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Snapshot Isolation (SI) is a widely used optimistic concurrency control algorithm. It is 
especially beneficial for query intensive applications. Since SI was introduced as a relaxed 
isolation level, it is well known that it can allow consistency anomalies. In spite of this, SI is 
the highest level of consistency supported by some of the Popular Database Management 
Systems (DBMSs). Many organizations use these DBMSs, and so they can be at risk of 
violation of data consistency. The only way to prevent the consistency anomalies of SI was to 
statically analyse the application code, and then modify the application accordingly. 

Recently, a new algorithm, called Serializable Snapshot Isolation (SSI), has been proposed to 
prevent SI anomalies at runtime. However, under this algorithm, a read-only transaction 
can be aborted and can cause the abortion of update transactions. This violates one of the 
most attractive properties of SI. This paper proposes an optimistic concurrency control 
algorithm that preserves most of the attractive properties of SI while ensuring serialized 
executions. An analytical performance model is presented for estimating the abortion rate of 
transactions under the proposed algorithm compared to the SSI and SI algorithms. The 

model shows that, in terms of transaction abortion rate, the proposed algorithm 
outperforms SSI and approaches the performance of the original SI in many practical cases. 

د انتشر مؤخرا استخدام خوارزم "العزل باستخدام صورة للبيانات"، وهو خوارزم متفائلل لللتم م  لز تلزامع العمليلات  لز نعلم  وا ل
البيانللات، وتت للئ  ائللدة هللرا الخللوارزم تمديللدا  للز تلبياللات  وا للد البيانللات التللز تملللل  ليفللا اذستفسللارات  مللع المعللرو   ع هللرا 

 ع هرا لم يالل استخدامه  ز  ثير مع نعم  وا لد البيانلات  الخوارزم يسمئ بمدوث بعض الماذت المير  ياسية  ز  وا د البيانات اذ
ريل  انت اللرياة الوميدة لمنع عفورهره الماذت غير الاياسية هز تمليل برامج التلبياات  ز و لت التصلميم الشائعة  متز و ت  

وتعديل البرامج بما يؤدى الز غيال هره الماذت، الز  ع عفر مؤخرا خوارزم مديث يعدل الخوارزم الأصلز بما يمنلع عفلور هلره 
بعض اذستفسارات  بلل اتمامفلا ويسلمئ ب علل استفسلار يتسلبل  لمديث يسمئ بانفاءالماذت  ز و ت التشميل، ول ع هرا الخوارزم ا

ياتلر  هلرا البملث خوارزملا   ز انفاء  ملية تمديث للبيانلات  بلل اتمامفلا مملا يلناض املدى المميلزات الرئيسلية للخلوارزم الأصللز 
رزم الأصللز بملا يمنلع عفلور الملاذت الميلر  ياسلية ملع متفائلا للتم م  ز تزامع العمليات  ز نعم  وا د البيانات، وهو يعلدل الخلوا

المما عللة  لللز المزايللا الأساسللية للخللوارزم الأصلللز، و للد تللم  مللل نمللورم تمليلللز للخللوارزم الماتللر  واعفللرت النتللائج تفو لله  لللز 
 وا ترابه مع الخوارزم الأصلز  ز  ثير مع الماذت العملية   الخوارزم المناعر

   
Keywords: Optimistic concurrency control, Snapshot isolation, Serializability theory 

 
 

1. Introduction 
 

In recent years, many database vendors 

have built platforms which make use of an 

optimistic concurrency control technique 

called Snapshot Isolation (SI), [1]. A 

transaction executing with Snapshot Isolation 

always reads data from a snapshot of the 
committed data as of the time the transaction 

started. This is available in Oracle RDBMS, 

PostgreSQL, Microsoft SQL Server and Oracle 

Berkeley DB. Because SI does not delay reads, 

even if concurrent transactions have written 
the data involved, it generally offers higher 

throughput compared to Strict Two-Phase 

Locking, (S2PL), [2]. This is especially 

beneficial for query intensive applications, 

where a vast amount of complex read-only 

transactions is conducted together with a 
small number of short update transactions. 

Examples of such applications can be found in 

many practical database-backed web 

applications, web services, etc.  

Since SI was introduced as a relaxed 

isolation level, it is well known that it can 
allow some consistency anomalies [1]. In 

particular, it is possible for a SI-based 

concurrency control to interleave some 

transactions, where each transaction 

preserves an integrity constraint when run 
alone, and where the final state after the 

interleaved execution does not satisfy the 

constraint. In spite of this, not only SI is 

widely used in many database management 
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systems, but also it is the highest level of 

consistency supported by popular systems 

such as Oracle and PostgreSQL which, in fact, 
use SI even if the user requests the 

serializable level of isolation [2]. Many 

organizations use these databases for running 

their applications, and so, they are potentially 

at risk of violation of data consistency [2]. 

Moreover, several data replication techniques, 
based on snapshot isolation, have been 

recently proposed [3] which complicates the 

problem. 

The only way to prevent the consistency 

anomalies of SI was to statically analyse the 
application code, and then modify the 

application accordingly by introducing 

artificial locking or update conflicts [4, 5]. In 

2008, a new algorithm, called Serializable 

Snapshot Isolation (SSI) [6] was proposed to 

automatically detect and prevent snapshot 
isolation anomalies at runtime for arbitrary 

applications. Despite the nice properties of 

SSI, it allows read-only transactions to abort 

and to cause the abortion of update 

transactions. This violates one of the most 
attractive properties of SI. 

This paper proposes an optimistic 

concurrency control algorithm which prevents 

the consistency anomalies of SI for arbitrary 

applications, while preserving most of its 

attractive properties. Under the proposed 
algorithm, read-only transactions never wait 

or abort and they never block or abort update 

transactions. The proposed algorithm can be 

easily implemented by adding simple 

modifications to database management 
systems that provide snapshot isolation.  

Using a simple analytical model and a 

closed-form average-case analysis, this paper 

compares the abortion rate of read-only 

transactions and update transactions under 

the original SI, i.e, the proposed algorithm and 
the SSI algorithm. The analysis shows that, in 

terms of abortion rate, the proposed algorithm 

outperforms SSI and approaches the 

performance of the original SI in many 

practical cases. 
The rest of the paper is divided into 6 

sections. In section 2, the related work is 

reviewed. The proposed algorithm is presented 

in detail in section 3. The correctness of the 

proposed algorithm is proved in section 4. An 

analytical performance model is presented in 

section 5, together with a closed-form average-

case analysis for the abortion rate of 
transactions under the original SI, the 

proposed algorithm and the SSI algorithm. 

The results of parametric studies based on the 

analytical model are presented and discussed 

in section 6. Finally, the conclusion of the 

paper is given in section 7. 
 

