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cases, f2 (t) = R/L and fs (t) = (V/L) sin (wt + @) and then

fS (t) = o. Tables giving values of w/wO 5 R/wo L. and other
intermediate parameters for steady state oscillation, with V
0, are given, for various "k". Simple closed form
characteristic relations between the parameters "k" and
%j /w2 for periedic oscillations in the three cases are
attained, (V =0 = f2(t)), with no need for using series

expansion and continued fractions techniques.

1. INTRODUCTION

It is well-known that continuous linear time-varying
systems' analysis 1is much more difficult than that of time
invariant systems, since the response of the latter is
described by simple exponential functions while the response
of time-varying systems must be described by unkown complex
function of two variables, namely the time "t" at which the
excitation (input) vs( T) is applied and the time "t" at

which the response x(t) is measured and

x(t) = [ h(t, T)v_(1)dr (1)
s
- o
This superposition integral is generally cumbersome to work
with. If the system is time invariant, h( t,t) depends only
@©
on (t -1) , and x(t)= J'h(t -0v_(1) dt, this is the

familiar convolution. In the frequency domain, and for

periodically time-varying systems, (1) 1s given by [1]:

x(w) = % P (W - 20 Kk/T). V_(w - 21 k/T) (2)
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Periodical Time Varying Systems 3

where p(t-1) = h (t,t -1); T is the period of the periodic
variations of the system. For time invariant systems k=0
and x(w) = H(w) Vs(w). It 1s clear from (2) that the

spectral input-output relation of periodically time-varying
systems is much more complicated and cumbersome to work than

that of time invariant systems. If the input signal
vs(t) = V cos wst. equation (2) gives
x(w) =nV_} P _(w=21k/T)[6 (w=w_-27T k/T)+6 (wsw =2 T k/T)]
Sk k s s

and if [(2 nk/T)ws] is a rational number, the response
x(t) 1is a complex periodic wave of fundamental angular

frequency "ws".

The series L-C -R circuit with a sinusoidal input signal
of angular frequency w/2mand with Ct periodically varying
with time in a Fourier series form of fundamental angular
frequency 2w, was analysed by the author, a long time ago,
using the methods of superposition and successive
approximations [2]. The same methods were also used by the
author at that time for analysing L-Ct and Lt—C circuits
with no input signal [3], [4], for the whole range of
periodic variations, where Ct=co/ (1+k cos 2wt) and
Lt=Lo(1+k cos 2 wt). In connection with numerical
methods, spectral analysis of periodically time varying
linear networks with a sinusoidal input signal appropriate
for computer-aided design is given in [5], steady-state

solution is only considered.

It is clear that there is still a need for a simple

analytical method for analysing such systems. This is the
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purpose of the present paper. The method adopted is the
distorted time scale method originated by the author [6],
[7]. Although the method can be applied to periodically time
varying systems of any order so long as the output
response is represented by a complex periodic wave-yet second
order types are analysed since they represent many of the

applications.They are governed by the following equation:
f1(t)dx/dt+f2(t).x+f3(t)f x de=f_(t) (3)

f1(t).f2(t) and f3(t) are single-valued synchronized
periodic functions of time represented in a Fourier series
forms, and fs(t) 1s the driving source given in Fourier

series form.

The distorted time scale method depends upon the fact that
when the time scale of a periodically complex wave x(t) is
instantaneously distorted in a suitable manner, the
resulting wave 1s a simple cosine in a distorted time
parameter " é“, given by x(t) = A cos®g, andeazwst + y(t).
The peak amplitude "A" is constant, and v is the
fundamental angular frequency of the input signal. (w/ws).
(=p) must be a rational number for the output x(t) to be a
complex periodic wave of fundamental angular frequency
w.-

Without loss of generality, the present analysis is limited
to the steady-state solutions of waveform x(t) expressed in
odd harmonics which occur when £, (t), f2 (t) and f3 (t) are

of even harmonics while fs(t) is an odd harmonic function.

In this case, ¥ (t) is periodic of period sz. Under the

condition of having one maximum amplitude over a complete
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Periodical Time Varying Systems 5

cycle, the parameter "© " is steadily increasing with time
and dt/d6 1is positive and the 9-t relation can be inverted

to t = (1/w)e + a periodic function of "6" of period w and

at/d o= (1/w )1 + } (h_cos 2ré+ g_ sin 218)] (4)
r=1

Integrating dt/d B gives,

wt=wt + 8+r ; ihr/Zr)siane - (gr/2r)c052r8] (4.a)
"ws ts " 1is the constant of integration; thus "8" is a
function of "t-ts". "t" 1is the time at which the
excitation (input signal) occurs and "t--tS " is the time at
which the response x(t)(=A cosf) occurs. "ws tS " has an

important role in the solution.

In this case, equation (3) is given by

(1+ § a cos 2 rwt)dx/dt +bo[1+ ) b _cos 2rwt]x +
r=1 r=1

dD[T + ) d_cos 2 rwt] [ x dt= J vy sin(2s-1)w_t+ a ]
r =1 s =1 (5)
where " o" is a phase angle. This phase angle "a" is used to
control the exchange of energy between the driving electrical
input source fs(s) and the driving synchronized mechanical
(or otherwise) sources producing the periodic variations of
the system. This control is enhanced if ws = w and thus, in

the following analysis "ws 1s teken equal to "w".

2. DETERMINATION OF THE RESPONSE X(t) OF NETWORKS
REPRESENTED BY (5)

Equation (5) is put in the form:

Alexandria Engineering Journal October 1987



6 Abd El Samie Mostafa

{1+ ) a_cos[2 rw f(dt/a @)de 1} (dx/de)/(dt/d e )+
1

b {1+ ) b cos [2 rw f(dt/a ©)da 6 1} x +
1

d, 1+ {dr cos[2 r w f(dt/d 8) d 6 ]} [x(dt/d6 )d e
1

=1 v, sin [(2s=1)w f(at/da 8)30 +al (6)
1

Substitution of (4-a) and putting x=A cos 8 in (6) gives an
algebraic equation 1in the unknowns hr 3 qr , A and wts i
Solution is attained by matching at several values of "©"
equal to the number of unknowns. The algebraic equation is a
truncated Fourier series containing sin n 6 , cos n8 , with
n=1:345, etc. If the sampling (matching) points are
equispaced and the- number of samples were close to double
the highest harmonic order in the series, the attained
values of hr - P "A" and "wts " would give an almost
optimum solution in the least square sense.

If the (dt/d 8 ) series, given in (4), is truncated to one
harmonic (r=1), the algebra is simplified but the solution
is still satisfactory. The reason is that the response x(t)
(=A cos 8) still gives infinite harmonic time series with
infinite discrete spectrum approximating satisfactorily the
actual response spectrum. This is completely different from
the case of approximating the formal infinite terms' time
Fourier series solution by a finite number of terms, since
the spectrum would then be of finite discrete terms.
Truncating the dt/d6 series to one harmonic (r=1), only four
unknowns exist, namely h1(=h), g, (=g), "A" and "wts "
Putting 6= 0, /4,n /2 and 3 n/4 in the algebraic equation
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Periodical Time Varying Systems 7

gives four equations from which the four unkowns are
determined. The parameters "h" and "g" are measures of the
deviation of the steady state solution x(t) from a pure sine

wave.

Knowing h,g,A and wt the closed form parametric solution

is given by, x(t)=A cos 6,
8= [wt - wt_ - (h/2) sin 28 + (g/2) cos 26 ]

If the driving electrical source is absent (V =0), the
S
unknowns are h, g, w/wo and wts.

