ABSTRACT

safety of the plates.

~ RELIABILITY OF ISUM MODELLED UNIAXIALLY LOADED PLATES

H.W. Leheta and Y.A. Abdel-Nasser
Marine Engineering and Naval Architecture Department, Faculty of Engineering
Alexandria University, Alexandria, Egypt.

The reliability. of plates modelled with the Idealized Structural Unit Method (ISUM) and considered
uniaxially loaded is studied. ISUM is used to assess the strength while a First Order Reliability Method
(FORM) is selected to calculate the safety index of the plates for both failure modes, namely, yielding
and buckling. Before the reliability analysis is carried out, the random variables involved are delineated
and suitable probabilistic models are selected. The present study combines nonlinear strength analysis with
- an approximate method to evaluate the safety index of the plates under study with consideration of the
effect of parameters such as plate thickness and statistical load variation on the safety index. Results for
an example plate are presented in the form of charts, that show the target safety index to the required
design load for different plate thicknesses, and that clearly show the influence of load variability on the

f - Keywords: ISUM, Yielding, Buckling, Probability of Failure, Reliability, FORM.

Nomenclature

Note: The terms not defined here are uniquely defined
in the sections in which they are used.

. Strain-displacement matrix
Stress-strain matrix
Young's modulus of elasticity
Strain hardening stiffness matrix
Post-buckling stiffness matrix
Post-buckling stiffness matrix
imaginary plate .
Elastic failure-free stiffness matrix
-Elastic-plastic stiffness matrix
Safety margin
-Vector of nodal forces
' Vector of nodal forces at point i
- Vector of total nodal displacement
‘Vector of total nodal displacement at point i
- -Displacement in x direction at point i
Displacement in y direction at point i
- Probability of failure
-~ - Safety. index
.- Gamma function
Buckling function
Yielding function
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Ty Yielding function at checking point i

€ Strain vector

®, {or'/oR};

v Poisson's ratio

c Stress vector

a, Material yield stress

0y Normal stress directed along the x axis

Oyay  Maximum allowable average stress i x
direction

o Critical buckling stress in x direction

Xcr

1. INTRODUCTION

Plates, both stiffened and unstiffened, largely compose
plated structures used in ship and offshore structures.
They constitute the major structural component in ships
and the main members in deck and accomodation
structures of both fixed and floating platforms. The
local response of these plates mainly influences the
response of the major structural components. Usually,
they are designed using special codes or rules. Such an
approach while relatively straight forward and simple,
does not yield the most efficient design. It is well
recognised that structural problems are undeterministic,
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due to the random nature of the parameters involved.
Clearly, the design of structures under different loads
should be based on methods of nonlinear strength
analysis and structural reliability analysis.

Ship plates are generally subjected to combined
biaxial stresses, shear stress and lateral pressure, mainly
due to still water bending moment and low frequency
wave induced bending moment. It is important to study
their reliability [1,2]. In this study, the strength analysis
and the reliability analyis of rectangular plate panels
subjected to wuniaxial loads are combined and
investigated.

Firstly, the Idealized Structural Unit Method (ISUM)
is adopted to analyze the non-linear behavior of plate
panels until their ultimate strength state. Thus, the
response of the considered plate panels under uniaxial
compression is evaluated at any loading condition.

The effect of initial imperfections suh as, initial
deflection and residual stresses is not included but will
be studied in a forthcoming paper by the same authors.

Secondly, a reliability analysis of the plate panels is
performed using a First Order Reliability Method
(FORM). The study of the reliability of plate panels
includes statistical modeling of dimensions, material
properties and loading. Also, possible formulations of
strength requirements and failure criteria are included.
Several examples of square plates with different
thicknesses subjected to uniaxial load are carried out
and the results are presented.

The aim of this study is to develop an efficient
approach to assess the reliability, i.e. calculate the
safety index of uniaxially loaded square plates in
yielding and in buckling. Results are presented in the
form of charts, that show the target safety index to the
required design load for different plate thicknesses. To
allow for inclusion of the influence of uncertainty in
the load estimation, the effect of changing its
coefficient of variation is included.