2. Related work 
 

2.1. Original snapshot isolation [1] 
 

The following is a definition of the SI 

approach to concurrency control. This 

definition, which is slightly more formalized 

than the description introduced in [1], will be 
used for the purposes of this paper. 

A transaction Ti, that is executed under 

snapshot isolation, is assigned a start 

timestamp start (Ti) which reflects its starting 

time. This timestamp is used to define a 

snapshot Si for transaction Ti. The snapshot 
Si consists of the latest committed values of 

all objects of the database at the time start(Ti). 

Every read operation issued by transaction Ti 

on a database object x is mapped to a read of 

the version of x, which is included in the 
snapshot Si. Updated values by write 

operations of Ti (which make up the write set 

of Ti) are also integrated into the snapshot Si, 

so that they can be read again if the 

transaction accesses update data. Updates 

issued by transactions that did not commit 
before start (Ti) are invisible to the transaction 

Ti (they are applied to local versions of objects 

kept in transactions' work spaces). When 

transaction Ti tries to commit, it is assigned a 

commit timestamp,   commit (Ti), which has to 
be larger than any other existing start 

timestamp or commit timestamp. An update 

Transaction Ti has to pass a validation test. It 

can successfully commit if and only if there 

exists no other committed transaction Tk 

having a commit timestamp commit(Tk) in the 
interval {start(Ti), commit(Ti)} and write set 

(Tk) ∩ write set (Ti) ≠ {}. If such a committed 

transaction Tk exists, then Ti has to be 

aborted (this is called the first-commiter wins 

rule [1], which is used to prevent lost 

updates). If no such transaction exists, then Ti 
is successfully validated. Its updates will be 
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applied to the database in a write phase and 

become visible to transactions which have a 

start timestamp which is larger than commit 
(Ti); otherwise the updates are discarded and 

the transaction is restarted. 

  Even though SI avoids the classically 

known anomalies such as lost updates or 

inconsistent reads, there are some consistency 

anomalies that can occur under SI. Two types 
of anomalies have been identified in a set of 

transactions running using SI [2, 7]. The first 

anomaly type is "write skew, where a set of 

transactions, each of which preserves some 

integrity constraint, can execute under SI in a 
way that leaves the database in a corrupted 

state. Fekete et al. [7] describe another type of 

anomaly that they call a "read-only-

transaction anomaly". This involves a read-

only transaction seeing a state that could not 

occur in any serialized execution. This violates 
the previous assumption in [1] that read-only 

transactions always read consistent data 

under SI. The next subsection surveys static 

analysis techniques for removing SI 

anomalies.  
 

2.2. Removing SI anomalies through static  
analysis 

 

Because SI can allow data corruption, and 

is so common, there has been a body of work 

on how to remove consistency anomalies when 

running with SI as concurrency control. The 
main techniques proposed so far [4,5, 8-10] 

depend on doing a design-time static analysis 

of the application code and then modifying the 

application, if necessary in order to avoid the 

SI anomalies. For example, the work in [4] 

shows how one can introduce write-write 
conflicts into the application, so that all SI 

executions will be serializable. 
Making SI serializable using static analysis 

has a number of limitations [6]. It is unable to 

cope with ad-hoc transactions and application 
developers have to be aware of SI anomalies. 

In addition, this must be a continual activity 

as an application evolves. In fact, the analysis 

requires a global graph of transaction 

conflicts, so every minor change in the 

application requires renewed analysis and 
perhaps additional changes (even in programs 

that were not altered). The next subsection 

presents a recent proposal [6] which 

guarantees serializable SI executions for 

arbitrary applications. 
 

2.3. Serializable snapshot isolation [6] 
 

SSI is a very recent concurrency control 

algorithm which automatically detects and 

prevents snapshot isolation anomalies at 

runtime for arbitrary applications, thus, 

providing serializable executions. The key idea 

of the algorithm is to detect, at runtime, 
conflict patterns that must occur in every non-

serializable execution under SI, and abort one 

of the transactions involved. This is done 

based on the theory of [11] and its extension 

in [5], where some distinctive conflict patterns 
are shown to appear in every non-serializable 

execution of SI. The building block for this 

theory is the notion of a read-write 

dependency edge which occurs from T1 to T2 

if T1 reads a version of an object x, and T2 

produces a version of x that is later in the 
version order than the version read by T1. In 

[11], it was shown that in any non-serializable 

SI execution, there are two read-write 

dependency edges in a cycle in the multi-

version serialization graph. The work in [5] 
extended this, to show that there are two 

read-write dependency edges which form 

consecutive edges in a cycle, and furthermore, 

each of these read-write edges involves two 

transactions that are active concurrently. The 

serializable SI concurrency control algorithm 
[6] detects a potential non-serializable 

execution whenever it finds such two 

consecutive read-write dependency edges in 

the serialization graph. Whenever such a 

situation is detected, one of the transactions 
will be aborted. 

This is similar somehow to the way 

serialization graph testing works; however the 

algorithm does not operate   purely as a 

certification at commit-time, but rather aborts 

transactions as soon as the problem is 
discovered. Also, the validation test does not 

require any cycle-tracing in a graph, but can 

be performed by considering conflicts between 

pairs of transactions, and a small amount of 

information which is kept for each of them. 
The proposed validation test is conservative, 

so it does prevent every non-serializable 
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execution, but it may sometimes abort 

transactions unnecessarily. A prototype of the 

algorithm has been implemented in Oracle 
Berkeley DB.  Evaluating the prototype 

showed that under a range of conditions, the 

overall throughput of the algorithm is close to 

that allowed by SI, and much better than that 

of strict two-phase locking [6]. 

Despite the nice properties of this 
algorithm, it does not give special treatment to 

read-only transactions. Under the algorithm, a 

read-only transaction can be aborted and can 

cause the abortion of update transactions. 

This violates one of the most attractive 
properties of snapshot isolation which made it 

very popular for query-intensive applications. 

In particular, SSI brings back the source of 

conflicts between read-only transactions and 

update transactions (a source that has been 

eliminated by using the original snapshot 
isolation). 
 

3. Proposed algorithm  
 

3.1. Idea of the proposed algorithm 
 

The original SI algorithm gives a special 

treatment for read-only transactions by not 

involving them in validation tests. Accordingly, 

a read-only transaction can never abort or 

cause the abortion of an update transaction. 
However, unserializable execution does occur 

due to the nature of the validation test applied 

to update transactions (which was intended to 

relax the isolation level). The SSI algorithm 

eliminates unserializable SI executions by 

validating each write or read request (whether 
it comes from an update or a read-only 

transaction). This violates the special proper-

ties given by SI for read-only transactions.  