2.1 Analysis of a series R-L-C. circuit with an applied

t

signal V sint (wt +a), C,= CO/(1+k cos 2wt):

t

The differential ecuation of the current x(t) is given by,

dx/dt+(R/L)x+w§(1+k cos 2wt) fx dt=(V/L)sin(wt + a) (5.a)

where w? = 1/LC . This is a special case of (5). The
o o

algebraic equation is
[—(wz/wzo)sin6/(1+h cos26+g sin28)]+(w/wo)(R/woL) cos @
+ {1+k cos[(26+h sin 26-g cos 29+2wt5]}
[(1+h/2)sinB- (g/2) cos 6 +(h/6)sin 360 -(g/6)cos 36 ]
=(wV/w20AL)sin [8+wts+h/2 sin26 -g/2 cos 20 +a ] (7)

Putting €=0, n/4, n/2 and 3 n /4 in (7) gives, respectively:

2
F1=[(w/wo)(R/wOL)]-(2g/3)[1+kcos(2wts—g)]—(wV/(wOAL)) (8)
sin(wts-g/2 +a) = 0 (8)
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i 2 )
F2=[(w /W O)(1+g)—(w/wo)(R/wOL)—£‘!—k sin(h+2w ts)].
(1+2h/3—g/3)+(v2wv/(w02A L)sin (wts+h/2+n /4+a ) = 0 (9)

F3=[(w2/w20}/(1-h)—[1—k cos(g+2wtq)](1+h/3) .

(wV/(wZOAL). cos (wt_+g/2 + a)= 0 (10)
2, 2 , | A
F =[(w /w" )(1-g)l+(w/w_)(R/w L)=[1=k sin (h-2wt_)].
4 o o o s
(142h/3+9/3) +(VZ wV /(wi AL)cos(wt_-h/2 + 1 /4+e)=0 (1)

(8)-(11) are four nonlinear algebraic equations in the four
unknowns h,g,wV/(wi AL) and "wt ". (w/wO Dy (R/wD L) and k
are usually given. Aided with a microcomputer with a program
using Newton's method and the Jacobian matrix, the four
unkonwns are determined. Table 1 gives h,g,A/(V/R) and

"wtS " at different values of "a " ranging from 0° to
180°, for k=0.75, w/w=1 and R/wlL=1. V/R is the

value of the current x(t) for k = 0. It is clear from the
table that A/(V/R) attains a maximum value of about 1.61 at
Q€ = 50? and a minimum value of about 0.68 at a= 142.56{ It
is clear from (7) that if "a " 1s replaced by (a+ 180 )
values of h, g and A will be the same, only "wtS " will

change to (W _+ 180°).

Table 2 gives h,g,A/(V/R) and "wt " at different values of
"k" ranging from 0 to more than 2.0, for a=0, w/wO =1 and
R/wDL = 1. It 1s clear from this table that "k" affects the
response x(t) waveform indicated by varriations in "h" and

"g" , but 1t has little effect on the amplitude "A", so long
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Table 1 : R -1 =-C¢ Circuit , Signal Applied
k = 0.75 Vivg = 1 /vl = 1
of 2 Vts
(degree) h G wW/(vgIA) (raqians) MG
0 0.4277 0.3972 0.9761 1.178 1.0245
10 0.4291 0.4378 0.8620 1.0568 1.1401
20 04124 0.4500 0.7655 0.9504 1.3064
30 0.3811 0.4471 0.6032 0.8547 1.443
4o 0:3333 0.4340 0.6451 0.7646 1.5502
Ly 0.3010 0.4240 0.629% 0.7199 1.5680
50 0,2602 0.41135 0.6202 0.6741 1.6123 (max.)
60 0.1351 0.3752 0.6214 0.5749 1.6039
70 -0,0917 0.3185 . 0.65%7 0.4641 1.5204
8o -0.3340 0.2591 0.7134 0.3666 1.4017
90 -0,4982 0,212} 0,7692 0.,2749 1.2000
100 -0.6064 0.1731 0,026y 0,170% 1.2100
110 -0.6709 0.1353 0.8676 0.0395 1.1266
120 -0.6765 0.0838 0.9580 -0,1462 1.0431
125 -0.6167 0.0259 1.0170 -0,29¢0 0.0426
130 -0,2552 -0.2323 12535 -0,.5912 0.797¢
135 0,0154 -0,4035 1.4181 -0,7256 0.5052
140 0.1597 -0.4926 1.4727 -0.8306 0.6790
142.5 0.2300 -0,5073 1.4739 -n,R858 0.6775 (min.)
145 0.2499 -0.45247 1,594 -0,9446 0.6852
47,5 0.2808 -0.95354% 1.4300 -1.0084% 0.6993
150 0.3036 -0.52¢8 1.33855 -1,0786 0.7218
155 0.3236 -0.,5129 1,2514 -1,2485 0.79t9
160 0,3004 -0.3103 1.0%59 ~1.5250 0.9295
165 0,3615 0.1591 1.1050 -1,7406 0.9050
170 0,397 0,2883 1,0807 -1,8218 0.9254
175 017y 0,350k 1,0326 -1.1964 0,9683
177.5 0.4255 0.3792 1.0050 -1,9306 0.9950
160 IO.hE?? 0.3972 0.,9761 -1.96136
0.4277 0.31972 0.9761 1.1780 } 1.0245

(=-1.9636+J)
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Table 2: R -L-C, Circuit, Signal Applied
k w/wo=1.0 R/WOL=1 a =0

wt e
2 - A/(V/R)
k h g “"'f{wéh-\) (radizns) o
o} 0 0 1 /2 10000

0.01 6.5%H5x10'3 -2.4112x1073 1,0017 1.5654 0.9933

0,05 0.0321 -0.0109 1.0070 1.5%8% 0.2931

0.1 0.0626 -0.0162 1.¢16 1.5249 0.9885

0.2 0.11%4 -0.0178 1.0135 1.4734% 0.9867(min)

0.3 0.1729 0.0114 1.0078 14142 0.9923

0.4 02284 0.0790 0.9997 1.3481 1.0003-1.0

0.5 0.22%9 0.1767 0.943 1,274, 1.0057

0.6 0.3454% 0.2763 0.9900 1.2328 1.0101

0.7 0.4036 0.3611 0.9°21 1.1939 1.0182

0.75 0.4277 0.3972 0.9761 1.37%0 1.024%

0.8 0.4499 0.2496 0.95E5 1.1639 1.0325

0.9 0.4€92 0.4848 0.94%5 1.1393 1.0043

1.0 0.52z6 0.5300 0.921¢ 1.1181 1.084%: (max)

1.1 0.5513 0.5674 0.8E82 1.099 1.1259

y B C.5%31 0.5988 0.5474 1.0308 1.1796

1.5 0.5335 0.5681 C.5757 1.027 1.4799

1.5 0.5453 0.5851 0,5971 1.007 1.5749

147 C.56C9 0.5996 0,5031 0.9E45 1.9677

1.8 0.6713 0.7116 0.3%49 0.9575 Z2.5c46

1.9 0.67¢E5 0.7206 0,2313 0.9212 k.3122

1.95 0.5796 0.72311 0.1239 0.8943 8.071

1.975 0.4735 0.7232 0.0519 c.2752 19,257

1.92 0.47%0 0,7230 0.0147 0.27c5 29.F18

1.985  0.4773 0,527 0,0151 0,952 £2,111

1.99 0.5765 0.7223 0.0C04 50 0.8594 + oo

2.00 0.5738 0.5208 -0.,05% 0,445 -18,513

2,01 0.55%0 0.513% -C.138 0.7170 =7.2411
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as it is far from the value at which the energy of the
mechanical source compensates completely the energy
dissipated in the resistance, and A = + <« . In the given

example, table 2, this value of k = 1.99.

