Unified framework of attributes in software quality models

Sherif M. Tawfik and Nadine M. El-Mekky

Information and Documentation Center Arab Academy for Science,
Technology and Maritime Transport, Miami, Alexandria, Egypt
e-mail: Sheriftawfik@eng.aast.edu
e-mail: Nadine @eng.aast.edu

Software quality models are frequently used in large projects. They give guidance in what
requirements to collect, architectural qualities to consider, and what to test. In the
literature, several quality models have been defined. Some of them are focusing on model-
specific quality attributes, while others vary in scope, level of details. Some use elaborate
frameworks taking many perspectives into account; other use traditional frameworks based
on a hierarchical breakdown of quality. The paper’s purpose is to compile quality attributes
recognized by researchers in framework quality into a common and established framework.
A clear picture of quality attributes is presented in the form of a software manual. Such a
picture would be useful for researchers as it defines the relationships between the attributes
and identifies some properties for each of them. In addition, one of the advantages of the
framework is that it can be easily updated by any new attributes discovered by researchers.
L_qugj_ua.d\ PL_.L‘;'AI le}i}iﬂ&yiéﬂl‘i‘Cg.;ci_»ﬂ‘cg.)w‘e‘jﬁ&t:l,a‘).ﬂl;.\,_aclwrm
alsa (o S (g a1 Sl i) 3350 B 73l . sy o 31 13l A jaa g Bagall bl el gy Of Gy SIS
Ay (b Jealil) (5 g a) b A 5 Laiy iz dgaill Bagall s o Sy e pany il Sila)
=AY pang My sl dgay e ST HlieY! G 3l Dlaiie DS a3iiuy agaiaed) Ba5all (Uai 8 Lealasiul g (3laliall
G) ealiall o 3aall s sh Candl 138 e gl (535all Ll a6l (S Sl QS il (el 3
EJHHJ_ESC’SA:\ KVET (@.‘hrds_,\k PR ,cﬂ)ﬂug@d"iw‘,JW|33}}]‘53\.&%)&3@\44“5&:‘
lbae) e pabiall eda 8l 5 Gy ey jualiall ADe Al jal JIaS ISl 138 alasiud g 330l jualial daualy

Keywords: Quality model, Quality attributes

E
A3

1. Introduction

Quality is a functional and artistic
measurement used to specify user satisfaction
with a product, or how well the product
performs compared to similar products. A
model is an abstract form of reality, enabling
details to be eliminated and an entity or
concept to be viewed from a particular
perspective. This is one reason why a quality
model has become essential for ensuring that
a firm product and process meets customers’
needs [1]

As software becomes more and more
pervasive, there has been a growing concern
in the academic community about software
quality. Software Quality is the degree to
which a system, component, or process meets
specified requirements and customer or user
needs or expectations [2]. In the last 15 years,
the software industry has created many new
different markets, such as open source

Alexandria Engineering Journal, Vol. 48 (2009), No. 6, 679-692
© Faculty of Engineering, Alexandria University, Egypt.

software and commerce over the Internet.
With these new markets, customers of
programs now have very high expectations on
quality and use quality as a major drive in
choosing programs [3].

Developing high quality software is hard
[1]; It is a complex concept, due to the large
number of quality attributes that can be
addressed [4, 5]. In order to know if quality
has been achieved, or degraded, these
attributes have to be measured. From this
viewpoint, it is necessary to define a model
that considers quality requirements for
software system [5, 6]. However, defining the
most important attributes to measure and
how to measure is the difficult part.

Different authors and organizations have
proposed different models intended to evaluate
the quality of software in general [2, 7]. A
difficulty is that different quality models tend
to differ with respect to classification and
definition of attributes [7]. Due to this

679

S. Tawfik, N. El-Mekky / Software quality models

difficultly, 1SO and IEEE have tried to
standardize software quality by defining
models that combine and relate software
quality characteristics and sub characteristics
[8].

In this context, this paper describes the
problems related to defining a software quality
framework, describing the quality attributes
and related metrics for the system evaluation.
The new proposed classification addresses the
following questions: 1. which quality criteria
should be considered for the evaluation of
specified system characteristic, 2. how we can
evaluate them by wusing different quality
metrics and, 3. which stakeholder should be
responsible for such an evaluation.

In order to answer the above questions,
the following work has been done:

1. A list of the most common and most
frequent dimensions included in the most well
known models has been defined as a
hierarchy of factors, criteria and metrics.
Discovering the relationship and interaction
between them. This hierarchy will be used as
a cross reference manual for determining the
influence of each factor, criteria and metric on
each other.

2. Proposing a new model based on the new
classification and the common aggregation
approach (weighted average or sum) for the
evaluation of software quality attributes.

2. Quality models

In order to understand and measure
quality, scientists have often built models of
how quality characteristics relate to each
other [9]. So far, scientists have prepared
many models intending to cover the entire
software development. In this paper, a number
of important quality models are mentioned
[10]. The quality models are categorized in two
categories: Primitive Models and related
Models. '

2.1. Primitive models

Primitive models are the most standard-
ized and the best known. Some authors
consider them as the most used quality model
and the basics for all related research [11-15].

