
Alexandria Engineering Journal, Vol. 48 (2009), No. 4, pp. 365-380 365
© Faculty of Engineering Alexandria University, Egypt.

Towards consistent snapshot isolation

Nagwa M. El-Makky

Computer and Systems Dept., Faculty of Engg., Alexandria University, Alexandria, Egypt
nagwamakky@alex.edu.eg

Snapshot Isolation (SI) is a widely used optimistic concurrency control algorithm. It is
especially beneficial for query intensive applications. Since SI was introduced as a relaxed
isolation level, it is well known that it can allow consistency anomalies. In spite of this, SI is
the highest level of consistency supported by some of the Popular Database Management
Systems (DBMSs). Many organizations use these DBMSs, and so they can be at risk of
violation of data consistency. The only way to prevent the consistency anomalies of SI was to
statically analyse the application code, and then modify the application accordingly.

Recently, a new algorithm, called Serializable Snapshot Isolation (SSI), has been proposed to
prevent SI anomalies at runtime. However, under this algorithm, a read-only transaction
can be aborted and can cause the abortion of update transactions. This violates one of the
most attractive properties of SI. This paper proposes an optimistic concurrency control
algorithm that preserves most of the attractive properties of SI while ensuring serialized
executions. An analytical performance model is presented for estimating the abortion rate of
transactions under the proposed algorithm compared to the SSI and SI algorithms. The

model shows that, in terms of transaction abortion rate, the proposed algorithm
outperforms SSI and approaches the performance of the original SI in many practical cases.

د انتشر مؤخرا استخدام خوارزم "العزل باستخدام صورة للبيانات"، وهو خوارزم متفائلل لللتم م لز تلزامع العمليلات لز نعلم وا ل
البيانللات، وتت للئ ائللدة هللرا الخللوارزم تمديللدا للز تلبياللات وا للد البيانللات التللز تملللل ليفللا اذستفسللارات مللع المعللرو ع هللرا

 ع هرا لم يالل استخدامه ز ثير مع نعم وا لد البيانلات الخوارزم يسمئ بمدوث بعض الماذت المير ياسية ز وا د البيانات اذ
ريل انت اللرياة الوميدة لمنع عفورهره الماذت غير الاياسية هز تمليل برامج التلبياات ز و لت التصلميم الشائعة متز و ت

وتعديل البرامج بما يؤدى الز غيال هره الماذت، الز ع عفر مؤخرا خوارزم مديث يعدل الخوارزم الأصلز بما يمنلع عفلور هلره
بعض اذستفسارات بلل اتمامفلا ويسلمئ ب علل استفسلار يتسلبل لمديث يسمئ بانفاءالماذت ز و ت التشميل، ول ع هرا الخوارزم ا

ياتلر هلرا البملث خوارزملا ز انفاء ملية تمديث للبيانلات بلل اتمامفلا مملا يلناض املدى المميلزات الرئيسلية للخلوارزم الأصللز
رزم الأصللز بملا يمنلع عفلور الملاذت الميلر ياسلية ملع متفائلا للتم م ز تزامع العمليات ز نعم وا د البيانات، وهو يعلدل الخلوا

المما عللة لللز المزايللا الأساسللية للخللوارزم الأصلللز، و للد تللم مللل نمللورم تمليلللز للخللوارزم الماتللر واعفللرت النتللائج تفو لله لللز
 وا ترابه مع الخوارزم الأصلز ز ثير مع الماذت العملية الخوارزم المناعر

Keywords: Optimistic concurrency control, Snapshot isolation, Serializability theory

1. Introduction

In recent years, many database vendors

have built platforms which make use of an

optimistic concurrency control technique

called Snapshot Isolation (SI), [1]. A

transaction executing with Snapshot Isolation

always reads data from a snapshot of the
committed data as of the time the transaction

started. This is available in Oracle RDBMS,

PostgreSQL, Microsoft SQL Server and Oracle

Berkeley DB. Because SI does not delay reads,

even if concurrent transactions have written
the data involved, it generally offers higher

throughput compared to Strict Two-Phase

Locking, (S2PL), [2]. This is especially

beneficial for query intensive applications,

where a vast amount of complex read-only

transactions is conducted together with a
small number of short update transactions.

Examples of such applications can be found in

many practical database-backed web

applications, web services, etc.

Since SI was introduced as a relaxed

isolation level, it is well known that it can
allow some consistency anomalies [1]. In

particular, it is possible for a SI-based

concurrency control to interleave some

transactions, where each transaction

preserves an integrity constraint when run
alone, and where the final state after the

interleaved execution does not satisfy the

constraint. In spite of this, not only SI is

widely used in many database management

Nagwa M. El-Makky / Towards consistent snapshot isolation

366 Alexandria Engineering Journal, Vol. 48, No. 4, July 2009

systems, but also it is the highest level of

consistency supported by popular systems

such as Oracle and PostgreSQL which, in fact,
use SI even if the user requests the

serializable level of isolation [2]. Many

organizations use these databases for running

their applications, and so, they are potentially

at risk of violation of data consistency [2].

Moreover, several data replication techniques,
based on snapshot isolation, have been

recently proposed [3] which complicates the

problem.

The only way to prevent the consistency

anomalies of SI was to statically analyse the
application code, and then modify the

application accordingly by introducing

artificial locking or update conflicts [4, 5]. In

2008, a new algorithm, called Serializable

Snapshot Isolation (SSI) [6] was proposed to

automatically detect and prevent snapshot
isolation anomalies at runtime for arbitrary

applications. Despite the nice properties of

SSI, it allows read-only transactions to abort

and to cause the abortion of update

transactions. This violates one of the most
attractive properties of SI.

This paper proposes an optimistic

concurrency control algorithm which prevents

the consistency anomalies of SI for arbitrary

applications, while preserving most of its

attractive properties. Under the proposed
algorithm, read-only transactions never wait

or abort and they never block or abort update

transactions. The proposed algorithm can be

easily implemented by adding simple

modifications to database management
systems that provide snapshot isolation.

Using a simple analytical model and a

closed-form average-case analysis, this paper

compares the abortion rate of read-only

transactions and update transactions under

the original SI, i.e, the proposed algorithm and
the SSI algorithm. The analysis shows that, in

terms of abortion rate, the proposed algorithm

outperforms SSI and approaches the

performance of the original SI in many

practical cases.
The rest of the paper is divided into 6

sections. In section 2, the related work is

reviewed. The proposed algorithm is presented

in detail in section 3. The correctness of the

proposed algorithm is proved in section 4. An

analytical performance model is presented in

section 5, together with a closed-form average-

case analysis for the abortion rate of
transactions under the original SI, the

proposed algorithm and the SSI algorithm.

The results of parametric studies based on the

analytical model are presented and discussed

in section 6. Finally, the conclusion of the

paper is given in section 7.

2. Related work

2.1. Original snapshot isolation [1]

The following is a definition of the SI

approach to concurrency control. This

definition, which is slightly more formalized

than the description introduced in [1], will be
used for the purposes of this paper.