The power P given to the circuit by the electrical input

source is given by :

i

P = (1/T) tIO V sin(wt+2)x(t) dt, T =2 n/w ;

but x(t) = A cos 8, wt = wts+ ©+(h/2)sin 2 - (g/2)cos 26

2m
Thus P=(AV/2 1 é_focose . sin[wts+a +06+(h/2)sin2 08 -(g/2)cos2 plde

(12)
= (AV/2 1) Fn(h,g,wt o ), where Fn(h,g,wa ) is the
definite integral.
For k=0, h=0=g, wtS +a= n/2, table 2 , and P = PO=AV/2,
giving P/PO = (1/n) Fn (h,g,wt a) (13)

Fn(h,g,wt_ , @)= sin (wts-+a ) {Jo(g/Z)[Jo (h/2)—J1(g/2)]+

- r
L= 3, (g/2)13,

> (h/2)+2J (h/2)]1 } + n cos (wt + a)-
2¥ s

=1

- -1
[3,(h/2)3, (g/2)- | (21§70 3

(h/2)J2m_1(g/2)]
m=1

2m

where J (x) is the Bessel function of the first kind of

order n and argument Xx.
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It 1s clear from (12) and table 1that " a " controls the
power P and hence controls the exchange of energy from
mechanical (producing the capacitance variation) to elec-

trical and vice versa.

Case the Parameter "K" 1s negative

If "wt " and "a" (for given K) are replaced by (wts +n/2)
and ((f- 1/2) respectively, eguations (7)-(11) are unchanged
but the sign of k 1s reversed. Therefore, for "k" negative,
same parameters h, g and A, given 1n table 1 are used, only
a and wts are to be replaced by (o - n/2) and (wts+n/2),

respectively.

2.2 Analysis of Series R-Lt—C circuit with an applied

Signal V sin (wt+a), and Lt=L (1+k cos 2wt), it is

outside the differentiation sign.

The differential equation of the current x(t) is given

by,

) 2

(1+k cos 2wt)dx/dt + (R/L)x+w J'x dt= (V/L)sin(wt+a ) (5=b)
o
2

where w _— 1/LC. This 1s a special case of (5).
Following the same analysis as 1in 2.1, the algebraic
equation 1s:
-[1+kcos(26+h s1n20 -g cos 26 +2 wts)](w2/w23)51n e /

(1+h cos 26 +g sin 26)+(w/w3)(R/wDLJcose +[(1+h/2).

sin® -(g/2)cos B +(h/6)sin 368 -(g/6) cos 38 ] =

Alerandria Engineering Journal October 1987
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( wv/(wzoAL}] sin [8 +wtq+(h/2)51n 26-(g/2)cos20 + o]
(14)

Puttinge =0 , n/4, n/2 and 3 n/4 in (14) gives,respectively,
2
F1=(w/w3)(R/w\L)—2g/3—[ wV/ (w 3AL)] sin (wtq—g/2+u)=0 {(15)
‘ - 2 o o2
Fo=[1-ksin(h+2wt )] (w"/w" )/(1+g)=(w/w ) .(R/w L) =
2 s 2 O o]
; 2
(1+2h/3 - g/3) + [2 wV/(w JAL)Js‘m.( ﬁ/4+wts+h/2+ a)=0
(18)
Z 1y 2
3=[1-k cos(g+2 wts)](w /W O)/(1—h)-(1+h/3)+
2
[ mv(w )AL)] cos (wts+g/2 +a) =0 (17)
2, 2
F =[1+k sin (2wt_-h)Jtw /w" )/ (1=g)+(w/w ).
4 s o] o)
2
(R/wOL)—[ 1+2h/3+g9/3] + [V 2 w V/(w DAL)] cos( n/4 +
+wts - h/2 + o) (18)
(15)-(18) are four nonlinear algebraic equations in four
2
unknowns, namely, h,q. {wv/(wg AL)] and wt5 . Aided with a
microcomputer and using the same program used in section 2.1,
the unknowns can be determined for given k, (w/wo)and R/wDL 2
Case the parameter "k" is negative
Same as 1n section 2.1, if "wt" and "4 " are replaced by (wt +
n/2) and (a -1 /2), respectively, equation (5-b) 1is

unchanged, but the sign of K is reversed. Therefosre, for K

negative, same parameters h, g and A, given in table 3, are
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used, only "a" and “wts " are to be replaced by(a -1 /2)
and (wts+ n/2), respectively.
3. ANALYSIS OF SERIES R—L—Ct and R—Lt—C Circuits with
no Applied Signal
These two cases give the theory and analysis of novel power

generators as well as other applications.

3l R—L—Ct Circuit

The differential equation of the current x(t) 1s given by:
dx/dt+(R/L)x+w20(1+k cos 2wt).fx dt= 0 (5.c)

The algebraic equation 1is glven in (7) but with V=0. The
unknowns here are h, g, w/wg and "Wt and are determined
using the same program used 1in section 2. The four equations
for the determination of these unknowns are given 1n
equations (8) to (11) with V=0 . There are two basic

solutions for (5-c).

The special case of R=0 ,can be simply analysed. Putting R= 0
= V in (8) gives g = 0. Then putting R = 0 = V = g in (9),
(10) and (11) give, respectively:

2., 2
W /W o [ 1 - k s1n (h+2wtq)i (1+2h/3) (9.a)
2, 2 2
w /W D=(1—k cos 2 wts)(1-2h/3)—h /3) (10.a)
2,2 )
w /W D:[l-k Sln(h—Zth)](?+2h/3) (1M i)
(9.a) and (11.a) give 2wt2= 0 or n, and wt =0 or =n/2.
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For wts= 0, (9-a) and (11-a) reduce to one equation,
namely,

2, 2 >
w /W o (1=k sin h)(1+2h/3) (9-b)

while (10-a) gives : w2/w2D = (1=k)(1=2h/3 = h2/3)

Thus, h = -1 4+ ¥ 1 + 3 [1—(w2/w02/)(1-k)] (19)

Substituting (19) 1in (9-b) gives the relation between
"w/wo“ and "k". This case corresponds to the well known

se, Mathieu function [8].

The case wtq = n/2, gives the same relation as wt = 0 ,
only the sign of "k" is reversed, and it corresponds to the

well known "Ce1" Mathieu function.

2, 2 e ;
In both cases, w /w 5 may be positive or negative.

2, 2 e ;
In both cases, w /w 5 may be positive or negative.

Putting R=0 in (5-c) and replacing "x" by dy/dt gives:
2 2 2
d y/dt 4w 5 (1+k cos 2 wt) y=0 (20)

This 1is the well known Mathieu's equation; the relation

between sz/WZ (=x1) and k 1s [8]

2
x1=1+(x1k/2)—(x1k)“/32—(x1k)3/512—(x1k)4/24576 -

0 (x1k}5 (21)
Table 3 gives the relation between k and wg /w2 , for
Alexandria Engineering Journal October 1987
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wt, = 0, calculated using (9-b) (aided with(19)) and

calculated using equation(21), reference [8], for k ranging

from - ® to + = . The parameter "h" is shown in the table.
The percentage error=
2 2
[ Lw_w)2181=(w_/w)%1/(w 181 } 100,
o] o o]

1s also shown assuming the reasonable accuracy of our

method.
For wts= w2, corresponding to "Cej“ Mathieu function,
same parameters in Table 3 are used, only the sign of "k" is
reversed.
The closed [orm parameteric solution of (20) is given by:

y =/ x(t) dt = [ A cos® (dt/de)de

=(A/w) fcos & (1+h cos 28)d®

(A/w)[1+h/2) sin® + (h/6) sin 36 ]

D
]

wt-wts-(h/2)51n 26

There are two periodic solutions,one for wt o =0, correspon-
ding to ”561" Mathieu function and the other for wtq = mf2,

corresponding to the “Ce1" Matheieu function.