Those models are categorized into hierarchical
and non hierarchical models.

2.1.1. Hierarchical models

In this section, the most important
hierarchical models are mentioned because of
their importance and usefulness in the
classification of the quality model attributes.
Moreover, these models will be utilized as the
basis for the new classification perspective
represented in this paper.

2.1.1.1. McCall model (1977): McCall proposes
one of the first structured quality models.
Some authors consider McCall’s model as the
first and the most used quality model [9].
Fig. 1 illustrates the model framework which
is divided to the following levels:

1. Highest level: specifies the major aspects
or factors which represent the management or
customer view of product quality.

2. Middle level: specifies the attributes that
provide the characteristics for the factors. Few
criteria are defined for each factor.

3. Lowest level: specifies the software quality
metrics that measure the software attributes.
Further, these factors are categorized based
on the uses of a software product as follows:

e Product Operation: refers to the product’s
ability to be understood, to be stable and
functional.

e Product Revision: is related
correction and system adaptation.
e Product transition: is related to portability
characteristics assuming rapidly changing
hardware.

One of its major contributions is the
relationship created between quality
characteristics and metrics, although there
has been criticism that not all metrics are
objective. One aspect not considered directly
by this model was the functionality of the
software product [4, 8 and 9].

to error

2.1.1.2. Boehm model (1978): Boehm defines
software quality in terms of qualitative
attributes and measures it using metrics. The
model is based on a wider range of
characteristics and incorporates 19 criteria.
Fig. 2 presents the hierarchical levels as
follows [16]:

680 Alexandria Engineering Journal, Vol. 48, No. 6, November 2009

S. Tawfik, N. El-Mekky / Software quality models

Quality
Factors
Correctness
/l Reliabifity
v Oi:;:fal;;tn ———{
_{ Integrity
Usability
//l blaintainability
g;f;ﬁ; 1 Testability
\{ Flexibility
/| Portability
product T I Reusabilit --“’"’:
Transition Ry
\{ interoperability

Efficiency %Emr tolerance
Execution efficiency — .
Storage efficiency ——————em—
l-‘s#x:cess control
Access audit
Operability
Training

<L L= Software system independence —

2 >Machine inde pendence

Quality
Criteria

Traceability
Completeness
Consistency
Accuracy

Metrics

Communicativeness
Simplicity

Communications commonality —
—Data commonality ‘

Fig. 1. McCall quality model.

e High level: defines basic functionalities

which can assist in measurement of software

quality. It represents basic high-level

requirements of actual use It addresses three

main questions that a buyer of software has:

e As-is utility: How well (easily, reliably,

efficiently) can I use it as-is?

e Maintainability: How easy 1is it to
understand, modify and retest?

e Portability: Can I still use it if I change my
environment?

e Intermediate level: Contains the same

quality factor proposed by McCall as well as

these factors constitute the overall
expectations which customer hoping from the
product.

e Lowest level: exhibits the metrics

hierarchy and defines the factors which help
measuring and ensuring the certain level of
hierarchy.

The Boehm model is similar to the Mc Call
model in that it represents a hierarchical
structure of characteristics, each of which
contributes to total quality but it has a few
notable differences. Boehm's notion includes

user's needs, as McCall's does; however, it
also adds the hardware yield characteristics
not encountered in the McCall model [11].

One obvious difference is its factoring of
quality characteristics. As an example, in
McCall's model maintainability and testability
are at the same level which means in McCall's
model a product can be maintainable without
being testable and vise versa. In Boehm's
model, testability is a sub factor of
maintainability, which means an increase in
testability implies an increase in
maintainability. By itself this isn't necessary
an important distinction but it does point out
the difficulty of having a definitive quality
model.

Another way Boehm's model is different
from McCall's model is that Boehm's model
applies only to code and the fact that Boehm
is the strong believer that quality has much
more to do with maintainability and related
terms [11, 15]. However, Boehm’s model
contains only a diagram without any
suggestion about measuring the quality
characteristics. [15].

Alexandria Engineering Journal, Vol. 48, No. 6, November 2009 681

682

General Uility

S. Tawfik, N. El-Mekky / Software quality models

As-is Ltility

Maintainability

Fig. 2. Boehm quality model.

Fig. 3. FURPS quality model.

Alexandria Engineering Journal, Vol. 48, No. 6, November 2009

S. Tawfik, N. El-Mekky / Software quality models

2.1.1.3. FURPS model (1987): FURPS model
presented by Robert Grady is used to simplify
the process of defining the appropriate
measurements in each life cycle phase
(Specification / Design / Implementation/
Testing/Support), through focusing on specific
quality criteria. It stands for five quality
criteria which are divided into 27 sub-
characteristics as shown in fig. 3. These
criteria are decomposed into two different
categories of requirements:

e Functional (F): input and expected output.

e Non-functional (URPS): Usability,
Reliability, Performance and Supportability.

Each of the quality criteria maps to one or
more metrics. Using the FURPS model
involves two steps: 1. Establishing priorities,
2. making quality attributes measurable.