The key design goal for the proposed 

algorithm was to add simple modifications, to 
the original SI algorithm, in order to achieve 

serialized executions while keeping the 

attractive SI properties for read-only 

transactions. To keep these properties for 

read-only transactions, the proposed 

algorithm treats read-only transactions exactly 
the same way as the original SI algorithm 

does. Read-only transactions will read a 

consistent database state if the execution of 

update transactions is serialized [12]. To 

achieve serialized executions, the proposed 

algorithm was inspired by the multi-version 

serial validation algorithm described in [13] (it 

is to be noted that the original SI algorithm 
itself was inspired by a similar optimistic 

multi-version algorithm that was described in 

[12]).  However, the algorithm proposed in this 

paper modifies the algorithm described in [13]. 

The write phase and the validation phase in 

[13] are embedded together in a critical 
section, in order to prevent write-write 

conflicts.  Such a critical section can easily 

become a bottleneck, especially for disk 

resident databases. So, the proposed 

algorithm separates the write phase from the 
critical section and updates the validation test 

accordingly. The write phase is handled using 

a proposed scheme that prevents write-write 

conflicts.  

Using the proposed algorithm, both read-

only transactions and update transactions can 
read consistent snapshots and all executions 

will be serializable as will be proved in section 

4. Read-only transactions can keep the 

properties that they never wait or abort and 

never block or abort update transactions.       
The details of the proposed algorithm will be 

presented in subsection 3.2. A time complexity 

analysis of the validation test of the proposed 

algorithm is given in subsection 3.3. 
 

3.2. Algorithm description 
 

Under the proposed algorithm, 

transactions have to be declared as read-only 
transactions or update transactions at start 

time. As in the original SI, each transaction Ti 

(whether it is a read-only or an update 

transaction) is assigned a start timestamp; 

start(Ti), which reflects it's starting time. The 

proposed algorithm works exactly as the 
original SI algorithm for read-only 

transactions. It works also exactly as the 

original SI algorithm for update transactions 

until the update transaction requests 

committing. 
When an update transaction Ti is to 

commit, it is assigned a commit timestamp, 

commit (Ti), which has to be larger than any 

other existing start timestamp or commit 

timestamp. An update transaction Ti has to 

pass a validation test (in a critical section) to 
be successfully committed. Since the write 
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phase is separated from the critical section, 

the validation test will be as given below. 

     Assume that Last(x) is the commit 
timestamp of the most recent successfully 

validated transaction that has x in its write 

set. Ti passes the validation test successfully if 

and only if start (Ti) > Last (x) for each object x 

in Ti 's read set.  

   To commit the write set of the transaction 
to the database while avoiding the lost update 

problem, a proposed scheme is given below for 

allowing concurrent write phases while 

avoiding write-write conflicts. 

 During the validation phase of transaction 
Ti, a Wait-For-List (WFL) is determined for Ti 

that identifies the update transactions whose 

write phases conflict with and therefore must 

be processed before the write phase of Ti. The 

following is an outline of how to compute and 

use the WFL. If Ti is successfully validated, 
then for each object x belonging to the write 

set of Ti, add Last(x) (if it corresponds to a 

validated but not yet completed transaction) to 

WFL (Ti) and then let Last(x) be the commit 

timestamp of Ti.  If WFL (Ti) is empty, then Ti 
can begin its write phase, where it stamps the 

created versions of it's write set objects by its 

commit timestamp. Otherwise, Ti has to wait 

until the conflicting update transaction(s) have 

been processed. Algorithms 1 and 2 show 

pseudo code for validating and committing a 
transaction Ti, under the proposed algorithm, 

respectively.  
__________________________________________________ 

Algorithm 1: Validating a Transaction Ti  

__________________________________________________ 

valid = true; WFL (Ti) = {}; 

for each x in Ti's read set do 

   if start (Ti) < Last(x) then valid =false and exit loop; 

if valid =false then  

   discard Ti's updates and restart Ti; 

else 

    for each object x in Ti's write set do 

      if Last(x) corresponds to an uncompleted transaction then 

         add Last(x) to WFL(Ti); 

      Last (x) = commit(Ti) ; 

    end for  
    if  WFL(Ti) is empty then  

        commit Transaction Ti ; 

    else wait; 

_____________________________________________  

__________________________________________________ 

Algorithm 2: Committing a Transaction Ti  

__________________________________________________ 
for each object x in Ti's write set do 
  stamp the created version of x by the commit timestamp of Ti ; 

begin 

commit the write set of Ti to the database; 
find all Wait-For-Lists (WFLs) for other transactions that Ti belongs 

to; 

remove Ti from these WFLs; 
if  any WFL(Tk) becomes empty then wakeup Tk to commit; 

end 

__________________________________________________ 

 

    It is to be noted that the proposed algorithm 

is more conservative than the original SI 
algorithm. It does prevent every unserializable 

execution, but it may sometimes abort a 

transaction unnecessarily (the probability of 

transaction abortion for both the original SI 

and the proposed algorithm will be calculated 
in section 5). This is the cost paid for 

obtaining serialized executions with a 

validation test that has constant time 

complexity (time complexity of the proposed 

validation test will be calculated in subsection 

3.3). An alternative solution is to design a 
non- conservative validation test, which aborts 

an update transaction only when an operation 

will result in a non-serializable execution; this 

would be a serialization-graph-testing 

algorithm. However, serialization-graph testing 
requires expensive cycle detection 

calculations, and would be very prohibitive [6].  

It has also to be noted that although the 

proposed scheme for concurrent write phases 

depends on blocking update transactions, 

current SI implementation for concurrent 
write phases in some database management 

systems such as Oracle and PostgreSQL[6] 

depend also on blocking. Moreover, the 

proposed scheme has the advantages of 

achieving serialized schedules besides being 
deadlock-free, in contrast to the above 

implementations. 

 
3.3. Validation complexity analysis 

 

     In this subsection, the time complexity of 
the validation test of the proposed algorithm is 

analysed and compared to that of the original 

SI algorithm.  

     The unit of cost for this analysis will be the 

cost of a probe into a set of items organized as 
a hash table in main memory. For the original 
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SI algorithm, it is assumed that the most 

recent timestamps of objects' versions written 

by recently committed transactions are stored 
in a hash table. It is also assumed that Last(x) 

for each x in the write sets of recently 

validated transaction are stored in a hash 

table for the proposed algorithm. For 

simplicity, it is assumed that all update 

transactions have the same fixed read set and 
write set sizes. Let Ru be the size of update 

transactions read sets and let W be the size of 

their write sets. 

For the proposed algorithm, validating a 

transaction T requires that its start timestamp 

be compared to the timestamp Last(x) for each 
item x in T's read set. This requires Ru probes 

into the corresponding hash table. In addition, 

if T passes the validation test successfully, 
another W probes into the table will be 

required to add Last(x) to WFL(Ti) (if 

necessary) and to update Last (x), for each 

object x in T's write set. Therefore, the total 
validation cost is Ru+ W. 