The general case, R # 0

Using equations (8) to (11) with V = 0, the unknown

Alexandria Engineering Journal October 1987



Periodiccl Time Varying Systems 17

Tzble 3 : L - Cp Clrzuts | M3 $ivnal arrlied

{1/‘1 (1-% stndl(1+20/3)

h=-1+f1 +3 [1-1/x (1-k))

Reference [8] x1=1v xl‘-(/E-(xlk)z/]z-"

Our method
K = X relacion {=¢ ;ﬂ]

(x,= \,:3"/‘.1")

% errcr = [H[G]-Kll!l;[B]lan (xlk)3/512'(xlk)]./zl'f?ﬁ'o(:tlk)5
k “02/“2 h (“3/"2)[8J Error &
0 1.0000 0.0000 1,0000 0.0000
-0.05 0.9755 0.0350 0.9755 0.0000
-0.1 0.9520 0.0655 0.9522 0.0210
-0.2 0.9074 0.1157 0.9CEW 0.1100
-0.4 0.C8273 0.1%74 0.8303 0.3613
0.5 0.7521 0.2356 0.7641 0.7852
-0.E 0.5983 0.2702 0.7072 1.2585
-0.95 0.&5E8 0.2903 0.6697 1.6276
-1.0 0.5465 0.2951 0.2578 1.7178
-1.% C.5%3% 0.3393 G.5595 2.7882
-2.5 0.4218 0.383¢ 0.k267 4.2122
-5.6 0.z5%2 0.4257 €.2709 6.1646
-7.0 0.1645 0.%393 0.20%% 6.6700
-16.0 0.143€ 0.4503 0.1553 7.4050
-100.0C 0.C1€3 0.4753 0.017& 8.4270
* 0.coo0 0473 0.C000
[‘ufl-ﬁb’l ch-ﬁl.i’lé 9.0859
100.C -.01é8 0.LE03 -0.01E5 9.1892
10.0 -.1932 0.508) -0,2178 11.2948
7.0 -.2973 0.5226 -0.3394 12,4042
5.0 =463k 0.5%432 -0.5392 14.0579
L.o - 6417 0.5626 -0.7617 15,7542
3.0 -1.0373 0.59€1 -1,2810 19.0242
2u 7 -1.4€92 0.63c0 -1,9121 22.1169
2.0 -2.585 0.6£551 -3.5992 28.1785
1.75 =1.9&¢ 0.7312
1.5 -£.Céo 0.5045
0.6 1,8756 -0.5643 1.3953 - 24,4227
8.5 1.5209 -0.,7677 1.3147 - 15.61309
0.4 1.31h2 -0,55E0 1.2403 - £.958
C.3 1.1923 -C.151] Lal718 - 1.7668
0.z 1 -0.205% 1.1097 — 0.3154
c.l 1 ~0,0273 1.06323 - ©.0000
G.C3 L] -C.CLCl 1,027 - 0.0000
o} C.0c60 1.0000 - 0.0000
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parameters h,q, w/wO and wtS are determined adopting the
same program used 1n section 2, but modified to allow for
using w/wg as a variable instead of wV/wi AL).Tables 4 and 5
give h,g,w/wo and wts for different values of "k" and R/woL
Figure 2 . The closed form parametric solution of

(5-c) 1is x(t)=A cos®,

6 = wt—wts-(h/2)51n 20 +(g/2) cos 26 ;
h,g,w/wo and wtS are given in tables 4 and 5.
IF "wt" is replaced by (wt+ w'2), (5.c) reduces to
dx/dt+(R/L)x+w’ _(1-k cos 2wt) [ x dt=0 (5.d)
Therefore, for solution of (5-d), same parameters h,qg, w/wO
given 1in tables "4" and "5" are used, only “wtS "1is to be

replaced by {wtS + n/2), and the sign of k is reversed.

Tables "4"and "S"are very useful in the design of parametric

power generators as well as other similar applications.

3.2 R—Lt—C Circuit

The differential equation of the current x(t) is given in
equation (5-b) with V = 0 as follows:
(1+k cos 2wt) dx/dt + (R/L) x + wij.x dt = 0 (22)

The algebraic equation is given in (14) but with V = 0 and

Alexandria Engineering Journal October 1987
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T=ela 4 R.-L-C, Circult , No Slgnsl Applled
( & positive)

k ‘R/WgL h g W/, wts
g.1. 06.852 -0.,0891 0.0133  0.9752 0.0960
0,02 -0.0733 0.0268 0.9769 0.1962

0.03 -0.0665 c.c4+07  0.9798 0.3065

0.05 -3.44% x1073  0.0732  0.997% 0.7114%

c.2 0.0l -0.2038 0.0119 0.94£81 0.0474
0.02 -0,1991 0.0238 0.9491 0.0952

0.03 -0,1913 0.0358 0.9507 0.1437

0.Cl4 -0,1802 0.0%81 (0.9529 0.1935

0.05 ~0.1560 0.0607 0.9559 0.2452

0.06 -0.14383 0.0736 0.9596 0.2999

0.07 -0.,1267 0.0872 0.9642 0.3591

0.05 -0.1005 0.1015 0.,9698 0.4263

0.09 -0.0617 0.117%  0.977% 0.5089

0.10 -0.0133 0.1377 0.9908 0.6490

3 1001 -0.3615 0.0106 0.9161 0.0332
0.025 -0.3535 0.0265 0.9178 0.0830

0.055 -0.3177 0.0594%  0.9253 0.1829

0.07 -0.2006 0.0765 0.930¢ 0.2336

0.0E5 -0.2579 0.0943 0.9372 0.2855

c.l -0.2197 0.1131 0.94Lké 0.3398

0.115 -0.1795 0.1330 0.9531 0.3987

0.13 -0.1238 0.1547  0.9630 0.4665

0.145 -0.05€1 0.1%02 0.9761 0.5773

0.15 -0.0282 0.1908 0.9326 0.6027

0.155 -0.0277 0.2080 0.9960 0.7000
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Table .4 (continued)

k R h 14 ‘ vt
m 14 * /uo s

0.4 0.01 -0.5584 0.0093 0.5727 0.0232
0,03 -0.54283 0.0282 0.2743 0.0842
0.05 -0.5169 0.0476 0.3830 0.133¢
0.07 -0.4301 0.0578 0.9920 0.1916
0.1 -0.408, 0.1 0.90%3 0.2677
0.12 -0.3518 0. 2228 0.92 0.317%
018 0,255 0.1595 0.938 0.3944
0.175 «0.1622 0.1935 0.9545 0.4674
0,2 -0.0466 C.234Y 0.9745 0.5696
0.21 0,0338 0.2509 0.9905 0.56