Establishing priorities are important
because of the trade-offs involved between
quality factors. Thus the decision has to be
made, what type of quality is relevant in a
given project and a prioritized list of quality
factors has to be defined. Once priorities have
been established, measurable goals for each
quality factor have to be defined. These
measures are, as the priorities, project specific
and also depend on the phase of the life cycle.

FURPS itself does not contain a technique
to derive the metrics for the quality criteria. In
general this derivation is context and project
(customer) dependent, unless a static
definition of quality is given. Goal oriented
measurement approaches can help in finding
the appropriate metrics. In practice some
metrics will be reused from project to project,
though this is not recommended.

The perspective of the quality factors and
the quality criteria is product and customer
oriented. But, there is a loose integration of
the user and the product view. In the context
of embedded systems, FURPS model has been
used in the development for software and for
hardware/software systems like Boehm
model. Experience showed that aspects of
reliability and supportability were heavily
influenced by hardware design decisions. One
disadvantage of this model is that it fails to
take account of the software product's
portability.

2.1.1.4. ISO 9126 (1991): ISO 9126 is an
international standard for the evaluation of
software. It is an extension of previous work
done by McCall 1977, Boehm 1978. It
represents the latest (and ongoing) research
into characterizing software for the purposes
of software quality control, software quality
assurance and software process improvement
[14, 15]. ISO/IEC 9126-1 defines a quality
model in terms of:

e Internal quality: is evaluated using internal
attributes of the software (design modularity
and compliance). How the product was
developed e.g. size, test and failure rate.

e External quality: is evaluated when the
software is executed, typically during formal
testing activities. How the product works in its
environment.

e Quality in use: refers to the user’s view of
the software quality when they use it in a
particular environmental context. In other
words, quality in use is evaluated after the
software is deployed to the operational
environment. The quality model for quality in
use is categorized into four characteristics:
effectiveness, productivity, safety and
satisfaction.

The set of ISO 9126 quality views in fig. 4
is based on the belief that internal quality has
an impact on external quality, which in turn
has an impact on quality in use. Therefore,
the achievement of quality in use depends to
some extent on the achievement of external
quality, which in turn depends on the
achievement of the internal quality of the
software product itself.

As shown in fig. 5, the internal and
external quality models share the same
hierarchical structure, with two levels. The
first level has six characteristics, which are
broken down into 27 sub characteristics in
the second level.

The advantages, or in other words, the

most important features of this model are
that:
e This approach to quality evaluation
decomposes the concept of quality into a set of
lower level quality characteristics that are
recognizable properties of a product or service
which refine "quality" into something more
concrete and measurable [16].

Alexandria Engineering Journal, Vol. 48, No. 6, November 2009 683

S. Tawfik, N. El-Mekky / Software quality models

software product

effect of software
produst

internal
quality >'\
contexts of
e
internal metrics external metrics quality in use
metnics
Fig. 4. Quality along the software life cycle [15].
external and
internal
quality
1. 1 1 | i i
functionality refiability usability efficiency maintainabili portabliity
suitability maturity understandabilit i b analysability adapiability
Beurasy fault tolerance lsarnability changeability instaliability
intero para bikity recoverability oparability rasource stability co-axisienos
security attractiveness utilisation testability replaceability
funcionality ratiability usabrility afficiency mai rtainabitity portability
cornpliance complianog compliance compliance compliance cornpliance

Fig. 5. ISO 9126 quality model.

e It defines the internal and external quality
characteristics of a system, where the internal
attributes influence or determine the external
attributes obtained by the end-user [11].

e It is generic so it can be applied to any
software product by tailoring to a specific
purpose [10].

e It defines a three-level (strict) hierarchical
structure of quality concepts [17].

e Familiar labels or single words are used to
identify each characteristic and sub
characteristic, using terms that are commonly
understood in practice [17].

e It consists of concise definitions, where
each characteristic and sub characteristic is
defined using a single sentence [17].

e Even evaluation procedures are defined in
a separate standard to illustrate procedures
for conducting product evaluations [18].

e It is preferable because it represents a
broad consensus among researchers and

684

practitioners and is widely accepted and used
in practice [17].

e It provides a common vocabulary to
express quality of user needs.

But its major disadvantage is that it does
not provide a clear way to measure these
quality aspects [9]. Pfleeger [19] reports some
important problems associated with ISO 9126:
1. There are no guidelines on how to provide
an overall assessment of quality and rather
than focusing on the user view of software, 2.
The model’s characteristics reflect a developer
view of software. For the most part, the overall
structure of ISO 9126 is similar to past
models, McCall (1977) and Boehm (1978)
since they use hierarchical frameworks, but
they use different quality frameworks and
terminology. ISO 9126 model reflects a user
view since sub characteristics relate to quality
aspects that are visible to the user; McCall’s
model reflects a product view since criteria
relate to internal software properties.

Alexandria Engineering Journal, Vol. 48, No. 6, November 2009

S. Tawfik, N. El-Mekky / Software quality models

Vi Correctness

Functionality,
reliability

internal

Maintainability,
Efficiency, reliability

4

implementation

Contextual

Descriptive

Maintainability
Reusability, portability,
reliability

Fig. 6. Dromey model.