A transaction Ti, that is executed under

snapshot isolation, is assigned a start

timestamp start (Ti) which reflects its starting

time. This timestamp is used to define a

snapshot Si for transaction Ti. The snapshot
Si consists of the latest committed values of

all objects of the database at the time start(Ti).

Every read operation issued by transaction Ti

on a database object x is mapped to a read of

the version of x, which is included in the
snapshot Si. Updated values by write

operations of Ti (which make up the write set

of Ti) are also integrated into the snapshot Si,

so that they can be read again if the

transaction accesses update data. Updates

issued by transactions that did not commit
before start (Ti) are invisible to the transaction

Ti (they are applied to local versions of objects

kept in transactions' work spaces). When

transaction Ti tries to commit, it is assigned a

commit timestamp, commit (Ti), which has to
be larger than any other existing start

timestamp or commit timestamp. An update

Transaction Ti has to pass a validation test. It

can successfully commit if and only if there

exists no other committed transaction Tk

having a commit timestamp commit(Tk) in the
interval {start(Ti), commit(Ti)} and write set

(Tk) ∩ write set (Ti) ≠ {}. If such a committed

transaction Tk exists, then Ti has to be

aborted (this is called the first-commiter wins

rule [1], which is used to prevent lost

updates). If no such transaction exists, then Ti
is successfully validated. Its updates will be

Nagwa M. El-Makky / Towards consistent snapshot isolation

 Alexandria Engineering Journal, Vol. 48, No. 4, July 2009 367

applied to the database in a write phase and

become visible to transactions which have a

start timestamp which is larger than commit
(Ti); otherwise the updates are discarded and

the transaction is restarted.

 Even though SI avoids the classically

known anomalies such as lost updates or

inconsistent reads, there are some consistency

anomalies that can occur under SI. Two types
of anomalies have been identified in a set of

transactions running using SI [2, 7]. The first

anomaly type is "write skew, where a set of

transactions, each of which preserves some

integrity constraint, can execute under SI in a
way that leaves the database in a corrupted

state. Fekete et al. [7] describe another type of

anomaly that they call a "read-only-

transaction anomaly". This involves a read-

only transaction seeing a state that could not

occur in any serialized execution. This violates
the previous assumption in [1] that read-only

transactions always read consistent data

under SI. The next subsection surveys static

analysis techniques for removing SI

anomalies.

2.2. Removing SI anomalies through static
analysis

Because SI can allow data corruption, and

is so common, there has been a body of work

on how to remove consistency anomalies when

running with SI as concurrency control. The
main techniques proposed so far [4,5, 8-10]

depend on doing a design-time static analysis

of the application code and then modifying the

application, if necessary in order to avoid the

SI anomalies. For example, the work in [4]

shows how one can introduce write-write
conflicts into the application, so that all SI

executions will be serializable.
Making SI serializable using static analysis

has a number of limitations [6]. It is unable to

cope with ad-hoc transactions and application
developers have to be aware of SI anomalies.

In addition, this must be a continual activity

as an application evolves. In fact, the analysis

requires a global graph of transaction

conflicts, so every minor change in the

application requires renewed analysis and
perhaps additional changes (even in programs

that were not altered). The next subsection

presents a recent proposal [6] which

guarantees serializable SI executions for

arbitrary applications.

2.3. Serializable snapshot isolation [6]

SSI is a very recent concurrency control

algorithm which automatically detects and

prevents snapshot isolation anomalies at

runtime for arbitrary applications, thus,

providing serializable executions. The key idea

of the algorithm is to detect, at runtime,
conflict patterns that must occur in every non-

serializable execution under SI, and abort one

of the transactions involved. This is done

based on the theory of [11] and its extension

in [5], where some distinctive conflict patterns
are shown to appear in every non-serializable

execution of SI. The building block for this

theory is the notion of a read-write

dependency edge which occurs from T1 to T2

if T1 reads a version of an object x, and T2

produces a version of x that is later in the
version order than the version read by T1. In

[11], it was shown that in any non-serializable

SI execution, there are two read-write

dependency edges in a cycle in the multi-

version serialization graph. The work in [5]
extended this, to show that there are two

read-write dependency edges which form

consecutive edges in a cycle, and furthermore,

each of these read-write edges involves two

transactions that are active concurrently. The

serializable SI concurrency control algorithm
[6] detects a potential non-serializable

execution whenever it finds such two

consecutive read-write dependency edges in

the serialization graph. Whenever such a

situation is detected, one of the transactions
will be aborted.

This is similar somehow to the way

serialization graph testing works; however the

algorithm does not operate purely as a

certification at commit-time, but rather aborts

transactions as soon as the problem is
discovered. Also, the validation test does not

require any cycle-tracing in a graph, but can

be performed by considering conflicts between

pairs of transactions, and a small amount of

information which is kept for each of them.
The proposed validation test is conservative,

so it does prevent every non-serializable

Nagwa M. El-Makky / Towards consistent snapshot isolation

368 Alexandria Engineering Journal, Vol. 48, No. 4, July 2009

execution, but it may sometimes abort

transactions unnecessarily. A prototype of the

algorithm has been implemented in Oracle
Berkeley DB. Evaluating the prototype

showed that under a range of conditions, the

overall throughput of the algorithm is close to

that allowed by SI, and much better than that

of strict two-phase locking [6].

Despite the nice properties of this
algorithm, it does not give special treatment to

read-only transactions. Under the algorithm, a

read-only transaction can be aborted and can

cause the abortion of update transactions.

This violates one of the most attractive
properties of snapshot isolation which made it

very popular for query-intensive applications.

In particular, SSI brings back the source of

conflicts between read-only transactions and

update transactions (a source that has been

eliminated by using the original snapshot
isolation).

3. Proposed algorithm

3.1. Idea of the proposed algorithm

The original SI algorithm gives a special

treatment for read-only transactions by not

involving them in validation tests. Accordingly,

a read-only transaction can never abort or

cause the abortion of an update transaction.
However, unserializable execution does occur

due to the nature of the validation test applied

to update transactions (which was intended to

relax the isolation level). The SSI algorithm

eliminates unserializable SI executions by

validating each write or read request (whether
it comes from an update or a read-only

transaction). This violates the special proper-

ties given by SI for read-only transactions.

The key design goal for the proposed

algorithm was to add simple modifications, to
the original SI algorithm, in order to achieve

serialized executions while keeping the

attractive SI properties for read-only

transactions. To keep these properties for

read-only transactions, the proposed

algorithm treats read-only transactions exactly
the same way as the original SI algorithm

does. Read-only transactions will read a

consistent database state if the execution of

update transactions is serialized [12]. To

achieve serialized executions, the proposed

algorithm was inspired by the multi-version

serial validation algorithm described in [13] (it

is to be noted that the original SI algorithm
itself was inspired by a similar optimistic

multi-version algorithm that was described in

[12]). However, the algorithm proposed in this

paper modifies the algorithm described in [13].