Regarding the original SI algorithm, 

validating T requires that the start timestamp 

of T be compared to the most recent commit 

timestamp of each item x in T's write set. If T 

passes the validation test successfully, it will 
be required to update the most recent commit 

timestamp of each item x in T's write set. This 
requires W probes into the corresponding 

hash table. Therefore the total validation cost 
is W. 

     It is clear that, similar to the original SI 
algorithm, the proposed algorithm has a 

constant time complexity (that is independent 

of the number of recently committed 

transactions; n) for the validation test. 

 

4. Correctness proof 
 

In this section, it is proved that the 

proposed algorithm guarantees serializability. 

First, subsection 4.1 gives a formal model for 

correctness, and then subsections 4.2 and 4.3 

give the required proof. 
 
4.1. The formal model for correctness 

 

The original snapshot isolation algorithm 

is an instance of multiversion concurrency 

control [1]. Since the proposed algorithm is a 

modification of the original snapshot isolation 

algorithm, it is also an instance of 

multiversion concurrency control. The 
following gives a formal model for correctness 

of multiversion concurrency control 

algorithms. 

     A database consisting of a set of objects is 

assumed. Users interact with the database 

system by invoking transaction programs. A 
transaction Ti, is an ordered pair (∑i, <i,), 

where ∑i, is the set of read and write 
operations in Ti, that are executed atomically, 

and <i, is a partial order that represents the 

execution order of these operations. Read and 
write operations executed by Ti, on an object x 

are denoted by ri[x] and wi[x], respectively. The 
set of transactions that executed in a system 
is denoted as T = {T1,….Tn}. The execution of 

transactions in T is modelled by a structure 

called schedule. A schedule, H, over T is 

defined as a partial order (∑, <H) , where ∑ is 

the set of all operations executed by 
transactions in T , and <H  indicates the 

execution order of those operations. 

The database is assumed to be 

multiversion, in which each write operation on 
an object x produces a new version of x.               

Thus for each object x in the database, there 

is a list of associated versions. A read 
operation on x is performed by returning the 

value of x from an appropriate version in the 

list.  
A multiversion (MV) schedule H over a set 

of transactions T represents the sequence of 

operations on the versions of objects. Thus 
each wi[x] in an MV schedule is mapped into 

wi[xi], and each ri[x] is mapped into ri [xj] , for 

some j (which is determined by the 

multiversion concurrency control algorithm) . 
A transaction Tj reads x from Ti, in H if Tj 

reads a version of x produced by Ti. 
  Two MV histories over a set of transactions 

are equivalent if they have the same 
operations [12]. An MV schedule is one-version 

serializable if it is equivalent to a serial 

schedule over the same set of transactions 

executed over a single version database [12]. 
     The serialization graph of an MV schedule 
H, SG(H), is a directed graph whose nodes 

represent transactions and whose edges are 
all Ti →Tj  such that one of Ti’s operations 

precedes and conflicts with one of Tj’s 
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operations in H. However, SG(H) by itself does 

not contain enough information to determine 
whether H is one-version serializable or not. 

To determine if an MV schedule is one-version 

serializable, a modified serialization graph is 
used [12]. Given an MV schedule H, a 

multiversion serialization graph (MVSG(H)) is a 

SG(H) with additional edges such that the 

conditions, given below, hold. 
1- For each object x, MVSG(H) has a total 

order (denoted <<x  on all transactions that 

write x). 
2- For each object x , if Tj reads x from Ti , and 

if Ti <<x Tk , then MVSG(H) has an edge from Tj 

to Tk (i.e., Tj→Tk) ; otherwise, if Tk <<x Ti , then 

MVSG(H) has an edge from Tk to Ti, (i.e. Tk→Ti).  

    The additional edges are called version 
order edges. An MV schedule H is one-version 

serializable if and only if MVSG(H) is 

acyclic[12]. 
     It was proved in [12] that if read-only 

transactions satisfy a set of conditions and the 

used multiversion concurrency control 

algorithm serializes update transactions, then 

every read-only transaction will read a 

consistent state of the database. So, proving 
the correctness of the proposed algorithm 

consists of proving the one-version 

serializability of update transactions' 

schedules and then proving that each read-

only transaction satisfies the mentioned 
conditions and hence sees a consistent state 

of the database. These proofs are given in 

subsections 4.2 and 4.3, respectively. 

 
4.2. Correctness proof of update transactions 

 schedules 
 

The following lemmas state certain 

properties of the proposed algorithm. These 

properties will be used to prove that update 

transactions schedules produced by the 
proposed algorithm are one-version 

serializable (as stated in subsection 4.1, the 

analysis needs to be done only for update 

transactions). 
Lemma 1: For every rk[xj] , wj[xj] < rk[xj]  and 

commit (Tj) < commit (Tk). 
Proof: according to the proposed algorithm 

definition, the execution of rk[xj], will return 

the version xj with the largest timestamp such 

that commit (Tj) < start (Tk). Since start (Tk) < 

commit (Tk), it follows that commit (Tj) < 

commit (Tk). 
Lemma 2: For every rk[xj] and wi[xi], i ± j, one of 

the following conditions must hold:  
1- commit (Ti) < commit(Tj), or 

2- commit (Tk) < commit(Ti), or 

3- i = k and rk[xj]  < wi[xi]. 
Proof: Assume that i ± k. rk[xj] implies that 

commit (Tj) < commit (Tk), according to Lemma 

1. Having commit (Tj) < commit (Ti) < commit 
(Tk) is impossible, otherwise Tk should have 

been aborted and rk[xj] will not exist in the 

schedule. Therefore, either commit (Ti) < 

commit( Tj), or commit (Tk) < commit( Ti). The 

case i = k holds according to the definition of 
the proposed algorithm (see subsection 3.2). 

     By using the above lemmas as formal 

specifications of the proposed algorithm, the 

following theorem demonstrates that the 

proposed algorithm guarantees one-version 

serializable executions of update transactions. 
Theorem 1: The proposed algorithm 

guarantees one-version serializable executions 

of update transactions. 
Proof: Define the version order <<x for an 

object x as the total order on the commit 

timestamps, of the transactions creating 
versions of x, i.e., xi <<x xj if and only if commit 

(Ti) < commit(Tj). 
Let H be a schedule of update transactions 

produced by the proposed algorithm. It will be 
proved that MVSG( H ) is acyclic by showing 

that for each edge Ti→ Tj in MVSG(H), commit 

(Ti) < commit (Tj). 
Recall that MVSG(H) includes edges in 

SG(H) and additional version order edges. 

First, consider an edge Ti→ Tj in SG (H). Each 

such edge is due to a reads-from relationship; 

i.e., Tj has read some object written by Ti. By 

Lemma 1 of the proposed algorithm, it follows 

that commit (Ti)< commit (Tj).  
Next, consider a version order edge in 

MVSG (H). Let rk[xj] and wi[xi] be in H , where 

i,j, and k are distinct. Consider the cases 

given below. 