2.1.1.5. Dromey model (1996): Unlike the
previous model, Dromey takes a different
approach to software quality model. The model
is based upon the product perspective of
quality. He has built a quality evaluation
framework that analyzes the quality of
software components through the
measurement of tangible quality properties. As
illustrated in fig. 5, these components all
possess intrinsic properties that can be
classified into four categories:

e Correctness: Evaluates if
principles are violated.

e Internal: Measure how well a component
has been deployed according to its intended
use.

e Contextual: Deals with the external
influences by and on the use of a component.

e Descriptive: Measure the descriptiveness of
a component.

This model doesn't consider the efficiency
of software to determine the quality of
software [20. The disadvantage of the Dromey
model is associated with the high level quality
attributes (maintainability, functionality,
reliability) which can't be built into the
system. The alternative way to input quality is
identifying a set of properties and build them
up consistently, harmoniously and fully to
provide high level quality [11]. It is not feasible
to judge both attributes Reliability and
Maintainability of a system before it is actually
operational in the production area [5]. Links
must be established between tangible product
properties and intangible quality attributes.

some basic

2.1.2. Non-hierarchical models

The non-hierarchal models can be
considered as sequential models. Unlike
hierarchal models, they have the lack of
identifying sub attributes for the associated
high level attributes. In addition, it is not clear
how to measure the quality of those attributes
[15]. The most known of them are summarized
into the next subsections.

2.1.2.1. Bayesian Belief Networks (BBN): BBN
are powerful models for modeling causes and
effects in a wide variety of domains. They are
compact networks of probabilities that capture
the probabilistic relationship between
variables, as well as historical information
about their relationships effects via an
intuitive graphical representation. Each of the
variables in the BBN is represented by nodes.
Each node has states, or a set of probable
values for each variable. Nodes are connected
to show causality with an arrow indicating the
direction of influence. These arrows are called
edges. It is very effective for modeling
situations where some information is already
known and incoming data is uncertain or
partially unavailable. Because of all of these
capabilities, BBN are being increasingly used
in a wide variety of domains where automated
reasoning is needed [20].

2.1.2.2. Star model: The star model is a
conceptual model based on the acquirer and
supplier as defined in ISO/IEC 12207 (1995)
[20]. As shown in fig. 7, there are three
elements: Procurer, producer and product.

Alexandria Engineering Journal, Vol. 48, No. 6, November 2009 685

S. Tawfik, N. El-Mekky / Software quality models

Software Quality Star

Contract

Producer |

Project User

Procass ' 18
Professional

Fig. 7. Star model.

e Procurer (acquirer):

¢ Enters in a contract with the producer to
create software product and specify its quality
characteristics.

e The lead party in any contractual
arrangement because it is the acquirer's users
and technical support professionals.

e Dictates profile and maturity of the
supplier organization who dictate the success
or failure of the software product. The
procurer's perspective of the:

e Producer: they use the best project
management techniques available and that
they engage in first-rate processes to create a
quality product.

e Product: it must be acceptable by the user
community and that it can be serviced and
maintained by their professionals.

e Producer (supplier): The model focuses on
its maturity as software developers and the
development processes that they used to
create quality software products” [20].

2.2. Related models

This section gives a quick highlight on
some of the quality models in the literature.
These models were taking the one or two of
the hierarchal models as the basis for these
working mechanisms.

M. Goulao’s work (2002) [15] proposed the
component quality model. However, this work
only proposed the quality attribute without
definition of metrics.

Martin-Albo’s work (2003) [14] proposed the
component quality model. This work is based
on ISO 9126. However, this work defined the
only characteristics and sub characteristics.
Proposed metrics by this work might not
measure the value. This work only defined the
definition of metrics. Also, this work was not
reflecting of component specific features since
the work intends to apply all characteristics of
ISO 9126 to component quality model.

C-QM (2003) [12]: This work was based on the
features of COTS components and we defined
its. quality model which consists of
characteristics, sub characteristics, and
metrics for evaluating COTS components. The
work derived 4 characteristics (functionality,
reusability, maintainability, and confor-
mance), derived 12 sub characteristics and
metrics for measuring the characteristics.
However, scope of this work is limited as
COTS components. Therefore, quality model of
extended business component are needed
Losavio F (2003) [18]: proposes an ISO 9126-1
based technique to specify the relevant quality
characteristics, refined until the attribute level
or measurable items, involved in the
architectural design process.

OSMM Model (2004) [17]: Decomposes the
quality model into six constituents (Product
software, Support, Documentation, Training,
Product integrations and Professional services),
each one having some weight. The evaluator
assigns a score to each element and the final
evaluation mark is the weighted sum of the
scores. It is simple and thus easy to apply, it
is often criticized for not taking into account
some important software artifacts, such as the
source code itself.

Victor B (2005) [18]: presents a top-down
approach to establish a goal-driven
measurement system: 1. the team starts with
organizational goals, 2. defines measurement
goals 3. Poses questions to address the goals
4. Identifies metrics that provide answers to
the questions.