2. STRENGTH ANALYSIS

The hull of a ship is fundamentally regarded as a
thin-walled box girder whose major portion is usually
composed of stiffened plate panels. Under various
combined loads the hull is subjected to longitudinal
bending, shear and torsion. Locally, each member is
subjected to lateral loads, axial forces, bending
moments and shearing forces. The response of the hull
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girder is mainly affected by the response of the
individual members, such as plate panels. In order to
take such effects into account, and to evaluate stresses
acting on each individual member, a nonlinear analysis
of the hull girder should be performed, taking into
account geometric and material nonlinearities. Different
methods are available to analyze the behavior of
structures until their ultimate strength is reached. The
nonlinear Finite Element Method (FEM) is the most
powerful method for analyzing complicated behavior
until ultimate strength and it has a wide application in
various fields. However, the resources required by this
method put a practical limit on the size of the problem
to be handled. In this paper, the Idealized Structural
Unit Method (ISUM) [3] is adopted to analyze the
behavior of a plate panel until and after its ultimate
strength state .

2.1 General Behavior of a Rectangular Plate Panel

The behavior of a rectangular plate panel when
subjected to an increasing proportional load composed
of in-plane biaxial compressive forces, in-plane bending
moment and in-plane shearing forces may be
summarized as follows.

Before any failure has taken nlace, stresses in the
middle plane of the plate are linearly distributed.
Displacements are linearly proportional to the applied
load. As the applied forces increase, the plate buckles
when the acting forces satisfy the buckling criterion.
When buckling occurs, lateral deflection is induced in
the plate. As the load increases the lateral deflection
becomes significant. This results in a decrease of the
stiffness of the plate and stresses of nonlinear
distribution are developed in the middle plane of the
plate. The plate panel may continue to carry further
load as long as its edges continue to be effectively
supported. However, the large axial compressive stress,
in combination with the bending stress may cause
yielding to start and spread over a considerable area of
the plate. This leads to further decrease in stiffness and
causes the plate to reach its ultimate strength. As
compressive displacement continues to increase after
the ultimate strength is reached, the plate exhibits a
reduction of its carrying capacity. If the characteristics
of the plate are such that buckling does not occur, the
plate may continue to carry further load until it reaches
its fully plastic strength. Lateral load is disregarded
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when the inplane behavior of ship plates is considered.
Consequently, lateral loads are not considered in this
‘work.

' 22 Description and Behavior of ISUM Rectangular
Plate Element

- Ueda and Rashed [3] developed an effective method
analysis of nonlinear behavior of large structures. In
this method, the structure is divided into the biggest
possible structural units (components), whose geometric
and material nonlinear behaviors are idealized. In the
middle eighties [4,5], a rectangular plate element and a
rectangular stiffened plate element were developed. The
developed elements predict the behavior until the
ultimate strength is reached. An improved ISUM
rectangular plate element was developed to evaluate
the reduction of the post-ultimate strength [6].

~ The ISUM element is a rectangular plate as shown in
Figure (1a). Its edges are assumed to remain straight
after deformation. The plate element has four nodal
‘points, one at each comer. Bending stiffness of the

displacement and the nodal force  vectors are
represented as follows:
U=[U; U, U3 U5, U; = [u;, y]" M
R=[R, R, R; R,|", R, = [R;, R;|" @)

where a suffix T indicates the transposed matrix.

The plate is snmply supported at its edges. In-plane
biaxial compressive forces, in-plane bending moments
and in-plane shearing forces are applied as shown in
Figure (lb).

‘The behavior of the plate is investigated based on
undamental theories, refined theoretical analysis such
s the finite element method and experimental results.
lhe behavior is then idealized and conditions are
ulated for the possible or expected failures in the
late such as buckling and yielding. Stiffness matrices
¢ derived in each respective state, ic. before any
ilure and afier different combinations of failure. The
cremental method is applied and the response of the
ement is evaluated at each loading step. The idealized
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behavior of the rectangular plate element when
subjected to an increasing load is illustrated in Figure
(2) and may be summarized as follows.

|

(o}

B IR

T

Figure 1b. Rectangula.r plate panel and applied loads.

(k=i kP (k& =xE)

ULTIMATE STRCNGTH FULLY PLASTIC SIRENGTH

1y=0 1y 2

-

FAILURE FREE ELEMEMI

INCREASING LOAD

Figure 2. Behavior of the rectangular plate element.
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The relation between the nodal force vector R and the
nodal displacement vector U may be conveniently
expressed in the incremental form. Before any failure
has taken place, the relation between an increment AR
of the nodal force vector R and an increment AU of
the nodal displacement vector U may be expressed in
terms of an elastic stiffness matrix K° as follows,

AR = K°® AU 3)

As the nodal forces increase, the plate may buckle
when a buckling condition is satisfied.