1- xi <<x xj , which implies that  Ti→ Tj is in 
MVSG (H); 

2- xj <<x xi  , which implies that Tk → Ti is in 
MVSG (H). 

In case 1, from the definition of version 

order, commit (Ti) < commit (Tj). In case 2, 

from Lemma 2, it follows that commit (Ti) < 
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commit(Tj), or commit (Tk) < commit( Ti). Since 

xj <<x xi, commit (Ti) < commit(Tj) is not 

possible. Hence, commit (Tk) < commit(Ti). 
If MVSG(H) has a cycle, it violates the total 

order of the commit timestamps of 

transactions involved in that cycle. Thus by 

the application of the serializability theorem 

for multiversion databases, every schedule of 

update transactions produced by the proposed 
algorithm is one-version serializable. 

 
4.3. Correctness proof of the read-only  

transactions synchronization scheme 

 

It was proved in [12] that if read-only 
transactions satisfy the conditions given below 

and the used concurrency control algorithm 

serializes update transactions, then every 

read-only transaction will read a consistent 

state of the database. Since the proposed 

concurrency control algorithm was proved to 
serialize update transactions, it is sufficient to 

show that read-only transactions satisfy the 

given conditions under the proposed 

algorithm. 
 
Condition 1: a read-only transaction reads the 

output of transactions that have committed or 

that will eventually commit. 
 
Condition 2: If Ti belongs to the set of update 

transactions from which a read-only 

transaction Tq reads and if Ti depends on Tj , 
then Tj must belong to the set of update 

transactions from which Tq reads ( see the 

definitions given below for the dependency 

relationship between transactions). 
 
Definition 1: A transaction Ti directly depends 

on transaction Tj if there exists some x such 

that Ti reads x from Tj. 
 
Definition 2: A transaction Ti depends on 

transaction Tj if Ti directly depends on Tj, or if 

there is a sequence T1, T2,…, Tn such that Ti 
directly depends on T1 , T1 directly depends on 

T2,….and Tn directly depends on Tj. 

The read-only transactions synchroniza-

tion scheme of the proposed algorithm 

satisfies condition 1 because read-only 
transactions read only from committed update 

transactions (according to the definition of the 

proposed algorithm in subsection 3.2). 

Condition 2 is also satisfied as will be proved 

below. 
Proof: the direct case of condition 2 will be 

proved, namely if Ti belongs to the set of 

update transactions from which a read-only 

transaction Tq reads, and if  Ti directly 

depends on Tj, then Tj must also belong to the 

set of update transactions from which Tq 
reads. Proof of the indirect case (Ti depends on 

Tj) follows easily by induction. 

    Ti belongs to the set of update transactions 

from which a read-only transaction Tq reads, 

means that commit (Ti)< start (Tq) (according 

to the definition of the proposed algorithm). 
The fact that Ti directly depends on Tj means 

that Ti has read the output of Tj. Using the 

definition of the proposed algorithm, this is 

possible only if Tj has been committed before 

the start of Ti; i.e., commit (Tj) < start (Ti). This 
means that commit (Tj) < start (Tq); i.e., Tj 

belongs to the set of update transactions from 

which Tq reads.  

    Thus, any read-only transaction will read a 

consistent state of the database under the 

proposed algorithm. 
 

5. Analytical performance model 
 

    This section presents an analytical model 

for assessing the performance (in terms of 
transaction abortion rate) of the proposed 

algorithm compared to the original snapshot 

isolation algorithm and the serializable 

snapshot isolation algorithm.  A simple model 

for single-site database systems, similar to 

that in [14], is used. A closed –form average-
case analysis is performed to estimate the 

abortion rate of transactions under the above 

algorithms.  

 
5.1. The analytical model 
 

A single-site database system is assumed 

with a set of distinct database objects. The 

total number of database objects is referred to 
as DBSize. It is assumed that access to these 

objects is uniform (there are no hot spots). 
Assume that TPSupdate update transactions 

are originated per second and that TPSquery 

read-only transactions are originated per 

second. Each transaction is assumed to 
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involve a fixed number of read / write actions, 
with a fixed time, Action_Time, for each one. 

Each update transaction reads Ru data 

objects, updates W data objects, and takes Lu 

seconds to finish. Each read-only transaction 
reads Rq data objects and takes Lq seconds to 

finish. A transaction’s duration (Lu or Lq) is 

estimated as the number of the transaction's 

read/write actions multiplied by the 
Action_Time[14]. Table 1 lists the model 

parameters. 
In subsections 5.2, 5.3, 5.4 and 5.5, an 

average-case analysis, based on that in [14], is 

conducted to estimate the abortion rate of 

transactions under the original SI algorithm, 

the proposed algorithm and the SSI algorithm, 

respectively. 
 
5.2. Snapshot Isolation (SI) abortion rate 

 

Under the original snapshot isolation 

algorithm, read-only transactions never abort. 

Therefore, it is only necessary to estimate the 
probability of abortion of update transactions. 

 
 

Table 1 

Parameters of the analytical model  

 

Symbol Meaning 

DBSize Total number of data  objects 

TPSupdate 
Number of originated update 
transactions per second 

TPSquery 
Number of originated read-only 
transactions per second 

Action_Time Time to perform a read/write action 

Ru Read set size of update transactions 

W Write set size of  update transactions 

Rq Read set size of read-only transactions 

Lu 
Duration of a single update transaction 
(in seconds) 

Lq 
Duration of a single read-only 
transaction (in seconds) 

 

On the average, number of update 
transactions that commit in time Lu can be 

expressed as TPSupdate * Lu. Hence, the 

number of writes in that time = W* 
(TPSupdate* Lu). Since objects are chosen 

uniformly from the database, the probability 

that a specific update of a transaction T 

conflicts with one of these writes = (number of 
writes)/(database size)=W*(TPSupdate*Lu) 

/DBsize. If any such conflict occurs, 

transaction T must abort according to the 
rules of SI. Since T, has W updates, it follows 

that the probability, PSI, that an update 
transaction T aborts= W* (probability of a 

single conflict)=(W2*TPSupdate*Lu) /DBSize. 

The rate of aborted update transactions 

can be calculated as: (rate of update 

transactions) *(probability of one transaction 
abortion)=TPSupdate*(W2*TPSupdate*Lu)/ 

DBSize.  