Knight and Burn (2006) [13]: summaries 12
widely accepted Information Quality (IQ)
Frameworks collated from the last decade of
Information System research. The frameworks
share a number of characteristics regarding
their classifications of the dimensions of
quality. Their analysis reveals the common

686 Alexandria Engineering Journal, Vol. 48, No. 6, November 2009

S. Tawfik, N. El-Mekky / Software quality models

elements and shows that the most well known
models and the basis of the different
frameworks are McCall, Boehm, FURPS, ISO
9126 and Dromey.

The main difference between these works
and the work represented in this paper is the
size of the domain for which the quality
attributes are defined.

3. Proposed classification

In spite of the differences and the
similarities between the different models
discussed in the previous section; it is found
that the common objectives between all the
models are to find the main factors essential
to describe them and the way to quantify
useful attributes. But the problem is that it
isn't possible to provide matrices on a quality
attribute level (at least not for many of the

attributes) [10, 6]. Instead, lower Ilevel
attributes are introduced. They are not
exclusive for each attribute but could

influence any attribute positively, negatively or
not at all. For example, how the changeability
of a system can be measured or in other
words, what are the metrics needed to
measure it. By considering the previous
example, the main objective is to decompose
the concept of quality into a set of lower level
quality characteristics that are recognizable
properties of a product or service which refine
“quality” into something more concrete and
measurable.

In order to reach this goal, table 1 has
been constructed. The table aggregates the
most common dimensions and the most

of factors,

each other. The table is divided into many
parts as follows:

Part 1: Quality Characteristics: presents the
different attributes in the previous models by
decomposing them into more specific
attributes (factors, criteria, and metrics) as
presented in the lower part of the table:

1. Factors: the main factors represent the
behavioral characteristics of the system are
represented in fig. 8.

2. Criteria: is a group of attributes for a
quality factor related to software production
and design as presented in fig. 9.

3. Metrics: is a measure that captures some
aspect of quality criteria. The metrics used in
this model are described in fig. 10.

The relationships published in [8, 9, 11,
12, 19, 21 and 23 to 33] were summarized,
considering many types of interactions as
follow:

» "+" good value of one attributes result in
good value of the other (synergistic goals); If
character A is enhanced, then characteristic B
is likely to be enhanced

e "-" good value of one attributes result in
bad value of the other (conflicting goals); If
characteristic A is enhanced, then
characteristic B is likely to be degraded

e "0" the attributes do not affect each other;
if a characteristic A is enhanced, then
characteristic B is unlikely to be affected.

o '"X" the attributes affect each other, If a
characteristic A is enhanced, then
characteristic B is likely to be affected

o "H" relation between the attributes is high
e "L" relation between the attributes is low.

. . . e "M" relation between the attributes is
frequently included in the different model and . _—
classifies them into lower level as a hierarchy) o)
criteria and metrics to let the attribute is identified by Dromey
factors needed to be measured too abstract attribute is identified by McCall
and directly measured. Also, the table . o o
presents all the relationships between the attribute is identified in ISO Model
attributes to identify the influence of them on attribute is identified by Boehm
1|2 g.gggg EEEE %Egggﬁgﬁg“ﬁgé%ﬁ%;
3|3 2| & H g AEIHEE gg HIE
8% ﬁﬁbgaﬁgéggg ;e 8|5
Fig. 8. Star model.
Alexandria Engineering Journal, Vol. 48, No. 6, November 2009

687

S. Tawfik, N. El-Mekky'/ Software quality models

Traceability
Comp letetess
Cors isterucy”
Storage Efficiency
Dccessibiliby
Operability
Traird
Corraeroamic st iwete s s
Simplicity
Conscisrceless
Frstnmrerdat ok
Self Descriptivreness
Exparudability
Crerer ality
Bodha iy
Indepervd et e
C orraruorality
Self - Cordainedness
Fobustress
Acconmitability
Stnacharedness
Legibility
Ansrentability:
Doonrerntatior
Aruoariatyr
Tire Beluwrior
Fesoarce Behanrior
Prodact Eequinerietds
Prodact Architechare
Design & Brplemendation
Itegration & Testing |
Prodact hlairderatice
Product Exporotrerterit
Baseline
Distribngedness

Fig. 9. Criteria presented in the model.

Part 2: It contains the relationships between
the factors to consider the effect that one
factor has on another when there is a change
in it occurs. It is gluey directly to part 1.

Part 3: identifies the main models used,
represents the levels in which each model is

Cross Refirence
Completeness checklist

Procecire and data Consistency
Processing / dita Usage Eifectiveness meaaume
Storage effectiveness messure
Arcess coritrol and sudit
User Tt / output Commmmricativeness
Traming checklist
Commomication offe ctiveness
Design Struchre, Covdrol Flovr, Specificity

Quaritity / Efactiveness of coriments

Uit Refirencing and buplamertation
Modulir Design and fupliamentation
SW { machine hdependence
Commnmication and Data Connonality
Depend shility

Dita Storsge, Computation / Design Extensibil
Becess and well strachured
Device, Commnmication, HW, Computation fuihme
Response time throughput
T T ik Uiz
| Argomert, Feshime, hepections baged design
Architechure, corirol flowr, ERD
Algorithen, Source code, SW design
Code coveraze metrication, compledty
(n line SW upload, Mairtainahility index
User doommertation, usshility epection
Sitmplex architechurs , log files , system marosale

Desizn Strachire

Fig. 10. Metrics used in the model.

divided to and the factors related to each
model as shown in the following figure.