0.5 .01 -0.7657 0.00%1 0.8117 0.0278
0.0} -0,7502 0.0246 0.8173 0.0324
0.06 -0.7020 0.0506 0.23339 0,1584%
0.1 -0.6049 0.0387 0.8637 0.2464
0.13 -0.5162 0.1200 0.6871 0.3043
0.16 -0.%1%1 0.1534 0.9094 0.3583
0.2 -0,2751 0,201} 0.9361 0.430%5
022 -0.1974 02291 0,945, 0.4704
0.25 -0.06% 0.,2708 0.9576 0. 5474
0.27 0.0918 0.3215 0.9946 0,581Y4

0.6 0.01 -0.9618 0.0066 0.7314 0.0308
0.05 -0.909 0.0359 0.7572 0.1433
0.10 -0,7850 0,070, 0.8005 0.2495
0.15 ~0.4326 0.1275 0.%608 0.3282
0.20 -0.4646 0.,1914 0.9036 0.393
0.25 -0,2843 0.238¢ 0.9366 0.4551
0,30 -0.0E47 0.3021 0.962Y4 0.5326
0.325 0.0440 0.3428 0.9578 0.5022
0.33 0.0843 0.3955% 0.9836 0.6308
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Tavle '5 :+ & - L = Ct

Circuit

( % negntive

~

a1

o siznal Agplied

(S B h g w/v vt

”oL o] B

-0.1 0.01 0,064 0.0170  1.024% -0.108%
c.02 0.0612 0.0336 1l.022 -0.2209
0.03 0.0551 c.ck95  1.0196 -0.343k4
0.04 0.0438 0.0640  1.0145 -0.49
0.05 0.0099 0.C7%3  1.0017 -0.7717

=02 f.e) 0.1154% 0.01¢6  1.C49% -0.0595
0.03 8.1132 0.0576  1.0468 -0.1797
0.05 0.1078 0.0922  1.C%16 -0.3039
0.07 0.096¢8 0.1216  1.0333 -0.4392
0.1 0.0332 0.1481  1.0064 -0.7588
0.101 0.0282 0.1472 1,0032 -0.7929
¢.1015 0.0175 0.1%55  0.9997 -0.5297

0.k 0.0l 0.1575 0.0272 1.0991 -0.0388
G.03 0,18€9 0.0797 1.0952 -0.1150
0.053 0.1211 c.1262 1.0925 -(.1881
0.07 0.1531 0.1556  1.0&7 -0.2577
c.1 0.1642 0.2124%  1.075% -0.3573
0.1l2 0.1025 0.2347 1.c682 -0.4227
0.1% v.1862 0.z562 1.059 -0.4091
0.16 0,1793 0.2712 1.ckE6 -0.5593
0.18 0.1442  0.2613 1.0362  -0.5378
0.2 0.1313 0.2%36 1.0193 -0.7407
0.21 0.0822 0.274%7  1.002% -0.8397
0.2105 C.0739 0.2726 1.0003 -0.2533
¢.211 0.0684 ¢.2710 0.9987 -0.5627
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Table 5 (continued)

* \-%L h & WMy vig
-0.6 0,01 0.235) 0.0k26 1.14¢ -0.03%2
0.05 c.2u2 0.17%¢ 1,135 -0.1713
0.1 0.26L3 0.2744 1.1003 -C.297)
0.15 06,2751 0.3311 l1.101¢ - 035
0.2 C.27% ¢.1570 1.0504 -i:,501¢9
0.25 0.2712 0.1%69 1.05%% -0,06072
0.3 0.zh1k 0.30 1.029 -0,7200
0.325 0.1950 0.8 1.008 -0.p22z
0.330 0.1;07 0.381% 1.0009 -0. 8957
132 0.1508 0.3757 0.996 -0.§791
-0.8 0,01 0.2729 o,0815 1.119% -0.054
0.05 0.2%6kL 0.2526- L1974 ~0.154¢
0.1 0.3195 0.341% 1.1575 =024
0,2 0.3435 0.h27 1.1188 -0.4355
0.3 0.3597 0.46°1 1.078L -0.5742
0.4 0.3437 0.483k 1.0323 -G."232
o.45 0.3013 0. 470k 1.0028 =082y
0.47 (.2332 CL5EN 0,080 -0.9035
-0.95 0.01 0.2013 0.1055 1.224% -0.C025
0.0} 0,310 C.2268 12177 -0,1307
0,0k c. 0.292:3 1,2040 -0.181¢
0.05 c. €.3348 1.1975 -0.2207
0,08 0.3 0.3663 1.1%0 -C.25%1
0.1 C.3 0.3900 1.1808 -C.284)
0.15 C.3 Q347 1,181 =2.3513
0.2 o, o.M658 1.1425 -0.4116
0,25 0, 0.LWECG 1;123% -0 L6
0.3 0.4 0.5059 1.1c9§ -0.521)
0.35 e. 0.51€E3 1,0842 -0.5776
0.4 ot c.52' 9 1.0643 -0.06126
0.45 0. 0,5336 1,028 -0,£000
0.5 0.l 0.5351 1.019% -C.7521
0,525 0,1 0.5332 1.00%0 -0.7%¢
0.550 G.33e1 0.5300 0.9913 -0, h264
0.550 C.3239 0.5274 0.9673 -0.8451
€.570 0545 0.523% 0.%407 -0.B60k
C. 58 00,3355 0.517) G.97220 -0.4928
0,585 0.315% 053 orjb‘r’ -D.9145
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the unknown parameters are h,q, w/wo and "wtg and are
determined using the same program used in section 2. The

four equations are given in equations(15) to (18), but with

v=0.
The special case of R = 0 can be simply analysed as
follows: Putting R = 0 = V 1in (15) gives g = 0,. Then
Putting R = 0 = V = g in (16), (17) and (18) give,
respectively:
2.2 .
(w /WD) [ 1 = k sin (h + 2wts)] =1 + 2h/3 (16-a)
2 .2 2
(w /wD) [ 1 = k cos 2 wtsl =%t - 2h/3 =h" /3 (17=a)
2.2 .
(w /wo) [1+k sin (2wts - h)) =14+ 2 h/3 (18-a)

(16-a) and (18-a) give 2wts=0. or 2wts =T, wts=n/2
For wts = 0, (16-a) or (18-a) reduce to one equation,
namely,

(wz/wi)(1-k sin h)=1 + 2 h/3 (16-b)

while (17-a) gives, wz/wz (1-k)=(1=2h/3=h%/3)

Thus, h = =1 +v1 + 3 [1 = (wz/wi)(1~k) (23)

Substituting (23) 1in (16-b) gives the characteristic
relation between "wi/wz" and. "k", Fig. 1.
For “wts "= n/2, same relations are used as "wtq = B i

only the sign of "k" is reversed.
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2 2
It is clear from (23) that h=1 at k=1.0, W /w = 0.09512.

Table 6 gives wi /w and h for different values of k ranging
from -0.625 to 1.00°,

The general case, R # 0:

Using equations (15) to (18) with V = 0, the unknown
parameters h,g, w/w, and "wtg " can be determined adopting
the same program used in section 2.1. The closed from
parametric solution of (22) is x(t) = A cos 6, g=wt - wt, -
(h/2) sin 29+ (g/2) cos 2@ .

If "wt" is replaced by (wt + x/2), (22) reduces to

(1-k cos 2wt) dx/dt + (R/L) x + ﬁf J'xdt = 0 (22.a)
Therefore,for the solution of (22-a),same parameters h,g,w/w0
are used only, "hmg “is to be replaced by (wts + ®/2), and
the sign of k is reversed.

4. Analysis of a siries R—Lt-c Circuit, and the Inductance

Varation [Lt=L(1+K cos 2wt)]is inside the Differentiation
sign. [9].