Therefore, the abortion rate of update 

transactions at the database site under the SI 

algorithm, ARSI, can be represented as: 

 
ARSI = (TPSupdate*W)2* (Lu/DBSize).    (1) 

 
5.3. The Proposed Algorithm (PA) abortion rate 

  

     Like the original snapshot isolation 

algorithm, the proposed algorithm never 

aborts read-only transactions. According to 
the algorithm description in subsection 3.2, 

an update transaction T aborts if any update 

transaction that committed after the start of T 

has a write set that intersects with T's read 

set. Similar to the analysis in section 5.2, it 

follows that the probability that an update 
transaction T has to abort can be 
approximated as (W*Ru*TPSupdate*Lu)/DBSize. 

Also, the abortion rate of update transactions 

at the database site, under the proposed 

algorithm, ARPA, can be approximated as:  

 
ARPA = (TPSupdate)2 * W *Ru* Lu )/DBSize. (2)     

 

It is to be noted that if each update 

transaction writes all the objects it has read, 
i.e., if W =Ru, then the abortion rate of update 

transactions under the proposed algorithm 
will be equal to the corresponding abortion 

rate under the original snapshot isolation 

algorithm.     
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5.4. Abortion rate of read- only transactions  
under the SSI algorithm 

 
    The SSI algorithm detects a potential non-

serializable execution whenever it finds two 

consecutive read-write dependency edges in 

the serialization graph. Whenever such a 

situation is detected, one of the transactions 

will be aborted. The aborted transaction can 
be a read-only or an update transaction. 

    The abortion rate of read-only transactions 

is estimated in this subsection, while the 

abortion rate of update transactions is 

estimated in the next subsection. 
    From the definition of the SSI algorithm in 

subsection 2.3, it can be deduced that the 

probability of abortion of a read-only 

transaction T is the probability that there are 

two consecutive read-write dependency edges 

in the serialization graph such that the first 
edge is created by T. In particular, this means 

that the first edge is the result of a read/write 

conflict between T and one of the update 

transactions T' that has committed since the 

start of T, and the second edge is due to a 
read/write conflict between T' and one of the 

update transactions that has committed since 

the start of T'.  

To calculate the probability of creating 

such a first edge, consider one of the reads of 

a read-only transaction T and assume that it 
is in the transaction halfway. On the average, 

number of update transactions that commit in 
time Lq/2 can be expressed as 

(TPSupdate*Lq)/2. Hence, the number of writes 

in that time =W* (TPSupdate *Lq/2). The 

probability that a specific read operation of T 

conflicts with one of these writes = (number of 
writes)/(database size)=W*TPSupdate*Lq/ 
(2DBsize). T has Rq such read requests, so the 

probability that it will conflict sometime in its 

lifetime (i.e., the probability of creating the 

first edge) can be approximated as 
(Rq*W*TPSupdate*Lq)/(2 DBsize).  

Using similar analysis to that in 
subsection 5.3, it can be seen that the 

probability of creating the second edge equals 
(W*Ru* TPSupdate* Lu)/DBSize. 

Therefore, the probability of aborting a 

read-only transaction can be approximated as:  
(Rq*W*TPSupdate*Lq/2)*(W*Ru*TPSupdate*Lu )/ 
(DBSize)2. 

Since Lq = Rq * Action-Time and Lu =(Ru+W)* 
Action-Time, the probability of aborting a read-

only transaction(query) under the SSI 
algorithm, APQSSI, can be approximated as: 

 
APQSSI=(Rq*TPSupdate*W*Action-Time/ 

       DBSize)2 *Ru(Ru+W)/2.    (3) 

  

Hence, the abortion rate of read-only 

transactions under the SSI algorithm, ARQSSI, 

can be approximated as: 
 
ARQSSI = Rq*TPSupdate*W*Action- 
      Time/DBSize)2 *TPSquery* Ru(Ru+W)/2. (4) 

 

The above analysis points to a serious 

problem with the serializable snapshot 
isolation algorithm (that has been already 

eliminated in the original SI algorithm and the 

proposed algorithm). Read-only transactions 

can be aborted due to conflicts with update 

transactions. Moreover, the abortion rate of 

read-only transactions rises as the second 
power of the following factors: the read-only 

transaction size, the rate of originated update 

transactions and the size of the write set of 

update transactions. A ten-fold increase in 

any of these factors increases the abortion 

rate by a factor of 100. 
 

5.5. Abortion rate of update transactions under  
the ssi algorithm 

 

The abortion rate of update transactions 
can be deduced from the definition of the SSI 

algorithm in [6]. An update transaction can be 

aborted during one of its read operations, one 

of its write operations or at commit time.  
    The probability, P1, that an update 

transaction T is aborted during one of its read 
operations can be obtained using a similar 

analysis to that for finding the abortion 

probability of a read-only transaction during 

one of its reads. P1 can be approximated as: 

 
P1 = (Ru* TPSupdate*W* Lu / DBSize)2 /2. (5)                                                                                       

 
The probability, P2, that an update 

transaction T is aborted during one of its 

writes, is the probability that there are two 

consecutive read-write dependency edges in 

the serialization graph such that the second 
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edge is created by T. In particular, the second 

edge has to be the result of a read/write 

conflict concerning any object, x, between T 
and one of the committed update transactions 

T' that has a snapshot isolation read  

(SIREAD) lock on x(according to the 

terminology of [6]) and has committed since 

the start of T. The first edge has to be the 

result of a read/write conflict between T' and 
any concurrent read-only or update 

transaction. 

    The following calculates the probability of 

creating the first edge. On the average, there 
are TPSquery *Lq read-only transactions and 

TPSupdate*Lu update transactions to conflict 

with T'. Assume that each is about half way 

complete. On the average, the number of read 

operations performed by these transactions 
can be expressed as (TPSquery *Lq*Rq + 
TPSupdate*Lu* Ru)/2. Since objects are chosen 

uniformly from the database, the chance that 

an update by T' will conflict with one of these 
reads is: (TPSquery* Lq*Rq+TPSupdate*Lu* Ru)/ 
(2* DBSize).  

T' has W updates, so the probability, P21, of a 

read/write conflict with T' (which is the 

probability of creating the first edge) can be 

approximated as:  

 
P21= TPSquery*Lq*Rq+TPSupdate*Lu*Ru)* 
  (W/2DBSize).         (6) 

 

    Regarding the second edge, there are 
TPSupdate*Lu update transactions to conflict 

with T. Assume that each of them is about 
half way complete. On the average, the 

number of read operations performed by these 
transactions are TPSupdate* Lu* Ru/2. 