Part 4: it contains many properties that must
be taken into consideration when using each
factor. These properties shown in the following
figures are as follows:

688 Alexandria Engineering Journal, Vol. 48, No. 6, November 2009

N. El-Mekky / Software quality models

Traceability 3] + [+ | + +] Cross Refereruce
Completeness + + |+ + | X X [X 1X Compl checklit
Comsi - X|X[+]|+ |X [+]X X [X |X X Procedure and data Consitency
Eecation Bficiency - - Processing / data Usage Efectiveness measure
Eficiency effe ctiveness measure
Accessoility X Access control and audit
Operability + User uput 7 oatpat. Commumicativaness
T | T ining checklist
Commmicativeness X |X s+ | + |- |+ Commumication effectiveness
Smplicity wall B X XX |X Design Structure, Cortrol Flow, Specificity
Comscienceless X
s o ¥
Self-Descriptiveness X |3 + |+ |+ X X Quardity / Bffectiveness of commerds
[Bpwdibily :
Generality + mmg and Inple merdation
Iodularty X + [+ |+ X and hmplementation
+ Rl XX W mk b bntinte
Commonality + Commumication and Data Commonality
Self- Cortainedriess X B Dependrbilly
Robustness X X
Accomritabilty
Structuredress
Legibiliry
Angmertability Data 4 ion / Design Btersibi
Documentation X{X|X |X X XX Access md well druchred
Anomaly b 4 + XX X X | Device, Commmication, HW, Computation faibare
Time Beharior X - - Respomse time, throughput
Resource Behawior X e / disk Uhili
Product Requiremerds X | IX 1X X Argument Feabire, Inspections based design
Prodact Archiecture X X X |X X X [X X Architechure, cordrol flow, ERD
Design & Imp lem entation X X X[XXX X ; ource Co. desi
[Trtegration & Testing X X X X[[X X Code covernge metrication, compledity
Product Mairdenmce X X FI X |X On line SW ad, Maintaiabiliy index
Product Inprovement X X X [X X X [X X User documertatian, usabili ction
Baseline X X X |X X|X XX |X| Simplexarchitecture, logfiles, system maraials
Judiabilcy X X
Distributedness - DesignStructore |
Fig.11. Relationships between criteria and metrics.
0 Reusability
0 0 +| + Stability
0 0 Changeability
0 o0 + Analyzability
0 + XXX 0| 0 |0 |Interoperabilit
X Integrity
Suitability
X |X X|0 X Efficiency
X X |X|X Security
0 X 0 0|+ 0 1+ 1+ Flexibility
0|0 X 0|0 0|0 |D Testability
0| + - + 0 0|+ + |+ [+ Maintainability
0|0 - 0 0|0 0|0]| + + |+ |+ 0|0 |0 Usability
+ + 0 0 - X+ + |+ |+]|X X 0|0 (D
0|0 - 0 (+]0 + il [0|00 X il He e e s
2
@ = e B 8 =2 & b B B R o) P
HEE B R B B R R B EEEE
i - R = 5 B - =] g 9 | 5 § Sle|l=|2 5 s 2ol ® o | B 1
Sl S| 5 |PE[E| 2|2 |2|8|a Hl e el 8 Bl a3 |58 B =
AR EE R R I EEEE e B HE Rk
Fig. 12. Relationships between the factors and each others.
X x |x[x
X XX Reliabili
Correctne X X XXX Usabi
amd | X XK X —— O 9126
Dremey ™ Corgextnal X XX XX XX (X Wirtainab
Descripti x X X X X |x|x|x Portabil
= Dortabili
As—is
T o Product Y TR Mairtainab;

Fig. 13. The levels of each models.

689

Alexandria Engineering Journal, Vol. 48, No. 6, November 2009

S. Tawfik, N. El-Mekky / Software quality models

bl
bl
kel
B

Internal X

Temnd XX [X K| X (6) Type
Ther TTHL | [FLX [+ 5] KX KX EXHEE] XX X

Toalyh Mevelopes [+ [B (M| M H[X [0 [H| [X|X [X[X[XH[X| [X[0[X X (5) Stakeholders
Mamgr |+ H [| |LH[X[*|L X| H ¥ X
Tife Cyck XX X1 KIXEE] | K| [KK X =
Toun Time X X X KX X (4) Process

Fig. 14. The framework properties.

1. Factor Types:

e External: refers to software execution. It is
measured and evaluated during tests in a
simulated environment. In general, Software'
users only care about the external qualities
because they affect them

e Internal: is the quality needed from the
internal perspective of the product, and it is in
the habit of remaining without alterations
unless the product is re-designed.