FB =0 (4)

where I'y is a buckling function.

After buckling, the relation between AR and AU may
be expressed in terms of a tangential stiffness matrix
KB, taking account of post-buckling effects, as follows,

AR = KB AU )

The element may continue to carry further load until
yielding starts and spreads over a sufficient area of the
element. This causes the element to reach its ultimate
strength. A condition for yielding, I'y; atany point i
may be written as follows:

r,;=0 6)

After yielding starts, the relation between AR and AU

may be ex gressed in terms of an elastic-plastic stiffness

matrix K" with the aid of the plastic node method as
follows:

AR = KP AU Y

K¢, I'g, KB, I, and K appearing in Egs. (3) to (7)
are derived in tl{e following sections.

If the properties of the element are such that buckling
does not occur until the element reaches its fully plastic
strength, the yield condition and AR - AU relationship
in the post-fully-plastic strength state may be expressed
similarly by Eqs.(6) and (7). Expressions for I‘yi and
KP? in this case are as given in reference [6].
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The stress in the element may be expressed as,

2.2.1 Failure-Free Stiffness Matrix

Before any local failure, such as buckling, of the plaf
element occurs, membrane strains are assumed to b
linearly distributed, which is reasonable for a plat
panel in a large structure. The displacement function
satisfying the conditions of linearly varying boundar
displacement and constant shear strain along the platé
sides are assumed as follows:

uxy=a1+a2x+a3y+a4xy+b4(b2-y2)/2
vxy=b]+b2x+b3y+b4xy+a4(a2-x2)/2(j

where and v, are the displacements in x and
directions at a point (x,y), a; and b; are coefficients,
and aand b are the length and breadth of the element
The relation between Ae, an increment of the stram
vector ¢, and AU, an increment of the nod:
displacement vector U, may be derived as follows:

Ae =B AU )
where,

= [Ae, Ae A'y,,iy]T and

B is the stram-dlsplacement matrix.
The relation between Ae an increment of the stress
vector ¢ and Ae may be written as
Ao = D° Ae (10)

- T

where Ac¢ = [Aoy Aoy A7,y ]" and
D¢ is the stress-strain matrix in the elastic range.

The elastic failure free stiffness matrix K may then
be derived as follows:

= [BT D, BV (11)

where V is the volume of the element.

0=D°e¢=D°BU (12)
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222 Buckling Condition and Post-Buckling Stiffness
i Matrix :

The buckling condition I'g of the rectangular plate
element may then be written in terms of the average
normal stresses o,,, in x direction as:

T'p = Oxav/0xcr =l : 13)
where g, is the buckling critical stress.

After the plate element has buckled, out-of-plane
deflection is induced and the stress distribution in the
middle plane of the element (membrane stress) becomes
nonlinear. In order to continue to use the same
- displacement  functions as in Eq.(8) in the post
' buckling range, an imaginary flat plate with linear
stress distribution is considered. The material properties
of this imaginary plate are determined such that it
shows overall deformation equal to that of the buckled
plate under the same load (same stiffness K;,2). Then
the buckled plate is replaced by an imaginary flat plate
of homogeneous material, linear stress distribution and
 exhibits displacement similar to that of the original
- plate when subjected to the same load. That is, it has
the same stiffness [6]:

KB =K, B =[BT DPBaV (14)

223 Ultimate Strength Condition and Elastic-Plastic
Stiffness Matrix

In the case of a simply supported rectangular plate
which has buckled under uniaxial stress, normal stresses
along a half buckling wave become as shown in Figure
(3). This stress distribution is developed repeatedly
dlong each half buckling wave length of the plate.

T =ox2

2 2
y -0y 0, t 0, -0, =0 (15)

Ultimate strength will be reached after yiclding has
curred at a sufficient number of locations. To
uate the post-ultimate strength elastic-plastic
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stiffness matrix, it is first necessary to evaluate the
elastic-plastic ~ stress-strain  relationship. Then an
equivalent inplane elastic-plastic stiffness is evaluated
taking account of plasticity and out-of-plane deflection.
Finally the stiffness matrix is evaluated such that.