The write phase and the validation phase in

[13] are embedded together in a critical
section, in order to prevent write-write

conflicts. Such a critical section can easily

become a bottleneck, especially for disk

resident databases. So, the proposed

algorithm separates the write phase from the
critical section and updates the validation test

accordingly. The write phase is handled using

a proposed scheme that prevents write-write

conflicts.

Using the proposed algorithm, both read-

only transactions and update transactions can
read consistent snapshots and all executions

will be serializable as will be proved in section

4. Read-only transactions can keep the

properties that they never wait or abort and

never block or abort update transactions.
The details of the proposed algorithm will be

presented in subsection 3.2. A time complexity

analysis of the validation test of the proposed

algorithm is given in subsection 3.3.

3.2. Algorithm description

Under the proposed algorithm,

transactions have to be declared as read-only
transactions or update transactions at start

time. As in the original SI, each transaction Ti

(whether it is a read-only or an update

transaction) is assigned a start timestamp;

start(Ti), which reflects it's starting time. The

proposed algorithm works exactly as the
original SI algorithm for read-only

transactions. It works also exactly as the

original SI algorithm for update transactions

until the update transaction requests

committing.
When an update transaction Ti is to

commit, it is assigned a commit timestamp,

commit (Ti), which has to be larger than any

other existing start timestamp or commit

timestamp. An update transaction Ti has to

pass a validation test (in a critical section) to
be successfully committed. Since the write

Nagwa M. El-Makky / Towards consistent snapshot isolation

 Alexandria Engineering Journal, Vol. 48, No. 4, July 2009 369

phase is separated from the critical section,

the validation test will be as given below.

 Assume that Last(x) is the commit
timestamp of the most recent successfully

validated transaction that has x in its write

set. Ti passes the validation test successfully if

and only if start (Ti) > Last (x) for each object x

in Ti 's read set.

 To commit the write set of the transaction
to the database while avoiding the lost update

problem, a proposed scheme is given below for

allowing concurrent write phases while

avoiding write-write conflicts.

 During the validation phase of transaction
Ti, a Wait-For-List (WFL) is determined for Ti

that identifies the update transactions whose

write phases conflict with and therefore must

be processed before the write phase of Ti. The

following is an outline of how to compute and

use the WFL. If Ti is successfully validated,
then for each object x belonging to the write

set of Ti, add Last(x) (if it corresponds to a

validated but not yet completed transaction) to

WFL (Ti) and then let Last(x) be the commit

timestamp of Ti. If WFL (Ti) is empty, then Ti
can begin its write phase, where it stamps the

created versions of it's write set objects by its

commit timestamp. Otherwise, Ti has to wait

until the conflicting update transaction(s) have

been processed. Algorithms 1 and 2 show

pseudo code for validating and committing a
transaction Ti, under the proposed algorithm,

respectively.
__

Algorithm 1: Validating a Transaction Ti

__

valid = true; WFL (Ti) = {};

for each x in Ti's read set do

 if start (Ti) < Last(x) then valid =false and exit loop;

if valid =false then

 discard Ti's updates and restart Ti;

else

 for each object x in Ti's write set do

 if Last(x) corresponds to an uncompleted transaction then

 add Last(x) to WFL(Ti);

 Last (x) = commit(Ti) ;

 end for
 if WFL(Ti) is empty then

 commit Transaction Ti ;

 else wait;

__

Algorithm 2: Committing a Transaction Ti

__
for each object x in Ti's write set do
 stamp the created version of x by the commit timestamp of Ti ;

begin

commit the write set of Ti to the database;
find all Wait-For-Lists (WFLs) for other transactions that Ti belongs

to;

remove Ti from these WFLs;
if any WFL(Tk) becomes empty then wakeup Tk to commit;

end

__

 It is to be noted that the proposed algorithm

is more conservative than the original SI
algorithm. It does prevent every unserializable

execution, but it may sometimes abort a

transaction unnecessarily (the probability of

transaction abortion for both the original SI

and the proposed algorithm will be calculated
in section 5). This is the cost paid for

obtaining serialized executions with a

validation test that has constant time

complexity (time complexity of the proposed

validation test will be calculated in subsection

3.3). An alternative solution is to design a
non- conservative validation test, which aborts

an update transaction only when an operation

will result in a non-serializable execution; this

would be a serialization-graph-testing

algorithm. However, serialization-graph testing
requires expensive cycle detection

calculations, and would be very prohibitive [6].

It has also to be noted that although the

proposed scheme for concurrent write phases

depends on blocking update transactions,

current SI implementation for concurrent
write phases in some database management

systems such as Oracle and PostgreSQL[6]

depend also on blocking. Moreover, the

proposed scheme has the advantages of

achieving serialized schedules besides being
deadlock-free, in contrast to the above

implementations.

3.3. Validation complexity analysis

 In this subsection, the time complexity of
the validation test of the proposed algorithm is

analysed and compared to that of the original

SI algorithm.

 The unit of cost for this analysis will be the

cost of a probe into a set of items organized as
a hash table in main memory. For the original

Nagwa M. El-Makky / Towards consistent snapshot isolation

370 Alexandria Engineering Journal, Vol. 48, No. 4, July 2009

SI algorithm, it is assumed that the most

recent timestamps of objects' versions written

by recently committed transactions are stored
in a hash table. It is also assumed that Last(x)

for each x in the write sets of recently

validated transaction are stored in a hash

table for the proposed algorithm. For

simplicity, it is assumed that all update

transactions have the same fixed read set and
write set sizes. Let Ru be the size of update

transactions read sets and let W be the size of

their write sets.

For the proposed algorithm, validating a

transaction T requires that its start timestamp

be compared to the timestamp Last(x) for each
item x in T's read set. This requires Ru probes

into the corresponding hash table. In addition,

if T passes the validation test successfully,
another W probes into the table will be

required to add Last(x) to WFL(Ti) (if

necessary) and to update Last (x), for each

object x in T's write set. Therefore, the total
validation cost is Ru+ W.

Regarding the original SI algorithm,

validating T requires that the start timestamp

of T be compared to the most recent commit

timestamp of each item x in T's write set. If T

passes the validation test successfully, it will
be required to update the most recent commit

timestamp of each item x in T's write set. This
requires W probes into the corresponding

hash table. Therefore the total validation cost
is W.

 It is clear that, similar to the original SI
algorithm, the proposed algorithm has a

constant time complexity (that is independent

of the number of recently committed

transactions; n) for the validation test.

4. Correctness proof

In this section, it is proved that the

proposed algorithm guarantees serializability.

First, subsection 4.1 gives a formal model for

correctness, and then subsections 4.2 and 4.3

give the required proof.

4.1. The formal model for correctness

The original snapshot isolation algorithm

is an instance of multiversion concurrency

control [1]. Since the proposed algorithm is a

modification of the original snapshot isolation

algorithm, it is also an instance of

multiversion concurrency control. The
following gives a formal model for correctness

of multiversion concurrency control

algorithms.