Therefore, the probability that one of the write 

operations of T conflicts with these reads is 
TPSupdate*Lu* Ru /(2* DBSize). T has W 

updates, so the probability, P22, of a 
read/write conflict with T (which is the 

probability of creating the second edge) can be 

approximated as: 

 
P22 = W* TPSupdate*Lu* Ru /(2* DBSize).   (7)                                                                                             

 
Since the two edges are independent, the 

probability, P2, of aborting an update 

transaction during one of its writes can be 

calculated by multiplying the probabilities P21 

and P22 as: 

 
P2 = (TPSquery *Lq*Rq + TPSupdate*Lu* Ru) * 

 (Ru* TPSupdate* Lu /4) * (W /DBSize)2 . (8)               
 

    Finally, an update transaction T can be 

aborted at commit time. This can occur if T 

does not pass the validation test of the original 

SI algorithm or if there are two consecutive 
read-write dependency edges in the 

serialization graph such that T is the pivot for 

these edges. It is only required to calculate the 

probability of the second condition, since the 

probability of the first condition is the same as 
PSI (the probability of abortion of update 

transactions under the original SI algorithm 

which was calculated in subsection 5.2).  

    Regarding the probability of the second 

condition, the first edge of the two consecutive 

ones has to be the result of a read/write 
conflict between a concurrent read-only 

transaction or an update transaction and the 

transaction T. The second edge has to be the 

result of a read/write conflict between T and 

an update transaction that has committed 

since the start of T.  
    The probability of creating such a first 
edge has been calculated before as P21. Using 

similar analysis to that in subsection 5.3, it 

follows that the probability of creating such a 
second edge is (W*Ru* TPSupdate* Lu )/DBSize. 
    Hence, the probability, P3, that an update 

transaction is aborted due to the existence of 
two independent consecutive edges of the 

above types, can be approximated as:  

 
P3 = (TPSquery * Lq* Rq + TPSupdate*Lu* Ru)* 

 (Ru* TPSupdate* Lu /2 )* (W / DBSize)2. (9) 

 
Hence, the total abortion probability of an 

update transaction under the SSI algorithm, 
APUSSI, can be approximated as: 

 
APUSSI = P1 +P2 +P3+ PSI =  

(Ru*  TPSupdate*W* Lu / DBSize)2 /2 + 

(TPSquery *Lq*Rq + TPSupdate*Lu* Ru) * 
(Ru* TPSupdate* Lu /4) * (W /DBSize)2 + 

(TPSquery * Lq* Rq +TPSupdate*Lu* Ru) * 

(Ru* TPSupdate* Lu /2) * (W /DBSize)2 +  
(W2 * TPSupdate* Lu)/DBSize.      (10) 
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Simplifying the above expression a little gives 

the abortion probability of update transactions 

as:     
 
APUSSI = (Ru*  TPSupdate*W* Lu / DBSize)2 /2  

+0.75*(TPSquery * Lq* Rq + TPSupdate*Lu* Ru) *                
(Ru* TPSupdate* Lu) * (W / DBSize)2   +                                   

(W2 * TPSupdate* Lu)/DBSize.        (11) 

 

Therefore, the abortion rate of update 

transactions under the SSI algorithm can be 
approximated as: 

 
ARUSSI = TPSupdate3 * (Ru *W* Lu / DBSize)2 /2 

+0.75*(TPSquery * Lq* Rq + TPSupdate*Lu* Ru)* 

(Ru* TPSupdate2 * Lu) * (W / DBSize)2   + 

(TPSupdate * W)2 *(Lu /DBSize).       (12)  

     
The above analytical model has been used 

in some parametric studies to evaluate the 

performance of the proposed algorithm 

compared to the original SI and the SSI 

algorithms, in terms of transactions' abortion 
rate. These parametric studies are presented 

in the next section. 

 

6. Parametric studies and results 
 

In this section the results of three 
parametric studies, based on the analytical 

model of section 5, are presented. The studies 

were performed to compare the performance 

(in terms of transactions' abortion rate) of the 

proposed algorithm to the original SI 

algorithm and the SSI algorithm under 
different parameters. Typical values of 

parameters for workloads on a single database 

site were mainly obtained using the 

Transaction Processing Council benchmark, 

TPC-W [15] as a reference. This can be 
explained knowing that the proposed 

algorithm targets query-intensive applications, 

e.g., many database-backed web applications 

and web services, and TPC-W is a 

transactional web e-Commerce benchmark. 

However, the values of some of these 
parameters have been varied in some studies 

to study the effect of this variation on the 

performance of the algorithms. The first study 

examines the three algorithms under a 

workload for which the original SI is expected 
to be beneficial; a mix of small update 

transactions and larger read-only 

transactions. The second study investigates 

the effect of varying the fraction of update 
transactions in the previous workload on the 

behaviour of the algorithms. The third study 

examines the algorithms under a less 

favourable workload. The size of update 

transactions is somewhat larger, and the ratio 

of writes to reads in update transactions is 
varied in order to compare the performance of 

the proposed algorithm to the other algorithms 

under varying conflict probabilities.  

 
6.1. Effect of varying the size of read-only  

transactions 
 

This study examines the behaviour of the 

three algorithms under a mix of transactions 

for which the original SI algorithm was 

designed to be beneficial [1]. The mix used 
consists of update transactions and 

dominating read-only transactions. Update 

transactions are small, and the size of read-

only transactions is varied from small to large 

as a fraction of the overall database size. The 
workload parameter settings for the study are 

given in table 2.  

 

 
Table 2 

    Parameter settings for the first parametric study 
 

Parameter Value / Range 

Database size (total number of 
data objects) 

500,000 

Range of read-set sizes for read-

only transactions (in data objects) 
5-50 

Read-set and write-set sizes of 
update transactions (in data 
objects) 

2,2 
(respectively) 

Action time (in seconds) 0.01 

Number of originating update 

transactions per second 
2000 

Number of originating read-only 
transactions per second 

8000 

 

 

 



Nagwa M. El-Makky / Towards consistent snapshot isolation  

                                      Alexandria Engineering Journal, Vol. 48, No. 4, July 2009                                         377 

As can be seen from table 2, twenty 

percent of the transactions are update 

transactions, reading and then updating two 
data objects, and the other 80 percent are 

read-only transactions. Each read-only 

transaction reads a fixed number of objects, 

and the size of these transactions is varied 

from 5 data objects up to 50 data objects. The 

performance metric used is the per-class 
transaction abortion rate (i.e., the read-only 

transactions abort rate and the update 

transactions abort rate). Abortion rates are 

measured in transactions/second. 

Given the small size of the update 
transactions in this study, almost all conflicts 

are between read-only and update 

transactions. Since the proposed algorithm 

and the original SI algorithm completely 

eliminate this source of conflicts, the read-

only transactions abortion rates for both 
algorithms equal zero for all values of the 

read-only transaction size, as can be seen 

from fig. 1. However, under the SSI algorithm, 

as the read-only transaction size increases, 

read-only transactions quickly begin to be 
aborted because of conflicts with update 

transactions in the workload. A ten-fold 

increase in the size of the read-only 

transaction increases the abortion rate by a 

factor of 100 as can be seen from fig. 1. In 

fact, the abortion of read-only transactions is 
a weakness point of the SSI algorithm. 