KP=KB-KP 0,0/ KB5S, (16)

(o)
xma>

.
Figure 3. Stress distribution in a buckled plate panel
under uniaxial compression.

When yielding occurs at m nodes, KP may similarly
be derived as follows,

KP=KP-K° @ 5 0" KB amn
where, @ =[@,,9,,.., 8,15, -0 (KP+K°) &

K° = f BT H B dV and H is an equivalent strain
hardening matrix ,see Ref.[6].

Thus, o,,, , the response of the considered plate
under uniaxial compression load can be evaluated b g
calculaung the considered stiffness matrices K, K
and KF at any loading condition . That means, the
response of the plate is calculated at the pre-buckling

stage (linear stage), buckling point, post-buckling stage
(nonlinear stage) and yielding point.
3. RELIABILITY ANALYSIS

3.1 Introduction to Reliability Theory

A deterministic approach was traditionally adopted in
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the analysis of structures in general and of ship
structures in particular. Safety factors were established
by means of engineering judgment to account for any
uncertainties.

Fluctuations in loads, variability of material properties
and uncertainties in the adopted analytical models have
lead to the development of methods capable of dealing
with the random nature of loads and material
properties. These so-called reliability methods are now
being widely adopted in the structural design stage and
in the safety evaluation of existing structures.

A structure is assumed to be either in a safe state or
a failed state. The state is quantified in terms of a
failure function. The structure changes from a safe state
to a failure state in different failure modes through its
limit states. A limit state is a condition of the structure
whereby it becomes unfit for its intended purpose at
any time during its specified design life.

A limit state function or performance function g(x)is
defined in terms of the set of basic variables x,
describing loads, material properties, geometry,
scantlings, etc. The limit state function satisfies:

O x in failure set
8g(x) =0 xon limit state surface
0 xin safe set

(18)

The "reliability” of a structure is its ability to fulfill
its design purposes for some specified time. Or, it is the
probability that the structure will not reach any of its
limit states during a specified time. It can be defined
as:

R =1-p; (19)

The "probability of failure", pg, is generally calculated
as followis:

pP M < 0)=P (g(x) <0)= f f (x).dx (20)

g(x) <0

where the safety margin, M, is defined as:
M =C - D = g (x) and f(x) is the joint probability
-density function ( PDF ) of the random vector X. The
above multi-dimensional integral is practically
impossible to calculate. Due tc the previous fact,
attention has focused on developing methods ( first-
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and second-order methods) as well as methods b
efficient simulation techniques. Reliability theory
the methods mentioned above are comprehensi
reviewed in [7] and [8].

3.2 Modeling of Uncertainties
In structural reliability, the calculated load e
(demand) and the strength of the structure (capaci

must be modeled to enable the assessment of its
see Figure (4).

Demand D fe ()

Probability in %%

Capacity
fo(d)

dc
Figure 4. Typical distribution function of demand

capacity.

Uncertainties are involved in all steps. Thes
uncertainties are the result of the stochastic nature ¢
the loads, the variability in material properties an
dimensions and the simplifications and assumption
used in the different adopted models.

Uncertainties are classified into two categories [9)
random (natural) and modelling. The former are due t
the random nature of the loading environment and th
resulting loads and to variability in material propertie
and structure dimensions. The latter are due to lack o
data on various phenomena and simplifications an
idealizations in the analysis procedures. Modellin;
uncertainties will not be considered in this study.

In order to quantify the uncertainties, the basi
random variables such as loads, material properties
dimensions, etc. are defined and denoted as previously
stated by the vector X, and their outcomes denoted b
the corresponding lower case vector, x. A listing of the
variables affecting the reliability of uniaxially loade
plates and their statistical variability, presented in [1
and [2], is given in Table (1).
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- Table 1. Statistical modelling of variables affecting

plate reliability
Variable | Symbol | Description | Distribution | cov % ||
X(1) t Plate thickness | Log-normal | 0.54
X(2) oy Normal stress in Normal 15-40
x-direction
X@3) E Young's modulus Normal 1-2
X4 a, Yield stress Normal 4-10 H
ST R Y

3.3 Reliability Analysis Method

A reliability method is a method to decide if a
structure is acceptably reliable. In this investigation, a
First Order Reliability Method (FORM) is adopted
whereby the limit state function is linearized.