2. Cycle Processes: The model is classified
into two classes; the quality characteristics
that can be observable at runtime (that are
discernable at component execution time) and
the quality characteristics that can be
observable during the product life-cycle (that
are discernable at component and component-
based systems development).

3. Stakeholders involved: In order to know
the role of each stakeholders and the impact
of each one on the quality model components,
the stakeholders that have a relationship with
the system throughout its life cycle, are
identified. Also to solve the problem of who
should be responsible for such evaluation.

The weighted sum of the relations is used in
establishing the aggregation of the score for
the evaluation of software quality attributes.
The aggregation score is done for 2 levels:

1. Criteria Level: 37 metrics are used with
168 influences on the factors.

2. Factor Level: 29 factors are used.

The table is designed in this way to be
considered as a software manual to evaluate
each factor by decomposing it into many
criteria's which are defined using the metrics.
Also, using this table, at the design phase of
any model, can be used as a cross reference
manual to indicate the effect of each factor on
the others. So, the effect of any update on one
factor on the others factors can easily be
indicated. By combining the previous part, the

following framework is obtained as shown in
the above figure.

4. Conclusions

Several models, specializing in measuring
the quality of software products have been
described. The features of these models have
been studied, analyzed and their limitations
outlined. Specifically, Functionality of a
software product was not considered directly
by McCall’'s model. No suggestion about
measuring the quality characteristics has
been found in Boehm’s model. FURPS model
fails to take account of the software product’s
Portability. ISO 9126 has the limitation of not
showing very clearly how certain quality
aspects can be measured. The disadvantage of
Dromey’s model is associated with Reliability
and Maintainability. It is not feasible to judge
these two attributes of a system before it is
actually operational in the production area.

To overcome these limitations, all the
attributes that have been found in the
surveyed models have been presented from a
new perspective. They are classified into a sub
levels associated with metrics to facilitate
measuring them and the relationships among
them are also defined as shown in table 1.
This table can be used as a software manual
to describe and evaluate any software model.

In this work, effort has been done to
establish a classification framework for
software quality attributes. The relation
between all parts of this framework has been
explained and most of the quality attributes
that exist in the literature have been included.
The future work proposed is to apply this
framework in the Software applications
models according to these factors and these
criteria to propose the optimum software
metrics to enhance and evaluate any software
application.

690 Alexandria Engineering Journal, Vol. 48, No. 6, November 2009

S. Tawfik, N. El-Mekky /- Software quality models

References

[1] Adnan Rawashdeh and Bassem Matalkah,
"A New Software Quality Model for
Evaluating COTS Components", Journal
of Computer Science, Vol. 2 (4), pp. 373-
381, ISSN 1549-3636 (2006).

[2] Hongyu Pei Breivold, Ivica Crnkovic and
Peter Eriksson, "Evaluating Software
Evolvability", SERPS, 24-25 October,
Goteborg (2007).

[3] Khashayar Khosravi, "A Quality Model
considering Program Architecture",
Montreal University. Khashayar Khosravi,
Aout (2005).

[4] Charles River analytics, "About Bayesian
Belief Networks", for BNet Version 1.0
Last Updated April 22 (2008).

[5] Parastoo Mohagheghi, Vegard Dehlen, "A
Metamodel for Specifying Quality Models
in Model-Driven Engineering", SINTEF,
P.O. Box 124 Blindern N-0314 Oslo,
Norway (2009).

[6] Julien Dormoy, Jean-Michel Hufflen, Olga
Kouchnarenko and et al., "A Synthesis of
Existing Approaches to Specify Non-
Functional Properties", (2008).

[7] Yoonjung Choi, Sungwook Lee and HOup
Song, "Practical S/W Component Quality
Evaluation Model", ISBN 978-89-5519-
136-3 ICACT (2008)

[8] Kevin K.F. Yuen and C.W. Henry
"Software Vendor Selection using Fuzzy
Analytic Hierarchy Process with ISO/IEC
9126", International Journal of computer
Science, 21 August (2008).

[9] Joaquina Martin-Albo, Manuel F. Bertoa,
Coral Calero, Antonio Vallecillo, Alejandra
Cechich and Mario Piattini, "A Software
Component Metric Classification Model,"
IEEE Transactions on Journal Name,
Manuscript ID.

[10] Dipl.ing. = Gregor Panovski. Product
Software Quality. Eindhoven, February
(2008).

[11] B. Vinayagasundaram and S. K. Srivatsa.
Software Quality in Artificial Intelligence
System. Information Technology Journal,
Vol. 6 (6), ISSN 1812 - 5638, pp. 835 -
842 (2007).

[12] Sherif M. Tawfik, Marwa M. Abd-Elghany,
and Stewart Green, "A Software Cost

Estimation Model Based on Quality
Characteristics," In MeReP: Workshop on
Measuring Requirements for Project and
Product Success, IWSM-Mensura, IWSM

(International Workshop in Software
Measurement) and MENSURA
(International Conference on Software
Process and Product Measurement),

Palma de Mallorca, Spain, 5-8 November
(2007).

[13] Jamaiah Haji Yahaya, Aziz Deraman and
Abdul Razak Hamdan. Software Quality
from Behavioural and Human
Perspectives. IJCSNS International
Journal of Computer Science and
Network Security, Vol. 8 (8), August
(2008).