 A database consisting of a set of objects is

assumed. Users interact with the database

system by invoking transaction programs. A
transaction Ti, is an ordered pair (∑i, <i,),

where ∑i, is the set of read and write
operations in Ti, that are executed atomically,

and <i, is a partial order that represents the

execution order of these operations. Read and
write operations executed by Ti, on an object x

are denoted by ri[x] and wi[x], respectively. The
set of transactions that executed in a system
is denoted as T = {T1,….Tn}. The execution of

transactions in T is modelled by a structure

called schedule. A schedule, H, over T is

defined as a partial order (∑, <H) , where ∑ is

the set of all operations executed by
transactions in T , and <H indicates the

execution order of those operations.

The database is assumed to be

multiversion, in which each write operation on
an object x produces a new version of x.

Thus for each object x in the database, there

is a list of associated versions. A read
operation on x is performed by returning the

value of x from an appropriate version in the

list.
A multiversion (MV) schedule H over a set

of transactions T represents the sequence of

operations on the versions of objects. Thus
each wi[x] in an MV schedule is mapped into

wi[xi], and each ri[x] is mapped into ri [xj] , for

some j (which is determined by the

multiversion concurrency control algorithm) .
A transaction Tj reads x from Ti, in H if Tj

reads a version of x produced by Ti.
 Two MV histories over a set of transactions

are equivalent if they have the same
operations [12]. An MV schedule is one-version

serializable if it is equivalent to a serial

schedule over the same set of transactions

executed over a single version database [12].
 The serialization graph of an MV schedule
H, SG(H), is a directed graph whose nodes

represent transactions and whose edges are
all Ti →Tj such that one of Ti’s operations

precedes and conflicts with one of Tj’s

Nagwa M. El-Makky / Towards consistent snapshot isolation

 Alexandria Engineering Journal, Vol. 48, No. 4, July 2009 371

operations in H. However, SG(H) by itself does

not contain enough information to determine
whether H is one-version serializable or not.

To determine if an MV schedule is one-version

serializable, a modified serialization graph is
used [12]. Given an MV schedule H, a

multiversion serialization graph (MVSG(H)) is a

SG(H) with additional edges such that the

conditions, given below, hold.
1- For each object x, MVSG(H) has a total

order (denoted <<x on all transactions that

write x).
2- For each object x , if Tj reads x from Ti , and

if Ti <<x Tk , then MVSG(H) has an edge from Tj

to Tk (i.e., Tj→Tk) ; otherwise, if Tk <<x Ti , then

MVSG(H) has an edge from Tk to Ti, (i.e. Tk→Ti).

 The additional edges are called version
order edges. An MV schedule H is one-version

serializable if and only if MVSG(H) is

acyclic[12].
 It was proved in [12] that if read-only

transactions satisfy a set of conditions and the

used multiversion concurrency control

algorithm serializes update transactions, then

every read-only transaction will read a

consistent state of the database. So, proving
the correctness of the proposed algorithm

consists of proving the one-version

serializability of update transactions'

schedules and then proving that each read-

only transaction satisfies the mentioned
conditions and hence sees a consistent state

of the database. These proofs are given in

subsections 4.2 and 4.3, respectively.

4.2. Correctness proof of update transactions

 schedules

The following lemmas state certain

properties of the proposed algorithm. These

properties will be used to prove that update

transactions schedules produced by the
proposed algorithm are one-version

serializable (as stated in subsection 4.1, the

analysis needs to be done only for update

transactions).
Lemma 1: For every rk[xj] , wj[xj] < rk[xj] and

commit (Tj) < commit (Tk).
Proof: according to the proposed algorithm

definition, the execution of rk[xj], will return

the version xj with the largest timestamp such

that commit (Tj) < start (Tk). Since start (Tk) <

commit (Tk), it follows that commit (Tj) <

commit (Tk).
Lemma 2: For every rk[xj] and wi[xi], i ± j, one of

the following conditions must hold:
1- commit (Ti) < commit(Tj), or

2- commit (Tk) < commit(Ti), or

3- i = k and rk[xj] < wi[xi].
Proof: Assume that i ± k. rk[xj] implies that

commit (Tj) < commit (Tk), according to Lemma

1. Having commit (Tj) < commit (Ti) < commit
(Tk) is impossible, otherwise Tk should have

been aborted and rk[xj] will not exist in the

schedule. Therefore, either commit (Ti) <

commit(Tj), or commit (Tk) < commit(Ti). The

case i = k holds according to the definition of
the proposed algorithm (see subsection 3.2).

 By using the above lemmas as formal

specifications of the proposed algorithm, the

following theorem demonstrates that the

proposed algorithm guarantees one-version

serializable executions of update transactions.
Theorem 1: The proposed algorithm

guarantees one-version serializable executions

of update transactions.
Proof: Define the version order <<x for an

object x as the total order on the commit

timestamps, of the transactions creating
versions of x, i.e., xi <<x xj if and only if commit

(Ti) < commit(Tj).
Let H be a schedule of update transactions

produced by the proposed algorithm. It will be
proved that MVSG(H) is acyclic by showing

that for each edge Ti→ Tj in MVSG(H), commit

(Ti) < commit (Tj).
Recall that MVSG(H) includes edges in

SG(H) and additional version order edges.

First, consider an edge Ti→ Tj in SG (H). Each

such edge is due to a reads-from relationship;

i.e., Tj has read some object written by Ti. By

Lemma 1 of the proposed algorithm, it follows

that commit (Ti)< commit (Tj).
Next, consider a version order edge in

MVSG (H). Let rk[xj] and wi[xi] be in H , where

i,j, and k are distinct. Consider the cases

given below.

1- xi <<x xj , which implies that Ti→ Tj is in
MVSG (H);

2- xj <<x xi , which implies that Tk → Ti is in
MVSG (H).

In case 1, from the definition of version

order, commit (Ti) < commit (Tj). In case 2,

from Lemma 2, it follows that commit (Ti) <

Nagwa M. El-Makky / Towards consistent snapshot isolation

372 Alexandria Engineering Journal, Vol. 48, No. 4, July 2009

commit(Tj), or commit (Tk) < commit(Ti). Since

xj <<x xi, commit (Ti) < commit(Tj) is not

possible. Hence, commit (Tk) < commit(Ti).
If MVSG(H) has a cycle, it violates the total

order of the commit timestamps of

transactions involved in that cycle. Thus by

the application of the serializability theorem

for multiversion databases, every schedule of

update transactions produced by the proposed
algorithm is one-version serializable.

4.3. Correctness proof of the read-only

transactions synchronization scheme

It was proved in [12] that if read-only
transactions satisfy the conditions given below

and the used concurrency control algorithm

serializes update transactions, then every

read-only transaction will read a consistent

state of the database. Since the proposed

concurrency control algorithm was proved to
serialize update transactions, it is sufficient to

show that read-only transactions satisfy the

given conditions under the proposed

algorithm.