The first step in the analysis is to transform the basic
correlated random vanables X to standard normal
correlated variables Z, by using the Nataf model, see
[10]. Uncorrelated variables Y are then obtained by
multiplying Z with the triangularized covariance matrix.
The limit state or performance function than becomes:

Gy () =g,(x) =0 @n

The idea in FORM is to approximate the limit state
surface at the point y* closest to the origin 0 by its
tangent hyperplane, refer to Figure (5). 8 = IY‘I is the
Hasofer-Lind [11] safety index. To determine y* an
optimization problem must be solved and a suitable
- algorithm [8] chosen.

The approximation to the failure probability is:
pr= (BB ~-F (p 22)

where @ is the standard normal distribution function.
The safety index 8 has no absolute significance but is
a relative measure assessing the safety of the structure.

34 Performance Functions for the ISUM Plate
Element

A design criterion is a condition that a structural
element does not reach any of its limit states. A limit
state is a state in which the structural element loses one
of its intended functions. Structures must be designed
with limits or constraints against different modes of
failure. The two types of failures considered in this
study for plate clements are:

.
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*Buckling
*Yiclding

Each failure mode is represented by a corresponding
performance function in terms of the basic design
variables.

failure ser

limit state surface
Gy (=0

tangent hyperplane

)‘A
Figure 5. Illustration of safety index @ in uncorrelated
standard normal space.

3.4.1 Performance Function for Design against
Buckling

Buckling occurs when the plate carries in-plane
compressive loads. Here only loading in the x direction
is considered. The buckling condition I'y representing
the performance function of the rectangular plate
element under consideration may be written in terms of
the average normal stress o,,, in the x direction, as
given in Eq. (13), from which the following is deduced:

0 Failure set
M=l-3—“—'-=0Failure surface (23)
T |0 Safe set

342 Performance Function jfor Design against
Yielding

When the axial compressive load is small or the plate
element is relatively thick and short, the plate will not
buckle. When the maximum equivalent stress reaches
the material yield stress, a substantial loss of stiffness
occurs and the plate becomes unable to carry further
load.
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The yielding condition I'y of the rectangular. plate
element is the von Mises criterion, which may be
written as in Eq.(15).

. The safety margin, M, then becomes:

0 Failure set
M=¢ 2—ax2+ax 2{=0 Failure surface (24)
0 Safe set

4. PARAMETRIC STUDY

In this section, a parametric study is performed on
square plate panels (1000x1000 mm.) with different
plate thicknesses modelled using the Idealized
Structural Unit Method (ISUM). The described
calculation procedures for the safety index and
consequently the probability of failure of the plate,
using Eq.(22), are applied. In these analyses, the safety
index and the probability of failure are plotted at each
loading step and at the possible failures modes.

Fixed deterministic values are assumed for Poisson's
ratio and for the length and width of the plate. Normal
distributions are assumed for Young s modulus with a
mean value of 21,000 kg/mm and yield stress with a
mean value of 28 kg/mm? . The coefficients of
variation are taken to be 2% and 10%, respectively,
based on values given in references [1] and [2].. As
has been noted previously, modelling uncertainties have
not been included. The results of the parametric study
are presented in the following subsections with two
important parameters considered, namely: the mean of
the plate thickness and the coefficient of variation (cov)
of the average stress in the x-direction g, . The results
are all plotted against the mean of nonnallzed load , the
normalized load deﬁned as:

Normahzed load xav! 90

4.1 Effect of Plate Thickness

The plate thickness is modelled by a log-normal
distribution with a 2% coefficient of variation. ¢, is
assumed to have a normal distribution with a 15% cov.
The safety mdex for three typical values of plate
th1ckness namelyg tlemm 16mm, and 24mm is
calculated and. plotted“agmnst normal load. The results
are shown in Figures (6), (7) and (8) for both buckling

A %4

20.0
3 PLATE THICKNESS=10 MM
- ———  BUCKI NG MODE
5.01— = VIELDING MODE !
! |
% K
g 100
= A
%}
[ -
< =3
W
5.0~
(870 oo eNS TS, SN BRIP4 St - S8
- 5 T
e et ale s g gy g g o] dgeiy TR
50(.)20 0. 30

and yielding modes of failure. Figures (9), (10) and
(11) show the relationships of probability of failure to
normalized load for the same plate thicknesses. Figures.
(12) to (15) depict similar relationships for a wider
range of plate thicknesses.