[14] Asif Javed. Metric-Oriented Quality
Model, Department of Computer Science
Faculty of Applied Sciences International
Islamic University, Islamabad. Thu, 28
Sep. (2006).

[15] Ioannis Samoladas, Georgios Gousios,
Diomidis Spinellis and loannis Stamelos,
"The SQO-0SS Quality Model:
Measurement Based Open Source
Software Evaluation”, The European
Community's Sixth Framework
Programme Under the Contract IST-2005-
033331 (2005).

[16] Shirlee-ann Knight and Janice Burn,
"Developing a Framework for Assessing
Information Quality on the World Wide
Web," Informing Science Journal Vol. 8
(2005).

[17] http:/ /www.bth.se/tek/besq.nsf/ (WebFil
es)/BFEFBED4E650D690C12570690032
4572 /$FILE /chapter_4.pdf

[18] Marc-Alexis Cote, Witold Suryn, Software
Quality Model Requirements for Software
Quality Engineering.

[19] Ronan Fitzpatrick, Catherine Higgins,
Usable Software and its Attributes: A
synthesis of Software Quality, European
Community Law and Human-Computer
Interaction.

[20] Hazura Zulzalil, Abdul Azim Abd Ghani,
Mohd Hasan Selamat, Ramlan Mahmod,
"A Case Study to Identify Quality
Attributes Relationships for Webbased
Applications”, IJCSNS International
Journal of Computer Science and

Alexandria Engineering Journal, Vol. 48, No. 6, November 2009 691

S. Tawfik, N. El-Mekky / Software quality models

Network Security, Vol. 8 (11), November
(2008).

[21] Alexandre Alvaro, Eduardo Santana de
Almeida, Silvio Romero de Lemos Meira.
Quality Attributes for a Component

Quality Model. Federal University of
Pernambuco and C.E.S.A.R - Recife
Center for Advanced Studies and

Systems, Brazil. January (2009).

[22] Parvinder Singh Sandhu and Gurdev
Singh, Dynamic Metrics for Polymorphism
in Object Oriented Systems. Proceedings
of World Academy of Science, Engineering
and Technology, Vol. 29, ISSN 1307 -
6884, May (2008).

[23] K.K. Aggarwal, Yogesh Singh, Arvinder
Kaur and et al., "Investigating Effect of
Design Metrics on Fault Proneness in
Object-Oriented Systems", Journal of
Object Technology, Vol. 6 (10), pp. 127 -
141, November-December (2007).

[24] Jehad AL Dallal, "A Design-Based
Cohesion Metric for Object-Oriented
Classes", International Journal of
Computer Science and Engineering Vol. 1
(3) (2007). :

[25] K.K. Aggarwal, Yogesh Singh, Arvinder
Kaur and et al., "Application of Artificial
Neural Network for predicting
Maintainability using Object Oriented
Metrics", Proceedings of World Academy of
Science, Engineering and Technology, Vol.
15, ISSN 1307 - 6884, October (2006).

[26] Mahmoud O. Elish, "A Case Study on
Structural Characteristics of Object
Oriented and it's Stability", Proceedings of
the IASTED International Conference on
Software Engineering, pp. 89-93, Austria,
Feb. (2005).

[27] G. Canfora, F. Garcia, M. Piattini and et
al., "A Family of Experiments to Validate

Metrics for Software Process ‘Models",
Journal of Systems And Software, Vol. 77,
pp. 113 — 129 (2005).

[28] Marc-Alexis, Witold Suryn and Elli
Georgiadou, Software Quality Model

Requirements for Software Quality
Engineering (2004).

[29] David Rine and Mahmoud Elish,
"Investigation of Metrics for Object-
Oriented Design Logical stability",

Proceedings of the 7t IEEE European
Conference on software Maintenance and
reengineering (CSMR 03), pp. 193 - 200,
Italy, Mar. (2003).

[30] Rajecndra K. Bandi, Vijay K. Vaishnavi et
al., "Predicting Maintenance Performance
Using Object Oriented Design Complexity
Metrics", IEEE Transactions on Software
Engineering, Vol. 29 (1), January (2003).

[31] Javier ~Garzas and Mario Piattini,
"Analyzability and Changeability in
Design Patterns", SugarloafPLoP (2002).

[32] Khaled El Emam, Saida Benlarbi, Nishith
Goel and et al., "The Confounding Effect
of Class Size on the Validity of Object
Oriented Metrics", IEEE Transactions on
Software Engineering, Vol. 27 (7), July
(2001).

[33] Lionel C. Briand, Jurgen Wust, John W.
Daly and et al, Exploring the
Relationships Between Design Measures
and Software Quality in Object Oriented
Systems (2000).

[34] Khaled El Emam, Saida Belarbi and
Shesh Rai, A Validation of Object
Oriented Metrics. V 10 — 18 / 10 / 1999
(1999).

Received April 16, 2009
Accepted August 18, 2009

692 Alexandria Engineering Journal, Vol. 48, No. 6, November 2009