Since the total flux linkage is the one to be differentiated
in summing up the emf's around the circuit, the inductance

variation should be inside the differentiation sign. The

Alexandria Engineering Journal October 1987
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X
2.4 }
2.2
2.0
1.8
1.6 |
1.4 L
Lid
1.0

r ~

Lor

0.8 |
0.6 |
0.4 |
0.2

o.0 2.0

Fig. 1 haracteristic Curves for :

'
l‘l.-L_" ClrQul Ls, Culves L W (utssﬂl, and == th.-IR) —
’
2. Ll—C Clrculls, curves 2= lwt’-ﬂl_ and “2% (-t'-lﬂl -_—
3 L‘t: circuit, curves 3= (wtu-m, and =)= ‘Ut.-l /2) —
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L,-C Cilreuit , ifo 3izn2l s=rlled

Taple 6 +
“T.”1s outside the cifferentiation sign.
% - Xy relition (vt = 0) : X3=(l-ksin h) /(1 + 2h/3)
2 4
(ey= v o) ho=-bef e 310/,
2, D 2., 2

k \-'Q/v h k WO/W h
0 1.C0C0 0.0000 0 1.0000 0.C000
0.05  0.9743 0.0368 -0.05 1.0243 -0.0384
o[ 0.9472 0.0723 -0.1 1.0472 -0.,0788
c.2 ¢.8795 0.1402 ~0,2 1.088s5 -0.1679
03 c.8251 0,2062 -0.3 1.1235 -0.2726
C.b 0.7556 0.27109 -0k 1.1527 -0.,4028
C.5 0.6799 0.3392 -0.5 1.1789 -C.5721
c.5 c.5e7e 0.41c7 -0.6 12132 -0.7912
By G585S 0.LIg8 -0.62  1.2229 -0.8397
B, S o.e0zk n.5c3% -0.829 1.225% -0.%51%
€49 0.z7¢0o 0.711z

0.5 C.20kl c.50%0

.07 0.1578 0.%11

£.6¢ C.l239 0.0385

¢.¢e5 (,11¢5 0.9458

0.90c [.l¢ik 0.c923

C.o%0¢ C,0057 0.9009z

1.000 0.095) 1.000
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differential equation of the current x(t) is therefore given

by :

- [( 1+k cos 2wt)x (t)]+(R/L)x(t)+w§f x(t)dt =

dt
(V/L)sin (wt +a ) (24) , giving
(1+k cos 2 wt ) dx/dt + w [(R/WL)-2k sin 2wt] x +
2
W f x dt = (V/L) sin (wt + &) (24-a)
It 1s clear from (24-a) that the damping 1is periodically
varying. Following the same analysis as 1in sections 2 and 3,
the algebraic equation 1is
-[1+k cos (26 +h sin 26 -g cos 26+2wts )1 (w? /w2 )sin® /
o
2
(1+h cos 26 + g sin 26 )+[{w/w0)(R/wOL)—2(w/WD) k sin
(26 +h sin 20 -g cos 20 + 2wt _ )Jcos® + [(1+h/2)sin®
-(g/2) cos® +(h/6) sin 36 -(g/6) cos 361 = ( wV/wi AL)).

sin [ 6 +wt_ +(h/2)sin 26- (g/2) cos 20+ o] (25)

Putting 6=0, ,n/4 ,n/2 and 31/4 1n (25) gives, respectively:

F1 =[(w/w“)(R/\%})—2(w/m5)2 k sin (2wtg -g)1-2g/3
-(wV/wi AL)) sin (wt -g/2 +a) =0 (26)
Alexandria Engineering Journal October 1987
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2 2
Fé =[1=k sin (h+2wtS ) 1 (w /us )/(‘l+g)-[(w/wg )(R/wD L)

-2(w/wo )2 k cos (h+2wts )] - (142h/3-g/3)

+ (V2 wV/wi AL) sin (wts +h/2+ /4 + o) = 0 (27)

2 2
Fy= [1-k cos (g+2htS )1 (w /wO )/(1=h)

-(1+h/3) +( wv/wi AL) cos(wts +g9/2 +a ) = 0 (28)
F, =[1+k sin (2wt = h)] ( 2/ “ )/ (1=g)+[w/w_)(R/w_ L)
4 =U1+k sin (2wt _- wow g W = -
2 2
2(w /wO )k cos (2wts =h)]-(1+2h/3 + g/3 +

2
( VZ wv/w_ AL) cos (wt_ =h/2 + 5 +2) = 0 (29)
The four unknown parameters h,qg, (wV/wiAL), and “wts" can
be determined for given k, w/woand R/ﬂ)L, using the four

nonlinear algebraic equations (26) to (29).

The case with no applied signal is needed for parametric
power generators' applications and the like, and will be

analysed in details.

The special case R=0 is simply analysed as follows:

Putting R = 0 = V in (26) gives

2(w/w0 )2 K sin (2wtq -g) = -2g/3, giving
g = -9, 2wts = 9 and “wt5 Y= 0 ;org=4+8, 2wtg = 0
Alexandria Engineering Journal October 1987
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and ”wtq o= A2
For wt_ = 0, (28) gives (l1-k)/x = 1 =2h /3-h° /3,

and thus h = =1 +vV 143 [1-(1-k)/x1 ] (30)

Equations (27) and (29) give the same relation, namely,

(1-k sin h + 2k cos h)/(1+2h/3) = X, (31) (31)
(31), aided with (30), gives the characteristic relation

between k and x1

It 1is clear from (30) that at k =1 , h = 1 and wi /W o=
0.7435

For "wt " = T1/2, same characteristic relation is used, only
the sign of k 1is reversed. In this case, for h real, the
maximum value of k is 0.2933, giving h=-0.88245, and w2/w? =
0.97332. i

Table 7 gives wi/wzand h for different values of K ranging
from -0.2933 to + 1.12, (for wt = 0), Fig. 1. For K > 1, h >
1.0 and dt/d® is negative during a portion of the cycle. This
could be allowed if the range of negative dt/df@is very

small.

The general case, R # 0 ;

Using equations (26) to(29) with V=0, the unknown parameters

h,g w/woand wt are determined adopting the same program used

Alerxandria Engineering Journal October 1987
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Table 1
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L,-C circuit, No signal applied,

Lt is inside the differentiation sign.

.k-xl relation (uta-O); X, - wj/uz
x,=(1-k gin h+2k cosh]/(1+2h/3)
hou -1+ ]/1+3(1-[l-k}fx1]
k w sz h N ui/vz h
0 1 0 0 b c
0.05 1.024 0.1030 -=0:095 0.9748 -0.1211
0.1 1.045 0.1901 -0.1 0.9510 -0.2699
0.2 1.0763 0,305 -0.15 0.9371 -0.4358
0.3 1.0926 0.4415 -0.20 0.9361 -0.6071
0.4 1.0944 0.513347 -0.25 0.9507 -0.7647
0.5 1.0819 0.6167 -0.275 0.9629 -0.8344
0.6 1.0548 0.6918 i] -0.28 0.9656 -0.8479
0.7 1.0119 0.7637 1 -0.29 0.9714 -0.8738
0.720 1.001 0.71171% E
0.722 1.0001 0.7794 ! -0.292 0.9725 -0.8794
0.721 0.9996 0.7001
0.73 0.99566 0.7851 -0.291 0.9732 -0.8815
0.74 0.,9844 0. 7922
.75 0.9818 0.7993
0.8 0.9507 0.0354 -0.2933 0.9711 -0.p827
0.9 0.9116 0.49725
0.95 0.8653 0.9114
1.00 U.7434 1.00
1.05 0.6566 1.0563
)0 0.5253 1.11380
112 0.4222 1.2029
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Table . 8 ; F-L _-C Circult. No signal applied, L is inside

the. differentiation sign. (K positive)