Condition 1: a read-only transaction reads the

output of transactions that have committed or

that will eventually commit.

Condition 2: If Ti belongs to the set of update

transactions from which a read-only

transaction Tq reads and if Ti depends on Tj ,
then Tj must belong to the set of update

transactions from which Tq reads (see the

definitions given below for the dependency

relationship between transactions).

Definition 1: A transaction Ti directly depends

on transaction Tj if there exists some x such

that Ti reads x from Tj.

Definition 2: A transaction Ti depends on

transaction Tj if Ti directly depends on Tj, or if

there is a sequence T1, T2,…, Tn such that Ti
directly depends on T1 , T1 directly depends on

T2,….and Tn directly depends on Tj.

The read-only transactions synchroniza-

tion scheme of the proposed algorithm

satisfies condition 1 because read-only
transactions read only from committed update

transactions (according to the definition of the

proposed algorithm in subsection 3.2).

Condition 2 is also satisfied as will be proved

below.
Proof: the direct case of condition 2 will be

proved, namely if Ti belongs to the set of

update transactions from which a read-only

transaction Tq reads, and if Ti directly

depends on Tj, then Tj must also belong to the

set of update transactions from which Tq
reads. Proof of the indirect case (Ti depends on

Tj) follows easily by induction.

 Ti belongs to the set of update transactions

from which a read-only transaction Tq reads,

means that commit (Ti)< start (Tq) (according

to the definition of the proposed algorithm).
The fact that Ti directly depends on Tj means

that Ti has read the output of Tj. Using the

definition of the proposed algorithm, this is

possible only if Tj has been committed before

the start of Ti; i.e., commit (Tj) < start (Ti). This
means that commit (Tj) < start (Tq); i.e., Tj

belongs to the set of update transactions from

which Tq reads.

 Thus, any read-only transaction will read a

consistent state of the database under the

proposed algorithm.

5. Analytical performance model

 This section presents an analytical model

for assessing the performance (in terms of
transaction abortion rate) of the proposed

algorithm compared to the original snapshot

isolation algorithm and the serializable

snapshot isolation algorithm. A simple model

for single-site database systems, similar to

that in [14], is used. A closed –form average-
case analysis is performed to estimate the

abortion rate of transactions under the above

algorithms.

5.1. The analytical model

A single-site database system is assumed

with a set of distinct database objects. The

total number of database objects is referred to
as DBSize. It is assumed that access to these

objects is uniform (there are no hot spots).
Assume that TPSupdate update transactions

are originated per second and that TPSquery

read-only transactions are originated per

second. Each transaction is assumed to

Nagwa M. El-Makky / Towards consistent snapshot isolation

 Alexandria Engineering Journal, Vol. 48, No. 4, July 2009 373

involve a fixed number of read / write actions,
with a fixed time, Action_Time, for each one.

Each update transaction reads Ru data

objects, updates W data objects, and takes Lu

seconds to finish. Each read-only transaction
reads Rq data objects and takes Lq seconds to

finish. A transaction’s duration (Lu or Lq) is

estimated as the number of the transaction's

read/write actions multiplied by the
Action_Time[14]. Table 1 lists the model

parameters.
In subsections 5.2, 5.3, 5.4 and 5.5, an

average-case analysis, based on that in [14], is

conducted to estimate the abortion rate of

transactions under the original SI algorithm,

the proposed algorithm and the SSI algorithm,

respectively.

5.2. Snapshot Isolation (SI) abortion rate

Under the original snapshot isolation

algorithm, read-only transactions never abort.

Therefore, it is only necessary to estimate the
probability of abortion of update transactions.

Table 1

Parameters of the analytical model

Symbol Meaning

DBSize Total number of data objects

TPSupdate
Number of originated update
transactions per second

TPSquery
Number of originated read-only
transactions per second

Action_Time Time to perform a read/write action

Ru Read set size of update transactions

W Write set size of update transactions

Rq Read set size of read-only transactions

Lu
Duration of a single update transaction
(in seconds)

Lq
Duration of a single read-only
transaction (in seconds)

On the average, number of update
transactions that commit in time Lu can be

expressed as TPSupdate * Lu. Hence, the

number of writes in that time = W*
(TPSupdate* Lu). Since objects are chosen

uniformly from the database, the probability

that a specific update of a transaction T

conflicts with one of these writes = (number of
writes)/(database size)=W*(TPSupdate*Lu)

/DBsize. If any such conflict occurs,

transaction T must abort according to the
rules of SI. Since T, has W updates, it follows

that the probability, PSI, that an update
transaction T aborts= W* (probability of a

single conflict)=(W2*TPSupdate*Lu) /DBSize.

The rate of aborted update transactions

can be calculated as: (rate of update

transactions) *(probability of one transaction
abortion)=TPSupdate*(W2*TPSupdate*Lu)/

DBSize.

Therefore, the abortion rate of update

transactions at the database site under the SI

algorithm, ARSI, can be represented as:

ARSI = (TPSupdate*W)2* (Lu/DBSize). (1)

5.3. The Proposed Algorithm (PA) abortion rate

 Like the original snapshot isolation

algorithm, the proposed algorithm never

aborts read-only transactions. According to
the algorithm description in subsection 3.2,

an update transaction T aborts if any update

transaction that committed after the start of T

has a write set that intersects with T's read

set. Similar to the analysis in section 5.2, it

follows that the probability that an update
transaction T has to abort can be
approximated as (W*Ru*TPSupdate*Lu)/DBSize.

Also, the abortion rate of update transactions

at the database site, under the proposed

algorithm, ARPA, can be approximated as:

ARPA = (TPSupdate)2 * W *Ru* Lu)/DBSize. (2)

It is to be noted that if each update

transaction writes all the objects it has read,
i.e., if W =Ru, then the abortion rate of update

transactions under the proposed algorithm
will be equal to the corresponding abortion

rate under the original snapshot isolation

algorithm.

Nagwa M. El-Makky / Towards consistent snapshot isolation

374 Alexandria Engineering Journal, Vol. 48, No. 4, July 2009

5.4. Abortion rate of read- only transactions
under the SSI algorithm

 The SSI algorithm detects a potential non-

serializable execution whenever it finds two

consecutive read-write dependency edges in

the serialization graph. Whenever such a

situation is detected, one of the transactions

will be aborted. The aborted transaction can
be a read-only or an update transaction.

 The abortion rate of read-only transactions

is estimated in this subsection, while the

abortion rate of update transactions is

estimated in the next subsection.
 From the definition of the SSI algorithm in

subsection 2.3, it can be deduced that the

probability of abortion of a read-only

transaction T is the probability that there are

two consecutive read-write dependency edges

in the serialization graph such that the first
edge is created by T. In particular, this means

that the first edge is the result of a read/write

conflict between T and one of the update

transactions T' that has committed since the

start of T, and the second edge is due to a
read/write conflict between T' and one of the

update transactions that has committed since

the start of T'.

