in the fluid layer after some algebraic
manipulation:

Alexandria Engineering Journal, Vol. 35, No. 1, January 1996 D3



ASHOUR: the Impedance of a Fracture

w? ek, (kr2 - ks2) +
pev 2 k {(k2+k2)>4k 2 k_k} tanh (k,h) = 0, (30)

which is the dispersion relation of the fundamental
mode (Stoneley mode) and for the case (w2/vf2) > kzz,
the dispersion relation becomes

W Ps kc (kr2 3 ks2) = Py v32
x k, {(k2+k)? - 4k 2 k k} tan (k,h) =0, (31)

which is the dispersion relation of the normal modes.
The above dispersion relations are relationships
between the phase velocity and the frequency, with the
elastic properties of the fluid-solid system as
parameters. This dispersion relations are nonlinear
equations "2 k, which can be solved numerically. The
phase and group velocities can be obtained from the
relations:
)
vph = E

& v,= vl,h+k,dkl ;

4- The fracture impedance

The fracture impedance of the fundamental mode is of

particular interest in this section. The fracture
- impedance Z is defined as
=
2 <u> l"’-’ (£

where < > implies the average value over the cross-
sectional area of the fracture opening. Substitution of
Eqgns. (25) and (26) into Eqn.(32) gives

s .3

Ze= [_lvf Pk, | JHS &R, (33)
Ao JHP &R,

where A = 4%R,, h is the fracture opening area. Note

that for rigid formation, iec., k, = w/vg the fracture

impedance reduces to

s A )P &R

_ which is the acoustic impedance of a uniform pulsating
cylindrical fills the space between two parallel rigid

plates.

- ( -ivep, ){Hi"(k,w i

At high frequency, the phase velocity approaches
Stoneley waves and therefore k. = w/vg,. Using the
asymptotic expressions of Hankel functions Ho(l (k1)
and H;(D(k 1) at high frequencies (k,r -»0), (Hildbrand
1976)

jlz-(m+1/2)7]
W~ |2e 2
H ' (2) \ 2= ’
one can obtain,
(.2
Z,= Vi Pg
AV,

Also, for hard formation vg, = vg and therefore, the
fracture impedance reduces to the characteristic
impedance of the wave motion in the fracture

VePs :
Z,=(——) (Mathieu and Toksoz (1982).

A,
Ill. RESULTS AND DISCUSSIONS

In this section a study of the different types of waves
which can propagate in the fluid layer is presented for
both hard formation (v, > vy and soft formation (v, <
vp). First, we examine the fundamental mode, in this
case v <V, and the dispersion equation is given by
Eqn. (30). The amplitude of this wave decay
exponentially away from the interface in both media
and has most of its energy in the fluid (B. A. Auld
1985) and the waves in this case is called Stoneley
waves. This waves exist for all frequency (has no cutoff
frequency). At low frequency as f - 0, the phase
velocity approaches zero (Aki 1990). At high
frequency, k, Wy is large and Eqn (30) is reduced to

w?pk (k7 -Kk) +p,v7k,

x (& +k’)?-4k’k k } =0, 35)

the roots of this equation gives the Stoneley waves
velocity (Ewing 1960), which exists in the fluid-elastic
half-space boundary. The fluid layer in this case is
equivalent to fluid half-space (i.e. the surface wave is
damped out before it reach to the other boundary).
Figure (1) shows the dispersion curves for Stoneley
waves for different rocks materials as listed in Table

1).
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Table 1. Seismic velocities and physical parameters for test cases

Case Formation p, P, Poisson's  V, \A Ve
(gm/cm®)  (ratio) (m/sec)  (m/sec) (m/sec)
1 Granite 1000 2600 025 5900 3450 1500
2 Sandstone 1000 2300 0.27 3950 2200 1500
3 Shale (1) 1380 2300 0.3 2000 1100 1500
4 Shale (2) 1380 2300 035 2000 1000 1500
5 Shale (3) 1380 2300 0.45 2000 600 1500
1000 the cutoff frequency. Both the phase and the group
1 velocities approach the fluid velocity as kh = oo (see
1 Paillet and White, 1982; and Tang and Cheng 1988).
800
ﬁ 600~: """""""" Figure (3) shows the phase and the group velocities of
: ] the first three normal modes of sandstone formation as
g ] , listed in Table (1).
§and /"o
> - - Shale (1) 500 -

Frequency (kHz)

Figure 1. The phase velocity of Stoneley mode
for different rocks materials as listed in Table

1.

In the hard formation, the velocity of Stoneley wave
is very close to the wave velocity in the fluid, e.g. Vg,
= .997 v¢ for granite and Vg, = .992 v; for sandstone.