K. R,woL h q u/wC wts
0.1 .00 0.1801 0.0000 0.9782 0.0000
0.0l 0.1888 -0.0580 0.9783 0.0990
0.62 0.1838 -0.1161 0.9786 0.2073
0.03 0.1706 -0.1727 .0.9801 0.3395
0.035 0.1567 -0.1989 0.9819 0.4241
0.0375 0.1463 -0.2101 0.9834 0.4779
0.2 0.00 0.3305 0.6000 0.9639 0.0000
0.01 0.3311 -C.0576 0.9636 0.0361
0.02 63327 -0.1156 0.962% 0.0737
0.03 0.3354 ~-0.1745 0.9608 c.1148
0.04 0.2389 -0.2247 0.€585 0.1620
0.05 0.2425 -0.2976 0.5557 0.2209
0.055 0.3437 -0.3311 0.9542 0.2587
0.06 0.3435 -0.3671 0.9527 0.3073
0.065 0.2380 -0.4082 0.9522 0.3813
0.3 0.00 0.4415 0.0000 0.9567 0.0000
0.01 0.442 -0.04928 0.9563 0.0141
0.02 0.4433 -0.0993 0.5552 0.0286
0.04 0.4487 -0.1999 0.950C9 0.0607
0.06 0.458€3 -0.3025 0.9435 0.1011
0.08 0.4733 -0.4115 0.9325 0.1605
0.0% 0.4828 -0.4739 (€.5251 0.2083
0.4 0.00 0.5347 0.0000 0.9559 0.0000
0.G1 O, 5349 -0.0408 0.9556 0.00477
0.02 0.5353 -0.0817 0.9547 0.00968
0.04 0.5374 -0.1636 0.9511 0.0206
0.06 0.5412 -0.2462 0.9451 0.0340
0.08 0.5470 -0.330C 0.9365 0.0519
0.1 0.5568 -0.4152 0.9254 0.0771
0.12 0.5717 -0.5085 0.9105 0.1168
{9908 B 0.5026 -0.5600 0.9011 0.1479
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Table g :(Continue!

K ijOL h g w/wo we

0.5 0.00 0.6167 0.0000 0.9614 0.0000
0.02 0.6166 -0.0661 0.9604 0.00127
0.04 0.6167 -0.1328 0.%575 0.003
0.06 0.6169 -0.1997 0.9527 0.00577
0.08 0.6177 -0.2678 0.9459 0.0102
0l 0.6195 -0.3372 0.9370 0.0170
0.12 0.6230 -0.4082 0.9261 0.0275
0.14 0.6292 ~0.4816 0.9128 0.0437
0.16 0.6397 -0.5584 0.8968 0.0689
0.18 0.€6583 -0.6453 0.8760 O, 1137

0.6 0.0C00 0.6918 0.0000 0.9739 0.0000
0.0200 0.6915 -0.0536 0.9729 -0.0025
0.04 0.6906 -0.1078 0.9705 -0.0C486
0.06 0.6891 =0.1623 0.9665 -0.00675
0.08 0.6873 -0.2181 0.9608 -0.00805
0.10 0.6852 ~0.2749 0.9535 -0.083
[ s 0.6833 -0.3333 0.9444 -0.0072
0.14 0.6£20 -0.3938 0.9335 -0.0042
0.16 0.6820 -0.4558 0.920E 0.0018
0.18 c.6841 -0.5202 0.9062 0.0118
0.20 0.6896 -0.5872 0.8893 0.0281
0,22 0.7008 -0.6589 0.8694 0.0549
0.24 0.7244 -0.7438 0.8428 0.1079

0.7 0.0C 0.7637 0.0000 0.9941 0.0000
0.04 0.7619 -0.0883 0.9913 -0.0083
0.08 0.7567 -0.1779 0.9829 -0.0158
012 0.7486 -0.2728 0.9687 -0.0219
0.16 0.7386 -0.3748 0.9480 -0 .0250
0.20 0.7304 -0.4847 0.9209% -0.0216
0.24 0.7291 -0.6042 0.8BE7 -0.0054
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Table 8 : Countinued
K F’..«wCL h g \-:/!TJO we
0.8 0.00 G.8354 0.0co0 1, 0256 0.000
0.04 0.8335 -0.0716 1.023 ~0.00933
0.08 ¢.8275 -0.1461 1.0153 -0.01878
0.12 0.8179 -0.2230 1.0023 ~0.0274
0.16 0.8047 -0.30€3 0.9834 ~-0.0352
0.20 0.7887 -0.3986 0.9582 -0.041
0.24 0.7730 -0.5000 0.9267 -0.0418
0.28 0.7625 -0.6131 0.8885 -0.0328
0. 32 0.7679 -0.7354 0.842185 -0.0024
0.9 0.00 0.9114 0.0000 1.0748 0.0GC00
0.04 0.9094 -0.0587 1.0723 -0.0095
0.08 C.90z24 -0.1180 1.0647 -0.0188
0.12 0.8933 -0.1807 1.0517 -0.0282
0.16 0.8787 -0.2488 1.0330 -0.0378
0.20 0.8618 -0.3196 1.0C94 -0.04596
0.24 0.8449 -0.39 0.986 -0.054
0.8605 -0.3223 1.0087 -0.0464
0.8596 -0.3249 1.0079 -0.04708
0.8606 -0.3219 1.0089 -0.0463
0.8594 -0.3253 1.0078 -0.0472
0.8608 -0.3213 1.009 -0.04616
0..22 0.8533
0.95 0.00 0.9532 0.000 1.11063 0.0000
0.0z 0.9527 -0.0267 1.,1100 -0.0048
0.04 0.9512 -0.0525 1.1080 -0.0093
0.0¢& 0.9487 -0.0786 1.1047 -0.0137
0.08 0. 9451 -C0.1061 1.1000 -0.0185
0.10 0.9405 -0.1335 11,0940 -0.0231
0.1z 0.9350 -0.1615 1.0866 -0.0276
0.13 0.9518 -0.1761 1.0824 -0.0299
0.14 0.9287 -0.1904 1.0777 -0.0321
0.99 0.00 0.9901 0.0C00 1.1484 0.0000
0.02 0.9896 -0.0235 11,1478 -0.0043
0.04 0.9881 -0.0471 1.1457 -0.0087
0.06 0.9656 -0.0717 1.1421 -0.0131
0.08 0.9820 =0.0956 1,1372 -0.0176
0.10 0, 37 72% -0.1214 11,1305 -0.0223
0.1z 0.9716 -0.1469 1.1229 -0.0268
0.14 0.9650 -0.1732 1.1135 -0.0312
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Table 9% ; R-L -C Circuir; L,

(k 15 negative)

is inside the differentiation sign.

