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In this paper, a numerical technique for integrating the
transient one-dimensional conservation equations of mass,
momentum, and energy is presented. The technique is based
on an implicit finite difference formulation ( sometimes
called Brsching's method). A computer program is developed
and used to study the thermo-fluid transients of blowdown
problem (i.e. sudden depressurization of a straight pipe of
a given initial pressure condition and sudden openning of
one end). The developed program is simple, flexible, and
could be extended to analyse the sudden depressurization of
~"",l:::l. ~~~~~ ~\...l:::l."'" ~~~~~,



A Flow path area 2m
....,

in equation (1)C Matrix defined

D Diameter m

e Specific internal energy J/kg- (1)F Matrix defined in equation

f Coefficient of friction- (8)G Matrix defined in equation
2G Mass Flux kg/m .s

Gravitational 2g Acceleration m/s

H Height m

1 Length m

M Mass kg

P Pressure Pa

Q Wall heat flux W/m2

t Time s

u Velocity ml s-U Matrix defined in equation (1)

U Total energy J

V Volume 3m

W Flow rate kg/~

x Flow direction coordinate-y Matrix defined in equation (5)

Greek Letters

'Y Specific heat ratio

Densi ty 3~ kg/m
or Wall shear stress N/m2



When the back pressure Pb is reduced below an upstream
pressure P in a flow system, flow begins and a gradiento
is established in the connecting channel between P and ao
pressure P at the exit of the channel. This flowe
increases as Pb is reduced further and the exit pressure
Pe equals Pb up to the critical (choked) condition at
which the exit velocity equals the speed of sound. This
phenomenon occurs in both single and two-phase flows.
Although it has long been observed in boiler and turbine
systems, flow of refrigerants and rocket propellent,
serious theoretical and experimental studies of the
transient behaviour of the phenomenon have been made only
in recent years. This phenomenon is of utmost importance in
safety considerationS of nuclear reactors. A break in a
primary coolant loop, for example, results in a rapid loss
of coolant which exposes the reactor core to a steam
environment which may lead to a core melting. An evaluation
of the transient rate of flow out from the broken channel
is therefore of importance for the design of emergency core
cooling and for the determination of the extend of damage
in accidents, see reference [1] to [5].

Most current programs solve the conservation equations of
mass, momentum, and energy using explicit numerical
integration methods. The nature of the nonlinearity of
governing differential equations associated with these
systems require severe time-step restrictions in an
explicit numerical integration methods. An implicit method



that utilizes block inversion techniques will be presented
in the present study. The developed program is given with a
case study of the depressurization problem of a single
phase transient in straight pipe.

The derivation of the conse~vation equations in the present
technique is based on the node-flow path concept in which
control volume, denoted as nodes, are connected to other
control volume via a flow area, denoted as flow path. In
such node-flow path arrangement, Figure (1), the equations
of conservation of mass and energy are solved in the nodes
and the momentum equation is solved in the flow path. By
solving these three .equations in this manner, one value of
the total mass and one value of total energy are known for
each node and the average flow is known in a flow path. To
obtain these average values, the conservation of mass and
energy must be spatially integrated from Xi to Xi+1 and
the conservation of momentum equation integrated from
Xi_t to Xi+t, see Figure (1). Detailed derivation of
these conservation equations is now presented.
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From these equations, it is clear that the unkown variables
are Mi, Wi' and Ui for all nodes. Let these variables..,
put in a vector form Y where;
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Y = U2 (5)
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The conservation equations (2) to (4) can then be written as

dY
Y = dt = F(Y)

Using an implicit finite difference representation,
equation (6) can be written as:

,., n+1 .•.n
Yi - Y i 1__________ = F(Y n+ )

i

y~+1 _ Y~ _ t. t • F" ty~+I) = 0 = G (y~+I) (8)

Using Newton method to get the roots of equation (8):
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Equation (11) is 3M simultanious linear equations and could
be solv~d for Dy where:
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The Jacobian matrix will end as a block diagonal matrix as:
x x x x x x
x x x x x x 0
x x x x x x
x x x x x x x x x
x x x x x x x x x
x x x x x x x x x

x x x x x x x x x
x x x x x x x x x
x x x x x x x x x

[RJ] = .................
.................

x x x x x x x x x
0 x x x x x x x x x

x x x x x x x x x
x x x x x x
x x x x x x
x x x x x x



The derivatives of the momentum equation (3) are
• W 2 V W 2 VdW a Pii - f C2 C3 i )= c2 ( 2---'2) + c3 ---- ( z--y--
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Other terms are calculated in a similar way and are omitted
here.

The compuation steps to be followed can be summarized as,
shown in Figure (2),

1. Read the required data such as nodes number, volumes,
flow area, length, and time step.

2. supply the initial conditions for each node, as, mass,
flow rate, and energy (Subroutine IC).

3. Supply the problem boundary conditions and flow
properties, equation of state (Subroutine PROP).



4. Calculate the matrices [RJ] and [BB] and then solve
equation (11) for the matrix [DY] iteratively.

5. Use these results as initial values for the new time
step and print the results if necessary.

6. Advance the time by an incremental time step dt, and
repeat from step 3 above.

7. When the computation time specified is over, or
steady state is reached, stop calculations.

The case study that will be presented herein is for
ideal gas. The ideal gas state equation can be written
as a function of Mi, Wi' and Ui as follows:

R=M-(c.T)
c v
v

But; the specific internal energy e = cv• T, and the
specific heat c = R/ (y - 1), therefore:v

The total energy U is equal to internal and kinitic energies
so that; U = M(e+ 0.5 u2).,therefore:

U 2
e II: 1:r - 0.5 u
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Figure (1) presents the schematic of the blowdown case
2study system. It represents a 50 m long pipe of 0.4 m

flow area. The pipe is divided into 10 equal control
volumes of 2 m3 each. The initial and boundary
conditions are given in table (1) below; where:

2= M(c T + 1/2. u )
v



Table 0) Initial and Boundary Conditions

----
P (0) ata 2 5 10

I.C.
1" -5 2P (0,x) ~~!m ? n'l .:: I:: roe:. lro 1?1::.. .•.v ~.VL.V JevV .&.v •.• .."IJ

W( n _.) k"'/" 0 0 0,V,A" o' -

~(O,x) kg/m3 2.35 5.875 11.75

M(O,x) kg 4.7 11.75 23.5
U(O,x) xl06 J 1.01 2.525 5.05

B.C. 5 2
- P (t, lMAX + 1) = 1.01 x 10 N/m

Figure (3) shows the transient developent of the system
parameters; pressure, flow rate, velocity, total energy,
and enthalpy. These results are shown for two different
nodes (control volumes) No.7 and No. 10. The results
indicate that after a period of time (dependent upon the
initial and boundary conditions as well as flow areas),
the outlet velocity and flow r£te reach their maximum
values after which they remain constant. This condition
is known as critical or choked conditions during which
the outlet veloci ty reaches the soni.cspeed at the local
and transient conditions. Increasing the system initial
pressure to 5 ata and 10 ata changes the depressurizat-
ion rate and choking conditions, Figure (4).
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