On the other hand, in the case of soft formation (v < |
vg) shale (1), the Stoneley wave velocity is much less

than the wave velocity in the fluid Vg, = .67 v;. The
effect of fracture width on the fundamental mode is

illustrated in Figure (2). The effect of decreasing the

fracture width is to decrease the Stoneley wave velocity
in the fracture. ' ‘

Next, the wave motion in the hard formation is
considered vp < vy < v, and vp<vy, <v,. In this case
a finite number of normal modes exist , each mode has
a cutoff frequency and starts from the shear velocity at

Velocity (m/s)

Frequency (kHz)

Figure 2. The phase velocity of Stbneley mode
for different fracture widths of shale (1) as listed
in Table (1).

In the case of soft formation, (vg < vp <v,) in which
a number of Leaky-P modes exist each has different
cutoff frequency. The phase and the group velocities
start at the compression velocity of solid at the cutoff
frequency and approach the fluid velocity at high
frequency (Tang and Cheng 1988). The phase and
group velocity as function of frequency is illustrated in
Figure (4). Shale (1) of Table (1) is used for this
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calculation. Another interesting case of soft formation
(Lucite) used by Tang and Cheng (1988) in their
experimental apparatus is studied. The physical
parameters for this case study is given in Table (2).
Figure (5) shows the phase and the group velocity for
this case. It can be noticed that the group velocity of
the fundamental mode in this case has distinguish

stationary point . -
2800 ~

s
T

SEEE-N
s 3
' $.3.2.4 l 2 O Ll

Velocity (m/sec)

— Group Velocity =~~~ "*

""I""l""i"1'
0 500 1000 1500 2000
Frequency (kHz)

Figure 3. The phase and the group velocities of

the first three normal modes for Sandstone as
listed in Table (1).

.........................................................

Velocity (m/sec)
)
S
T

800 | T L} L] T i yl L] ] T ; T T T Al :I T I e ]
0 500 1000 1500 2000
Frequency (kHz)

Figure 4. The phase and the group velocities of
the first three compression modes for soft
formation, Shale (1) as listed in Table (1).

2800
2400 4 °\»

%
P

Velocity (m/sec)

800

400—5 Group \;’elocity it

0

0 500 1000 1500 2000
Frequency (kHz)

Figure 5. The phase and group velocity of the

first three compression modes for soft formation,

Lucite as listed in Table (2).

The effect of increasing the Poisson's ratio on the
compression normal modes for shale (1) is presented in
Figure (6). Increasing the Poisson's ratio above 0.35
has a significant change in the phase and the group
velocities. This situation is also analogous to that of a
fluid filled a borehole in soft formation (Paillet and
Cheng 1986). ’

Table 2. The physical parameters of Lucite
p s(g/cm’) v, (m/sec) v (m/sec)
12 1300 2700

The real and imaginary parts of the normalized
fracture impedance (The fracture resistance and
reactance) versus frequency are plotied in Figure (7a,
7b) for different rock materials as listed in Table (1).
They are normalized by the characteristic impedance of
the fracture (Z; = (v¢ pg )/Ap. Note that for soft
formation, Shale (1), has higher resistance and
reactance than the hard formation, Granite and
Sandstone. At high frequency the fracture resistance
reduces to the characteristic impedance of the fracture
while the fracture reactance approaches zero as
explained at the end of section IV. :
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Figure 6a. The effect of Poisson's ration on phase Figure 7a. The real part of the normalized fracture
velocity of the compression first normal mode for soft impedance versus frequency for different rocks

formation (Shale 1) as listed in Table (1). materials as listed in Table (1).
0 —
f Granit
g 1] anite cF
2 rg Fomas ity e . o’ ’ .l.'
§ g 2] Sandstone o
g o) ] ’”
[=% 8_‘ : .f.
2 15 -3 ra
S g§ 1 Shale(n) -
;‘E‘ /S R TR
1500 i T T T T ; L] ) T Ll ; TRt i Al ; L .. T -5 ] T L T IlTYIl T v T ll!'ll T
0 50 100 150 200 0.01 0.1 1 3
Frequency (kHz) Frequency (kHz)

Figure 6b. The effect of Poisson's ration on group Figure 7b. The imaginary part of the normalized
velocity of the compression first normal mode for soft fracture impedance versus frequency for different rocks
formation (Shale 1) as listed in Table (1). materials as listed in Table (1).
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Figure 8¢ [rhe real part of the normalized fracture
impedance (The Fracture Resistance) of Shale (1) of
Table (1) versus frequency for different fracture
thicknesses.

0

.
........

Fracture Impedance Im (Zf)

-15 e A T .
0.01 0.1 1 3
Frequency (kHz)

Figure (8b). The Imaginary part of the normalized
fracture impedance (The Fracture Reactance) of Shale
(1) of Table (1) versus frequency for different fracture
thicknesses.

