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ABSTRACT

In this paper, a numerical technique for integrating the
transient one-dimensional conservation equations of mass,
momentum, and energy is presented. The technique is based
on an implicit finite difference formulation ( sometimes
called Brsching's method). A computer program is developed
and used to study the thermo-fluid transients of blowdown
problem (i.e. sudden depressurization of a straight pipe of
a given 1initial pressure condition and sudden openning of
one end). The developed program is simple, flexible, and
could be extended to analyse the sudden depressurization of

i Yhese o cases

‘'Alexandria Engineering Journal April 1988



96 Hassan E. S. Fath

§

Flow path area

Matrix defined in equation (1)

o ol »

Diameter

Specific internal energy
Matrix defined in equation (1)
Coefficient of friction
Matrix defined in'equation (8)
Mass. Flux

Gravitational Acceleration
Height

Length

Mass

Pressure

Wall heat fiux

Time

Velocity

O Y R -ome o Tl

Matrix defined in equation (1)
Total energy A
Volume

Flow rate

Flow direction coordinate

<X ¥ < & ape

Matrix defined in equation (5)

Greek Letters

Y Specific heat ratio
4 Density
T Wall shear stress

Alexandria Engineering Journal

J/kg

kg/mz.s

m/s

kg
Pa
W/m

m/ s

kg/s

kg/m>
N/m

April 1988



Numerical Study Of Transiert One Dimensional 97

INTRODUCTION

When the back pressure Pb is reduced below an upstream
pressure Po in a flow system, flow begins and a gradient
is established in the connecting channel between Po and a
pressure Pe at the exit of the channel. This flow
increases as Pb is reduced further and the exit pressure
Pe equals Pb up to the critical (choked) condition at
which the exit velocity ‘equals the speed of sound. This
phenomenon occurs in both single and two-phase flows.
Although it has long been observed in boiler and turbine
systems, flow of refrigerants and rocket propellent,
serious  theoretical and experimental studies of the
transient behaviour of the phenomenon have been made only
in recent years. This phenomenon is of utmost importance in
safety considerations of nuclear reactors. A break in a
primary coolant loop, for example, results in a rapid loss
of coolant which exposes the reactor core to a steam
environment which may lead to a core melting. An evaluation
of the transient rate of flow out from the broken channel
is therefore of importance for the design of emergency core
cooling and for the determination of the extend of damage

in accidents, see reference [1] to [5].

Most current programs solve the conservation equations of
mass, momentum, and energy using explicit numerical
integration methods. The nature of the nonlinearity of
governing differential equations associated with these
systems require severe - time-step restrictions in an

explicit numerical integration methods. An implicit method

Alexandria Engineering Journal April 1988



98 Hassan E. S. Fath

that wutilizes block inversion techniques will be presented
in the present study. The developed Program is given with a
case study of the depressurization problem of a single

phase transient in straight pipe.
DERIVATION OF CONSERVATION EQUATIONS

The derivation of the conservation equations in the present
technique 1is based on the node-flow path concept in which
control volume,‘ denoted as nodes, are connected to other
control volume via a flow area, denoted as flow path. In
such node-flow path arrangement, Figure (1), the equations
of conservation of mass and energy are solved in the nodes
and the momentum equation is solved in the flow path. By
solving these three equations in this manner, one value of
the total mass and one value of total energy are known for
each node and the average flow is known in a flow path. To
obtain these average values, the conservation of mass and
energy must be spatially integrated from Xi to Xi+1 and

the conservation of momentum equation integrated from

Xi_} to xi+}’ see Figure (1). Detailed derivation of

these conservation equations is now presented.

The basic equations can be written in the vectorial form as
follows:

~ I~
au aF
e 4 cee = (C (1)
9t 3x

Where:
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P G 0
u = |pu , F= Gzlp+P » C=| - (Y¥+pg -g-;l)
P
pe G(e+ -’3) Q

Integrating these equations we get

Mass
- dMi
M = - =W, - W (2)
dt i-1 i
Momentum
. Wy “21-1 "21
W o= —mem=Cy (ooeeee s ----;-- ) + €y (B, - Py
dt A A
S Ll Pif 541
2
W i
- £CyC4 (“'5“ )-8 (pg B ) -p g H)
/oiA i+l
Energy
dUi U + PV U+PV
U= comce = ( ccmaeas W)i-l'( -------- w)ii-Q
dt M M
2 Li Li+1
Where; C2 = cocmmmmmcccccacaaao y €3 =2 ( wecaa 4+ emeea )
(Lylay +1y,0/8,)) Dy Diel
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From these equations, it is clear that the unkown variables

are Mi’ Wi’ and Ui for all nodes. Let these variables

-~p
pPut in a vector form Y where;

~1
]

(5)

n

%)
n
L U

The conservation equations (2) to (4) can then be written as

~

Y=E=F(Y) (6)

Using an implicit finite difference representation,

equation (6) can be written as:

'; ‘n+l -3

S i F(Yim'l) (7
At
P L . G™ -0 - ¢ @™, (8)
i i ¢ i - - i
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~ . n+l
Yn+1 _ Yn+1 - ?EYE___ (9)
k+1 k 3 G(Ykn+1)
con+l”
ay K
~ 1
aG(Yl'H- .
Yﬁﬁ = Y2+1 - ---:.‘1;1-= - G(Y:’]' (10)
ayY
k
Where: n+l n+l
a G(Yk. ) a F(Y," ™)
T i I -At¢t. T e Jacobian Matrix
8y ayY
Tk K
Therefore equation (10) will be :
1
3aF(Y™™)
(r "t - (- At —eeeee- Ey - oy Cae F(Y':l)
] OYn+1
k
or
{pyl. [RJ] = [BB] (11)
where ;
n+l _n+l
(oYl = v . -Y,
3 F(Y:TI
[RJ] = Jacobian Matrix = I =At . ==c=cge----
n+
2Y
k
n+l n n+l
[(BB] = Y- .Yk -At. 1?(5{k )

Equation (11) is 3N simultanious linear equations and could
be solved for Dy where:
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The Jacobian matrix

[RJ] =

M| 7
M FFl(Ml,wl, Upsees UY)
W, Fz(ul,wl,ul, cee UN)
Ul F3(M1 Sevsevesn UN)
y F(Y) = Y = =
“N
Un| | Fy(Mp¥p,00, ... uy)
L J L .
aMl aMl 6M1 aM1 ) Ml
———— ———= ———— ——— 5T
Wl 6U1 aMZ aw2 N
it S T T !
awl 3U41 BMZ GWZ aUN
aUN TaUN ‘e se T e aUN
awl aul EUN
will end as a block diagonal matrix as:
FX X X x x x -
X X XX X Xx 0
X XXX XX
X X XXX XXXX
X X X X XXX X X
XXX XXXXXX
X XXX XXXXX
XX XX XXX XX
XXX XXXXXX
' XXX XXXXXX
0 X X XX XXX XX
XX XXXXXXX
X X XX XX
X X X X X X
X X X X X
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The derivatives of the momentum equation (3) are ;

aw wi2 v op, wi2 v
-——— = C2 ( z---z) + C3 -«-2 - £ C2C3 ( -2---2--- )
M
M, My Ap oMy My Ava
W -2 W, ~op, 2w,
- =C, (ceg-=- ) 4C, wees -« £ C, C, (em=z- )
g 2 PAZ 3 2 ©3 07
i i+l awi PA1+1
" dw op,
du, 8y,

Other terms are calculated in a similar way and are omitted

here.
Computation Steps

The compuation steps to be followed can be summarized as,

shown in Figure (2),

1. Read the required data such as nodes number, volumes,

flow area, length, and time step.

2, supply the initial conditions for each node, as, mass,

flow rate, and energy (Subroutine IC).

3. Supply the problem boundary conditions and flow
properties, equation of state (Subroutine PRCP).
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4, Calculate the matrices [RJ] and [BB] and then solve
equation (11) for the matrix [DY] iteratively.

5. Use these results as initial values for the new time

step and print the results if necessary.

6. Advance the time by an incremental time step dt, and

repeat from step 3 above.

7. When the 'computation time specified 1is over, or

steady state is reached, stop calculations.
CASE STUDY

The case study that will be presented herein is for
ideal gas. The ideal gas state equation can be written

as a function of M Wi, and U, as follows:

i’ i

PV = MRT =M§(c . T)
. Cv \'4

But; the specific internal energy e = c, T, and the

specific heat c, = R/ (y - 1), therefore:
PV = M(y -1) e.

The total energy U is equal to internal and kinitic energies
so that; U = M(e+ 0.5 uz), therefore:

e =« %}- 0.5 u2
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PV =M (Y- 1)(-:’7-0.5\12)
From the continuity equation, the flow velocity u can be

given as : u=W/p A = V.W/ (M.A), therefore:

(y-1) v2 wi2 )
P, = =—cee=m- (U, = -=-x=-
i v 17 a2
i
8P
and : i ( (v -1). v.wf / (2.Af. Mi))
aM,
i
3P
oo vy a2 M)
oW
i
oP,
== =(y-1))/v
3 v
Uy

Initial and Boundary Conditions

Figure (1) presents the schematic of the blowdown case
study system. It represents a 50 m long pipe of 0.4 m2
flow area. The pipe 1is divided into 10 equal control
volumes of 2 m3 eacﬁ. The initial and boundary

conditions are given in table (1) below; where:

p=P/RT, M=pV, W=gp@.nuA

U = M(e + 1/2. uz) = M(ch + 1/2. uz)
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Table (1) Initial and Boundary Conditions

P(0) ata 2 5 10
I.c. <
P(0,x) % 107  w/md 2.02¢ 5.06 10,135
W({o,x) kg/e 0 0 0
60, %) kg/m> 2.35 5.875 11.75
M(0, x) ke 4.7 11.75 23.5
U0,x) x10° 3 1.01 2.525 5.05
B.C. 5‘ 2

P(t, IMAX + 1) = 1.01 x 10 N/m

Figure (3) shows the transient developent of the system
parameters; pressure, flow rate, velocity, total energy,
and enthalpy. These results are shown for two different
nodes (control volumes) No.7 and No. 10. The results
indicate that after a period of time (dependent upon the
initial and boundary conditions as well as flow areas),
the outlet velocity and flow rete reach their maximum
values after which they remain constant. This condition
is known as critical or choked conditions during which
the outlet velocity reaches the sonic speed at the local
and transient conditions. Increasing the system initial
pressure to ° ata and 10 ata changes the depressurizat-

ion rate and choking conditions, Figure (4).
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