To calculate the probability of creating

such a first edge, consider one of the reads of

a read-only transaction T and assume that it
is in the transaction halfway. On the average,

number of update transactions that commit in
time Lq/2 can be expressed as

(TPSupdate*Lq)/2. Hence, the number of writes

in that time =W* (TPSupdate *Lq/2). The

probability that a specific read operation of T

conflicts with one of these writes = (number of
writes)/(database size)=W*TPSupdate*Lq/
(2DBsize). T has Rq such read requests, so the

probability that it will conflict sometime in its

lifetime (i.e., the probability of creating the

first edge) can be approximated as
(Rq*W*TPSupdate*Lq)/(2 DBsize).

Using similar analysis to that in
subsection 5.3, it can be seen that the

probability of creating the second edge equals
(W*Ru* TPSupdate* Lu)/DBSize.

Therefore, the probability of aborting a

read-only transaction can be approximated as:
(Rq*W*TPSupdate*Lq/2)*(W*Ru*TPSupdate*Lu)/
(DBSize)2.

Since Lq = Rq * Action-Time and Lu =(Ru+W)*
Action-Time, the probability of aborting a read-

only transaction(query) under the SSI
algorithm, APQSSI, can be approximated as:

APQSSI=(Rq*TPSupdate*W*Action-Time/

 DBSize)2 *Ru(Ru+W)/2. (3)

Hence, the abortion rate of read-only

transactions under the SSI algorithm, ARQSSI,

can be approximated as:

ARQSSI = Rq*TPSupdate*W*Action-
 Time/DBSize)2 *TPSquery* Ru(Ru+W)/2. (4)

The above analysis points to a serious

problem with the serializable snapshot
isolation algorithm (that has been already

eliminated in the original SI algorithm and the

proposed algorithm). Read-only transactions

can be aborted due to conflicts with update

transactions. Moreover, the abortion rate of

read-only transactions rises as the second
power of the following factors: the read-only

transaction size, the rate of originated update

transactions and the size of the write set of

update transactions. A ten-fold increase in

any of these factors increases the abortion

rate by a factor of 100.

5.5. Abortion rate of update transactions under
the ssi algorithm

The abortion rate of update transactions
can be deduced from the definition of the SSI

algorithm in [6]. An update transaction can be

aborted during one of its read operations, one

of its write operations or at commit time.
 The probability, P1, that an update

transaction T is aborted during one of its read
operations can be obtained using a similar

analysis to that for finding the abortion

probability of a read-only transaction during

one of its reads. P1 can be approximated as:

P1 = (Ru* TPSupdate*W* Lu / DBSize)2 /2. (5)

The probability, P2, that an update

transaction T is aborted during one of its

writes, is the probability that there are two

consecutive read-write dependency edges in

the serialization graph such that the second

Nagwa M. El-Makky / Towards consistent snapshot isolation

 Alexandria Engineering Journal, Vol. 48, No. 4, July 2009 375

edge is created by T. In particular, the second

edge has to be the result of a read/write

conflict concerning any object, x, between T
and one of the committed update transactions

T' that has a snapshot isolation read

(SIREAD) lock on x(according to the

terminology of [6]) and has committed since

the start of T. The first edge has to be the

result of a read/write conflict between T' and
any concurrent read-only or update

transaction.

 The following calculates the probability of

creating the first edge. On the average, there
are TPSquery *Lq read-only transactions and

TPSupdate*Lu update transactions to conflict

with T'. Assume that each is about half way

complete. On the average, the number of read

operations performed by these transactions
can be expressed as (TPSquery *Lq*Rq +
TPSupdate*Lu* Ru)/2. Since objects are chosen

uniformly from the database, the chance that

an update by T' will conflict with one of these
reads is: (TPSquery* Lq*Rq+TPSupdate*Lu* Ru)/
(2* DBSize).

T' has W updates, so the probability, P21, of a

read/write conflict with T' (which is the

probability of creating the first edge) can be

approximated as:

P21= TPSquery*Lq*Rq+TPSupdate*Lu*Ru)*
 (W/2DBSize). (6)

 Regarding the second edge, there are
TPSupdate*Lu update transactions to conflict

with T. Assume that each of them is about
half way complete. On the average, the

number of read operations performed by these
transactions are TPSupdate* Lu* Ru/2.

Therefore, the probability that one of the write

operations of T conflicts with these reads is
TPSupdate*Lu* Ru /(2* DBSize). T has W

updates, so the probability, P22, of a
read/write conflict with T (which is the

probability of creating the second edge) can be

approximated as:

P22 = W* TPSupdate*Lu* Ru /(2* DBSize). (7)

Since the two edges are independent, the

probability, P2, of aborting an update

transaction during one of its writes can be

calculated by multiplying the probabilities P21

and P22 as:

P2 = (TPSquery *Lq*Rq + TPSupdate*Lu* Ru) *

 (Ru* TPSupdate* Lu /4) * (W /DBSize)2 . (8)

 Finally, an update transaction T can be

aborted at commit time. This can occur if T

does not pass the validation test of the original

SI algorithm or if there are two consecutive
read-write dependency edges in the

serialization graph such that T is the pivot for

these edges. It is only required to calculate the

probability of the second condition, since the

probability of the first condition is the same as
PSI (the probability of abortion of update

transactions under the original SI algorithm

which was calculated in subsection 5.2).

 Regarding the probability of the second

condition, the first edge of the two consecutive

ones has to be the result of a read/write
conflict between a concurrent read-only

transaction or an update transaction and the

transaction T. The second edge has to be the

result of a read/write conflict between T and

an update transaction that has committed

since the start of T.
 The probability of creating such a first
edge has been calculated before as P21. Using

similar analysis to that in subsection 5.3, it

follows that the probability of creating such a
second edge is (W*Ru* TPSupdate* Lu)/DBSize.
 Hence, the probability, P3, that an update

transaction is aborted due to the existence of
two independent consecutive edges of the

above types, can be approximated as:

P3 = (TPSquery * Lq* Rq + TPSupdate*Lu* Ru)*

 (Ru* TPSupdate* Lu /2)* (W / DBSize)2. (9)

Hence, the total abortion probability of an

update transaction under the SSI algorithm,
APUSSI, can be approximated as:

APUSSI = P1 +P2 +P3+ PSI =

(Ru* TPSupdate*W* Lu / DBSize)2 /2 +

(TPSquery *Lq*Rq + TPSupdate*Lu* Ru) *
(Ru* TPSupdate* Lu /4) * (W /DBSize)2 +

(TPSquery * Lq* Rq +TPSupdate*Lu* Ru) *

(Ru* TPSupdate* Lu /2) * (W /DBSize)2 +
(W2 * TPSupdate* Lu)/DBSize. (10)

Nagwa M. El-Makky / Towards consistent snapshot isolation

376 Alexandria Engineering Journal, Vol. 48, No. 4, July 2009

Simplifying the above expression a little gives

the abortion probability of update transactions

as:

APUSSI = (Ru* TPSupdate*W* Lu / DBSize)2 /2

+0.75*(TPSquery * Lq* Rq + TPSupdate*Lu* Ru) *
(Ru* TPSupdate* Lu) * (W / DBSize)2 +

(W2 * TPSupdate* Lu)/DBSize. (11)

Therefore, the abortion rate of update

transactions under the SSI algorithm can be
approximated as:

ARUSSI = TPSupdate3 * (Ru *W* Lu / DBSize)2 /2

+0.75*(TPSquery * Lq* Rq + TPSupdate*Lu* Ru)*

(Ru* TPSupdate2 * Lu) * (W / DBSize)2 +

(TPSupdate * W)2 *(Lu /DBSize). (12)

The above analytical model has been used

in some parametric studies to evaluate the

performance of the proposed algorithm

compared to the original SI and the SSI

algorithms, in terms of transactions' abortion
rate. These parametric studies are presented

in the next section.