K RJHOL h q U/wo u;s
=0.05 0.00 -0.1213) 0.0000 1.0128 ¢.0000
0.01 -0.11131 -0.0356 1.0120 -0,1864
0.02 -0.0729 -0.0775 1.0084 -0.4308
-¢.1 0.C0 -0.269% 0.0000 1.0250 0.0000
0.01 ~0.2656 -0.0251 1.0248 -0.0770
0.02 -0.2518 -0.0519 1.0242 -0.1587
0.03 -0.2249 -0.0826 1.0228 -0.2525
0.04 -0.1730 -0.1236 1.0194 =0.3790
-0.15 0.00 -0.4357 0.0000 1.0310 0.0000
0.02 -0.4274 -0.0342 1.0331 -0.0851
0.C4 -0.398% -0.0731 1.0331 -0.1790
0.06 -0.3295 -0.1282 1.0320 -0.3040
0.07 -0.2345 -0.1854 1.0282 -0.4250
-¢.2 0.00 -0.6071 0.0000 1.03357 0.0000
0.01 -0.6060 -0.0109 1.0336 -0,0261
0.02 -0.6029 -0,0223 1.0238 -0.0527
0.C3 -0.5976 -0.0338 1.0341 -0.0797
0.04 -0.5899 -0.0460 1.0346 -0.1075
0.Cé -0.5654 -0.0731 1.0360 -0.1671
0.G8 -0.5221 -0.1078 1.0180 -C.2378
.10 -0.,2222 -0.1697 1.0401 -0.3477
-0.25 0.00 -0.7647 0.000C 1.0256 0.000¢C
0.01 -0.7640 -0.0074 1.0257 -0.0181
0.04 -0,75613 -0.0300 1.0267 -0.07131
0.0b -0.7451 -0.0464 1.0281 =0.1113
0.08 -0.7282 -0.0645 1.0301 -0.1515
0.12 -0.6641 -0.1134 1.01369 -0.2471
0.14 -0.5920 -0.1571 ).0427 -0.3182
c.15 -0.¢694 -0.2226 1.0484 -0.4062
-0.275 0.00 -0.B344 0.0000 1.0191 0.0000
0.01 -0.82486 -0.006 1.0192 -0.0154
0.02 -0.81334 -0.1220 1.0194 -0.0311
0.02 -0.8214 -0.0185 1.0197 -0.0468
.04 -0.8287 -0.0248 1.0201 -0.0626
-0.29 0.00 -0.8738 0.0000 1.0148 0.0000
0.05 -0.B6%9 -0.0280 l.01l61 -0.0722
0.10 -0.E194 =0.0599 11,0206 -0.1466
0.15 -0.7810 -0.1G46 1.0298 -0.2389
0.175% -0.7217 -0.1416 1.0378 -0.2996
-02933) 0.00 -0.8827 0.0000 1.0116 0.0co00
0.025 -0.8803 -0.0135 1.01139 -0.0352
0,08 -0,8747 -0.0272 11,0150 -0.0707
0.075 -0.8648 -0.0418 1.0l68 -0.1072
0.10 -0.8492 -0.0583 1.0195 -0.1457
0.125 -0.8270 =0.0773 11,0232 -0.1869
0.15 -0.7942 -0.1010 11,0284 -0.2331
0.175 -u, 7407 -0.1349 1.0360 -0.2901
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in section 3.1. Tables 8 and 9 give h,qg, w/woand "wts" for
different values of K and R/wa. The closed form parameteric
solution of (24) is x(t) = A cos © , 6 = wt-wt_  -(h/2) sin
2 8+(g/2) cos 26 ; h,g,w/w and "wt " are given in tables 8
and 9 and Fig.3.

If "wt" 1is replaced by (wt+w/2), (24) reduced to d/dt[(1-k
cos 2wt). x(t)]+(R/L)x(t)+%fj'%(t)dt=0 (24-b).

Therefore, for solution of (24-b), same parameters h,g,w/w0
given 1in tables 8 and 9 are used, only "wts" is to be

replaced by (wts+ n/2).

Tables 8 and 9 are very useful in the design of parameteric

power generators and other similar applications.
5.Conclusion

The known methods used in the analysis of periodically
varying systems, with no dissipation, are limited to special
f1(t), f2( t )and f3(t) functions and wused the techniques
of series expansion and continued tractions.The method
presented in the paper is general and not limited to special
periodic functions £ (t), £, (t) and £, (t). Closed form
parametric solutions with simple closed form parametric
characteristic relations are attained for three cases, namely:
L -Cy circuit, Lt-C (Lt outside the differentiation sign
circuit)and L --C(Lt inside the differentiation sign circuit).

In the three cases, the solution is x(t) = A cos 6 = wt -

wtq-(h/2) iR 20 .

There are two solutions for each case, one solution
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corresponds to “wts" = 0 and the other solution corresponds
to “wts" = n/2. For a given k, h and wé /w2 (=x1) are

obtained from the following characteristic relations for
each case, "wtS " = 0; the corresponding differential
equations are also stated. For "wts " =n/2, same relations

are used, only the sign of "k" is reversed.

1. L—-Ct circuit dx/dt + w20 (1+k cos 2wt) fx dat = 0
1/):,I = (1-k sin h) (1+2h/3)

h = -1 +v 1+3[1—1/x1(1—k)], Table 3 and Curve"1",

Figs1

2 Lt—C circuit : (1+k cos 2wt)dx/dt + w2of xdt = 0

X, = (1-k sin h)/(1+2h/3)

h = —1+-J1+3[1—(1-k)/x1], Table 6 curve "2", Fig. 1.

3. L ~C circuit: d/dt [(1+k cos 2wt).x] +w20f x dt=0

x1=(1—k sinh+2k cos h)/(1+2h/3)

h = =1+/143 [T—(I-k)/x1], table 7 and curve "3",
FIq.1.

Fig.1 shows a plot of the characteristic relations for three
cases, for wtszo and for "wtq "T= /2. It is clear from this
figure that the instability range bounded by the two stable

curves (wtg =0 and wt =1/2) is largest for the L—thircuit
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(curves "1" and "1 ") and smallest for the Lt -C circuit with

L inside the differentiation sign (curves "3" and "3").

t
This means that the system can generate periodic signals
with the largest resistive 1loads if , the capacitance is
periodically varying (Tables 4,5,8 and 9) and hence, the
R—L-Ct circuit 1is more suitable for parametric power
generators, Fig. 1 and 3.

Dividing the differential equations (33) and (34) by (1+k

cos 2wt) gives, respectively:

dx/dt+w2 a + L a_ cos 2nwt] [xdt=0 (33-a)
oo 4o n
=1,2..

dx/dt-2kw {aosin 2wt+(a1/2)siﬁ dwt+ Z (an/2)

[sin 2(n+1)wt-sin 2(n-1)wt]} x+w2°[ao+ ) a
cos 2nwt] [ xdt = 0 ! (34-a)

where a_ = 1/1-k% a1=(2/k)(1—a°)=-k-(3/4)k3-..,

a2= -2a1/KP2 ao, and for n > 2, the recurrence

relation is, a +(k/2)(a +a )=0
n n n-

+1

It is clear that (33-a) 1is similar to (32) except that
wi /V1 - K2 replaces w2° and the sign of k (to the

first approximation) is reversed and thus the characteristic
curves are interchanged and the instability range is
reduced. However, equation (34-a) includes, over and above, a
periodically varying resistance term, playing a big role in

signal generation and changing drastically the
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corresponding characteristic curves (3 and 3', Fig. 1).

The problem of power exchange between the input electrical
source and the mechanical (or otherwise) sources producing
the periodic variations of the system is also studied. Table 1
indicates how the angle "a" between the input electrical
source and the capacitance variation controls this exchange.
The response amplitude "A" varies between maximum at "o "=
50° and minimum at "a" = 142.5°. For a given "a", the
energy of the mechanical source may compensate completely
the energy dissipated in the resistance at a certain "k" and
the amplitude "A" approaches infinity, table 2 k=1.99 at

a =0.

More accurate results; regarding the whole analysis given in
the paper,can be attained if more harmonic terms in the dt/de

series are considered.
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