The calculated real (resistive) and imaginary (reactive)
parts of the normmalized fracture impedance versus
frequency for different fracture width 2h is shown in
Figure (8a, b). It is clear that increasing the fracture
width will cause the fracture resistance and the fracture
reactance to decrease. Also, at high frequency the

fracture resistance reduces to the characteristic
impedance of the fracture while the fracture reactance
approaches zero as explained at the end of section ii.
Thus, if the fracture impedance can be measured and
the physical parameters of the formation is known, the
fracture width can be estimated

CONCLUSION

The objective of this paper is to find an expression of
the impedance of a horizontal fracture intersects a
borehole. The wave motion in a horizontal fracture is
studied first. The fracture is modeled as a paralleled
plane channel of thickness 2h filled with fluid and
laying between two elastic half space. The results of
this study demonstrate that the soft formation (Shale)
has higher resistance and reactance than the harder
formation (Sandstone and Granite) Also, fracture with
small width has higher resistance and reactance. At
high frequencies the fracture impedance will reduce to
the characteristic impedance of the wave motion in the
fracture. The fracture impedance obtained in this study
can be used to estimate the fracture width at low

frequency range only.
REFERENCES

[1] A.A. Ashour, Ph.D. Dissertation, The University
of Texas at Austin, 1994.

[2] B.A. Aud, "Rayleigh wave propagation", Proc. of
an inter. Symps. organized by the rank prize
funds at the royal institution, London, July 1985.

[3] CH. Cheng and MNN. Toksoz, "Elastic wave
propagation in a fluid-filled borehole and
synthetic logs", Geophysics, vol. 46, no 7, pp.
1042-1053, 1981.

[4] B. Chouet, Dynamics of a fluid driven crack, J.
Geophys. Res., 90, 13967-3992, 1986.

[5]1 WM. Ewing and W.S. Jardetzky, Elastic waves
in layered media, McGraw-Hill Book co. 1957.

[6] V.Ferrazzini and K. Aki, Slow waves trapped in
a fluid-filled infinite crack: implication for
volcanic tremor: J. Geophysics Res. 92, 9215-
9223, 1987.

[7) F.B. Hildbrand, "Advanced calculus for
application, Prentice-Hall Inc., Englewood Cliffs,
Newlersy, 1976.

D8 Alexandria Engineering Journal, Vol. 35, No. 1, January 1996



(81

]

[10]

[11]

ASHOUR: the Impedance of a Fracture

C.R. Holzhausen and R.P. Gooch, "Impedance of
hydraulic fracture: its measurement and use for
estimating fracture closure and dimensions", SPE
13892, presented at the SPE/DOE Low
Permeability Gas Reservoirs held in Denver,
May 19-22, 1985.

B.E. Homaby, D.L. Johnson, K.W. Winker and
R.A. Plumb, "Fracture evaluation using Stoneley-
wave arnivals", Geophysics, vol. 54., no 10,
October 1989, pp. 1274-1288, 1989.

F. Mathieu and M.N. Toksoz, "Application of
full acoustic logging data to the estimation of
reservoir permeability”, presented at fifty-fourth
annual intern. meeting of the society of
exploration geophysics, Atlanta, GA, BHG1, pp.
9-12, 1984.

F.L. Paillet, Acoustic propagation in the vicinity
of fractures which intersect a fluid filled
borehole, paper presented ar 21st annual logging
symposium, Lafayette, LA, 1980.

Alexandria Engineering Journal, Vol. 35, No. 1, January 1996

~

[12]

[13]

[14]

[15]

[16]

F.L. Paillet and CH. Cheng, "A Numerical
investigation of head waves and leaky modes
filled boreholes", Geophysics, vol. 51. No 7., pp.
1438-1449, 1986.

F.L. Paillet and JW. White, "Acoustic modes of
propagation in the borehole and their relation to
rock properties, Geophysics, No. 47, pp. 1215-
1228, 1982.

R.W. Paige, IR. Murray, J.D.M. Roberts and
D.W. Mellor, "Field application of hydraulic
impedance testing for fracture measurement”,
SPE 24824, presented at the 68 The. annual
technical conference and exhibition of the society
of petroleum engineers held in Washington, DC,
October 4-7, 1992, 1992.

X.M. Tang and CH. Cheng, "Wave propagation
in a fluid-filled fracture-an experimental study",
Geophysics research letters, vol. 15, No. 13, pp.
1463-1466, 1988.

X M. Tang and CH. Cheng, "A Dynamical
model for fluid flow in open borehole fractures",
J. of Geophysics research, vol. 94, No. B6, pp.
7567-7576, 1989.

D9