6. Parametric studies and results

In this section the results of three
parametric studies, based on the analytical

model of section 5, are presented. The studies

were performed to compare the performance

(in terms of transactions' abortion rate) of the

proposed algorithm to the original SI

algorithm and the SSI algorithm under
different parameters. Typical values of

parameters for workloads on a single database

site were mainly obtained using the

Transaction Processing Council benchmark,

TPC-W [15] as a reference. This can be
explained knowing that the proposed

algorithm targets query-intensive applications,

e.g., many database-backed web applications

and web services, and TPC-W is a

transactional web e-Commerce benchmark.

However, the values of some of these
parameters have been varied in some studies

to study the effect of this variation on the

performance of the algorithms. The first study

examines the three algorithms under a

workload for which the original SI is expected
to be beneficial; a mix of small update

transactions and larger read-only

transactions. The second study investigates

the effect of varying the fraction of update
transactions in the previous workload on the

behaviour of the algorithms. The third study

examines the algorithms under a less

favourable workload. The size of update

transactions is somewhat larger, and the ratio

of writes to reads in update transactions is
varied in order to compare the performance of

the proposed algorithm to the other algorithms

under varying conflict probabilities.

6.1. Effect of varying the size of read-only

transactions

This study examines the behaviour of the

three algorithms under a mix of transactions

for which the original SI algorithm was

designed to be beneficial [1]. The mix used
consists of update transactions and

dominating read-only transactions. Update

transactions are small, and the size of read-

only transactions is varied from small to large

as a fraction of the overall database size. The
workload parameter settings for the study are

given in table 2.

Table 2

 Parameter settings for the first parametric study

Parameter Value / Range

Database size (total number of
data objects)

500,000

Range of read-set sizes for read-

only transactions (in data objects)
5-50

Read-set and write-set sizes of
update transactions (in data
objects)

2,2
(respectively)

Action time (in seconds) 0.01

Number of originating update

transactions per second
2000

Number of originating read-only
transactions per second

8000

Nagwa M. El-Makky / Towards consistent snapshot isolation

 Alexandria Engineering Journal, Vol. 48, No. 4, July 2009 377

As can be seen from table 2, twenty

percent of the transactions are update

transactions, reading and then updating two
data objects, and the other 80 percent are

read-only transactions. Each read-only

transaction reads a fixed number of objects,

and the size of these transactions is varied

from 5 data objects up to 50 data objects. The

performance metric used is the per-class
transaction abortion rate (i.e., the read-only

transactions abort rate and the update

transactions abort rate). Abortion rates are

measured in transactions/second.

Given the small size of the update
transactions in this study, almost all conflicts

are between read-only and update

transactions. Since the proposed algorithm

and the original SI algorithm completely

eliminate this source of conflicts, the read-

only transactions abortion rates for both
algorithms equal zero for all values of the

read-only transaction size, as can be seen

from fig. 1. However, under the SSI algorithm,

as the read-only transaction size increases,

read-only transactions quickly begin to be
aborted because of conflicts with update

transactions in the workload. A ten-fold

increase in the size of the read-only

transaction increases the abortion rate by a

factor of 100 as can be seen from fig. 1. In

fact, the abortion of read-only transactions is
a weakness point of the SSI algorithm.

As expected, increasing the size of read-

only transactions has no effect on the abortion

rate of update transactions under the original

SI algorithm and the proposed algorithm.
However, increasing the size of read-only

transactions, under the SSI algorithm,

increases the abortion rate of update

transactions as can be seen from fig. 2. This

can be easily explained using the analysis in

subsection 5.5.
Under the SSI algorithm, increasing the

size of read-only transactions increases the

probability that an update transaction will be

aborted during one of its writes or at commit

time (due to a conflict with a read-only
transaction). Consequently, the abortion rate

of update transactions will increase.

Fig 1. Read-only transactions abortion rate for the SI
algorithm, the SSI algorithm and

the Proposed Algorithm (PA).

Fig. 2. Update transactions abortion rate for the SI
algorithm, the SSI algorithm

and the Proposed Algorithm (PA).

It is to be noted that the update transac-
tion abortion rate for the proposed algorithm

is identical to that for the original SI

algorithm. This can be deduced from the

analysis in section 5, knowing that the ratio of

writes/reads in update transactions equals 1
in this parametric study.

6.2. Effect of varying the fraction of update

transactions

This study examines the behaviour of the
algorithms under a mix of transactions similar

to that of the first study. However, in this

study, the size of read-only transactions is

held fixed (at 50 data objects). The variable

here is the fraction of update versus read-only

transactions in the mix. In particular,

Nagwa M. El-Makky / Towards consistent snapshot isolation

378 Alexandria Engineering Journal, Vol. 48, No. 4, July 2009

workloads with 0, 20, 40, 60, 80, and 100

percent update transactions are studied, with

the remainder of the workload consisting of
read-only transactions. The values of other

parameters are identical to those used in the

first study. The performance metric used is

the expected abortion rate of transactions,

which is the weighted average of the abortion

rates of read-only transactions and update
transactions. The point of this study is to find

out how the fraction of update transactions

affects the expected abortion rate of

transactions under the three algorithms.

Fig. 3 shows the results for the expected
abortion rate of transactions under the three

algorithms. Since the ratio of writes/reads in

update transactions equals 1, the abortion

rate of the proposed algorithm is identical to

that of the original SI algorithm as can be

deduced from the analysis in subsection 5.3.
As expected, when the mix has no update

transactions, the abortion rates of all

algorithms equal zero. The expected abortion

rates of the three algorithms increase as the

fraction of update transactions increases. This
is due to the increase in the probability of

conflicts between transactions. Among the

3 algorithms, the SSI algorithm is the only one

that allows conflicts between update and read-

only transactions in addition to conflicts

between update transactions. This explains
the higher abortion rates for the SSI algorithm

compared to the other two algorithms. When

the fraction of update transactions reaches 1,

i.e., in case of absence of read-only

transactions which represent a weakness
point of the SSI algorithm, its performance

becomes very close to that of the other two

algorithms.