0.40 0.50 0. 60
NORMALIZED LOAD .
Figure 6. Relationships of safety index to normalized
load for thin plate, =10 mm.

20.0 -
B PLATE THICKNESS=16 MM
: ~—— . BUCKLING MODE
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8 [
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8
0.0
._.l-')('l\ 1 1 - l L i i i l 1 i i 1 ] 1 1 l' 1
‘6. 20 0. 40 0. 60 0. 80 1.¢
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Flgure 7. Relatlonshlps of safety index to normahzed
load for medium plate, t=16 mm.
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Figure 8. Relationships of safety index to normalized
load for thick plate, =24 mm. Figure 10. Relationships of probability of failure to
nomalized load for medium plate, t=16 mm.
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Figure 9. Relationships of probability of failure to
normalized load for thin plate, =10 mm. Figure 11. Relationships of probability of failure to
normalized load for thick plate, t=24 mm.
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Figure 12. Effect of plate thickness on the probability

of failure, yielding mode.
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Figure 14. Effect of plate thickness on the safety index,
yielding mode.
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Figure 15. Effect of plate thickness on the safety index,
Figure 13. Effect of plate thickness on the probability ~ yielding mode.
of failure, buckling mode.

It is shown from the obtained results that the safety
index, comresponding to the buckling failure mode, is
the smaller for thin plates; also the safety index,
corresponding to the yielding failure mode, is the
smaller for thick plates for all loading steps. And hence
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buckling is the suitable design criterion for thin plates
while yielding is the suitable design criterion for thick
plates.

It should be noted that a safety index equal to 0
corresponds to a probability of failure equal to 0.5. A
negative safety index corresponds to a probability of
failure larger than 0.5.

42 Effect of COV of Load

A most important source of uncertainty in the safety
assessment of plate panels is that related to the loading.
To study its effect on the safety index and consequently
on the probability of failure, the coefficient of variation
(cov) of g, is varied from 0.1 to 0.4 with a 0.05
increment. Figures (16) and (17) show the relationships
of the probability of failure with the normalized load,
with varying cov of load, in the yielding and buckling
failure modes, respectively. Figures (18) and (19) show
the relationships of the safety index with the
normalized load , with varying cov of load, in the
yielding and buckling failure modes, respectively.

- The figures show that the larger the cov of the load,
the smaller the safety index for the yielding mode of
failure. For the buckling mode of failure, the curves
intersect at the point where the safety index becomes
equal to 0, or the probability of failure equal to 0.5.

0.60
0.50 — iz
YIELDING MODE
(T=16 MM)
A 0.40 - ~@— COov=01
g s —@— Cov=o1s
= - —@— COV=02
~4 - —dp— COV-025
w 030 (- ’
) £ - COV=03
o - —-- COV=03s
] i —¥— COv=04
% 02
0.10 |—
=
0.00

0.00 0.20 0.40 0.80 0.80 1.00
NORMALIZED LOAD

- Figure 16. Effect of the coefficient of variation of the
" load on the probability of failure in yielding.
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Figure 17. Effect of the coefficient of variation of the
load on the probability of failure in buckling.
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Figure 18. Effect of the coefficient of vanation of the
load on the safety index in yielding.
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Figure 19. Effect of the coefficient of variation of the
load on the safety index in buckling. ]

5. CONCLUSIONS

This paper has demonstrated an efficient method for
predicting the safety of rectangular plate panels.

The paper has presented the results of the analysis
performed on a 1000x1000mm square plate panel in the
form of charts showing the safety index or the
probability of failure of the plate panel considering both
yielding and buckling, as a function of normalized load.
The influence of plate thickness and that of load
coefficient of variation, being the two most important
parameters, are shown.

The following conclusions may be deduced:

1. ISUM and FORM were combined to assess the
probability of failure of rectangular plate panels
under uniaxial loading. Both methods are
approximate methods yielding good results suitable
for design purposes.

2. This study was performed for single uniaxial
loading but may be extended to include more
general loading on the plate: combined biaxial
stresses, shear stress and lateral pressure.

3. The methods  described can handle different
distribution types for the design variables involved.

4. The procedure may be extended to include
modelling uncertainties.

5. The results of the following study may be extended
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for different size plates and used for rule calibration
and to help in the choice of safety factors for
uniaxially loaded plates.
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