6.3. Effect of varying the writes/reads ratio of

update transactions

The aim of this study is to evaluate the

behaviour of the proposed algorithm under

less favourable conditions. The size of update

transactions is somewhat larger, the update
transactions fraction in the workload is 80%,

and the ratio of writes to reads in update

transactions is varied in order to evaluate the

performance of the proposed algorithm,

Fig. 3. Expected transaction abortion rate for the SI
algorithm, the SSI algorithm

and the Proposed Algorithm (PA).

Table 3
Parameter settings for the third parametric study

Parameter Value / Range

Database size (in data objects) 500000

Read-only transaction size
(in data objects)

50

Read-set size of update
transactions(in data objects)

6

Ratio of writes/reads
1/6, 1/3, 1/2,

2/3, 5/6 and 1

Action time (in seconds) 0.01

Number of originating update
transactions per second

8000

Number of originating read-only
transactions per second

2000

compared to other algorithms under different

conflict probabilities. The workload parameter

settings for this study are given in table 3. The

performance metric used is the expected

abortion rate of transactions. Fig. 4 gives the
results for the expected abortion rate of

transactions under the three algorithms.

From fig. 4, it can be shown that the

original SI algorithm and the SSI algorithm

outperform the proposed algorithm at low
ratios of writes/reads of update transactions.

This can be explained knowing that the

proposed algorithm is more conservative than

the other two algorithms. For a low

writes/reads ratio, this causes an overhead

Nagwa M. El-Makky / Towards consistent snapshot isolation

 Alexandria Engineering Journal, Vol. 48, No. 4, July 2009 379

Fig. 4. Expected transaction abortion rate for the SI

algorithm, the SSI algorithm and
the Proposed Algorithm (PA).

due to unnecessary aborts. However, as the

writes/reads ratio of update transactions

increases, the conflicts between update
transactions increase under all the algorithms

and the conflicts between update and read-

only transactions increase under the SSI

algorithm.

This explains why the proposed algorithm
outperforms the SSI algorithm for high ratios

of writes/reads of update transactions. As the

ratio of writes/reads becomes close to 1, the

performance of the SSI algorithm continues to

degrade, giving its worst performance when

the ratio equals 1.
On the other hand, as the ratio of

writes/reads approaches 1, the abortion rate

of the proposed algorithm approaches that of

the original SI algorithm as can be deduced

from the analysis of subsection 5.3.

7. Conclusions

This paper proposes an optimistic

concurrency control algorithm that avoids the

consistency anomalies of the original
Snapshot Isolation algorithm. It is based on

simple modifications of the original SI

algorithm and preserves most of its attractive

properties. Under the proposed algorithm,

read-only transactions never wait or abort and

they never block or abort update transactions.
The paper presents a simple analytical

performance model and a closed-form average-

case analysis for the abortion rate of

transactions under the proposed algorithm

compared to the original SI algorithm and the
SSI algorithm. Parametric studies were

performed using the analytical model to have

an insight into the behaviour of the proposed

algorithm compared to the other two
algorithms.

From the parametric studies, it is clear

that, in terms of transaction abortion rate, the

proposed algorithm outperforms the SSI

algorithm and approaches the performance of

the original SI algorithm for query-intensive
workloads. These are the workloads that the

original SI algorithm was designed to be

beneficial for. In these workloads there is a

vast amount of large read-only transactions

conducted together with a small number of
short update transactions. Examples of such

workloads can be found in many practical

database-backed web applications and web

services.

For less favourable workloads, the

proposed algorithm outperforms the SSI
algorithm at high conflict cases. For low

conflict cases, e.g., a low ratio of writes/reads

in update transactions, the proposed

algorithm can cause an overhead due to

unnecessary aborts. In such cases, the SSI
algorithm can be a viable choice.

As a future work, it is planned to perform

a detailed performance evaluation study of the

proposed algorithm compared to the original

snapshot isolation algorithm and the

serializable snapshot isolation algorithm.

References

[1] H. Berenson, P. Bernstien, J. Gray, J.

Melton, E. O'Neil and P. O'Neil, "A
Critique of ANSI SQL Isolation Levels", In

Proc. of SIGMOD' 95, ACM Press, June

(1995).

[2] S. Jorwekar, A. Fekete, K. Ramamritham,

and S. Sudarshan, "Automating the

Detection of Snapshot Isolation
Anomalies", In Proc. of VLDB, ACM Press,

September (2007).

[3] E. Cecchet, G. Candea and A. Ailamaki,

"Middleware-Based Replication: the Gaps

Between Theory and Practice", In Proc. of
SIGMOD'08, ACM Press, June (2008).

[4] Fekete. Allocating Isolation Levels to

Transactions. In Proc. of PODS'05, ACM

Press (2005).

Nagwa M. El-Makky / Towards consistent snapshot isolation

380 Alexandria Engineering Journal, Vol. 48, No. 4, July 2009

[5] Fekete, D. Liarokapis, E. O'Neil, P. O'Neil

and D. Shasha, "Making Snapshot

Isolation Serializable", ACM Transaction
on Database Systems, Vol. 30 (2) (2005).

[6] M. Cahill, U. Rohm and A. Fekete.

Serializable Isolation for Snapshot

Databases. In Proc. of SIGMOD'08, ACM

Press, June (2008).

[7] Fekete, E. O'Neil and P. O'Neil. A Read-
Only Transaction Anomaly under

Snapshot Isolation", ACM SIGMOD

Record, Vol. 33 (3) (2004).

[8] Fekete. Serializability and Snapshot

Isolation. In Proc. of Australian Database
Conference, Australian Computer Society,

January (1999).

[9] Bernstein, P. Lewis and S. Lu, "Semantic

Conditions for Correctness at Different

Isolation Levels", In Proc. of IEEE

International Conference on Data
Engineering, IEEE, February (2000).

[10] Alomari, M. Cahill, A. Fekete and U.

Rohm, "The Cost of Serializability on

Platforms that use Snapshot Isolation", In

ICDE'08; Proc. of the 24th International
Conference on Data Engineering (2008).

[11] Adya, Weak Consistency: a Generalized

Theory and Optimistic Implementation for

Distributed Transactions. Ph. D. Thesis,
Laboratory for Computer Science,

Massachusetts Institute of Technology,

March (1999).

[12] P.A. Bernstein, V. Hadzilacos and N.

Goodman, Concurrency Control and

Recovery in Database Systems. Reading,
MA, Addison Wesley (1987).

[13] M.J. Carey, "Improving the Performance of

an Optimistic Concurrency Control

Algorithm through Timestamps and

Versions", IEEE Transactions on Software
Engineering, Vol. SE-13 (6) (1987).

[14] J. Gray, P. Helland, P. O'Neil and D.

Shasha, "The dangers of replication and a

solution", In Proc. of the 1996 SIGMOD,

ACM Press (1996).

[15] Transaction Processing
Council.http://www.tpc.org/ (last access

date: 2008-5-17).

Received May 25, 2009

Accepted June 10, 2009