As expected, increasing the size of read-

only transactions has no effect on the abortion 

rate of update transactions under the original 

SI algorithm and the proposed algorithm. 
However, increasing the size of read-only 

transactions, under the SSI algorithm, 

increases the abortion rate of update 

transactions as can be seen from fig. 2. This 

can be easily explained using the analysis in 

subsection 5.5.  
Under the SSI algorithm, increasing the 

size of read-only transactions increases the 

probability that an update transaction will be 

aborted during one of its writes or at commit 

time (due to a conflict with a read-only 
transaction). Consequently, the abortion rate 

of update transactions will increase.  

 
 

Fig 1. Read-only transactions abortion rate for the SI 
algorithm, the SSI algorithm and  

the Proposed Algorithm (PA).  
 

 
 

Fig. 2. Update transactions abortion rate for the SI 
algorithm, the SSI algorithm 

and the Proposed Algorithm (PA). 

 

It is to be noted that the update transac-
tion abortion rate for the proposed algorithm 

is identical to that for the original SI 

algorithm. This can be deduced from the 

analysis in section 5, knowing that the ratio of 

writes/reads in update transactions equals 1 
in this parametric study. 
 
6.2. Effect of varying the fraction of update  

transactions 

 

This study examines the behaviour of the 
algorithms under a mix of transactions similar 

to that of the first study. However, in this 

study, the size of read-only transactions is 

held fixed (at 50 data objects). The variable 

here is the fraction of update versus read-only 

transactions in the mix. In particular, 
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workloads with 0, 20, 40, 60, 80, and 100 

percent update transactions are studied, with 

the remainder of the workload consisting of 
read-only transactions. The values of other 

parameters are identical to those used in the 

first study. The performance metric used is 

the expected abortion rate of transactions, 

which is the weighted average of the abortion 

rates of read-only transactions and update 
transactions. The point of this study is to find 

out how the fraction of update transactions 

affects the expected abortion rate of 

transactions under the three algorithms.  

Fig. 3 shows the results for the expected 
abortion rate of transactions under the three 

algorithms. Since the ratio of writes/reads in 

update transactions equals 1, the abortion 

rate of the proposed algorithm is identical to 

that of the original SI algorithm as can be 

deduced from the analysis in subsection 5.3. 
As expected, when the mix has no update 

transactions, the abortion rates of all 

algorithms equal zero. The expected abortion 

rates of the three algorithms increase as the 

fraction of update transactions increases. This 
is due to the increase in the probability of 

conflicts  between   transactions.   Among the 

3 algorithms, the SSI algorithm is the only one 

that allows conflicts between update and read-

only transactions in addition to conflicts 

between update transactions. This explains 
the higher abortion rates for the SSI algorithm 

compared to the other two algorithms. When 

the fraction of update transactions reaches 1, 

i.e., in case of absence of read-only 

transactions  which   represent  a    weakness 
point of the SSI algorithm, its performance 

becomes very close to that of the other two 

algorithms. 

 
6.3. Effect of varying the writes/reads ratio of  

update transactions 
 

The aim of this study is to evaluate the 

behaviour of the proposed algorithm under 

less favourable conditions. The size of update 

transactions is somewhat larger, the update 
transactions fraction in the workload is 80%, 

and the ratio of writes to reads in update 

transactions is varied in order to evaluate the 

performance    of     the proposed     algorithm,  

 
 

Fig. 3. Expected transaction abortion rate for the SI 
algorithm, the SSI algorithm 

and the Proposed Algorithm (PA). 

 
Table 3 
Parameter settings for the third parametric study 

 

Parameter Value / Range 

Database size (in data objects) 500000 

Read-only transaction size 
(in data objects) 

50 

Read-set size of update 
transactions(in data objects) 

6 

Ratio of writes/reads 
1/6, 1/3, 1/2, 

2/3, 5/6 and 1 

Action time (in seconds) 0.01 

Number of originating update 
transactions per second 

8000 

Number of originating read-only 
transactions per second 

2000 

 

compared to other algorithms under different 

conflict probabilities. The workload parameter 

settings for this study are given in table 3. The 

performance metric used is the expected 

abortion rate of transactions. Fig. 4 gives the 
results for the expected abortion rate of 

transactions under the three algorithms. 

From fig. 4, it can be shown that the 

original SI algorithm and the SSI algorithm 

outperform the proposed algorithm at low 
ratios of writes/reads of update transactions. 

This can be explained knowing that the 

proposed algorithm is more conservative than 

the other two algorithms. For a low 

writes/reads ratio,  this  causes  an  overhead  
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Fig. 4. Expected transaction abortion rate for the SI 

algorithm, the SSI algorithm and 
the Proposed Algorithm (PA). 

 

due to unnecessary aborts. However, as the 

writes/reads ratio of update transactions 

increases, the conflicts between update 
transactions increase under all the algorithms 

and the conflicts between update and read-

only transactions increase under the SSI 

algorithm. 

This explains why the proposed algorithm 
outperforms the SSI algorithm for high ratios 

of writes/reads of update transactions. As the 

ratio of writes/reads becomes close to 1, the 

performance of the SSI algorithm continues to 

degrade, giving its worst performance when 

the ratio equals 1. 
On the other hand, as the ratio of 

writes/reads approaches 1, the abortion rate 

of the proposed algorithm approaches that of 

the original SI algorithm as can be deduced 

from the analysis of subsection 5.3. 

 
7. Conclusions 

 

This paper proposes an optimistic 

concurrency control algorithm that avoids the 

consistency anomalies of the original 
Snapshot Isolation algorithm. It is based on 

simple modifications of the original SI 

algorithm and preserves most of its attractive 

properties. Under the proposed algorithm, 

read-only transactions never wait or abort and 

they never block or abort update transactions.  
The paper presents a simple analytical 

performance model and a closed-form average-

case analysis for the abortion rate of 

transactions under the proposed algorithm 

compared to the original SI algorithm and the 
SSI algorithm. Parametric studies were 

performed using the analytical model to have 

an insight into the behaviour of the proposed 

algorithm compared to the other two 
algorithms.  

From the parametric studies, it is clear 

that, in terms of transaction abortion rate, the 

proposed algorithm outperforms the SSI 

algorithm and approaches the performance of 

the original SI algorithm for query-intensive 
workloads. These are the workloads that the 

original SI algorithm was designed to be 

beneficial for. In these workloads there is a 

vast amount of large read-only transactions 

conducted together with a small number of 
short update transactions. Examples of such 

workloads can be found in many practical 

database-backed web applications and web 

services.  

For less favourable workloads, the 

proposed algorithm outperforms the SSI 
algorithm at high conflict cases. For low 

conflict cases, e.g., a low ratio of writes/reads 

in update transactions, the proposed 

algorithm can cause an overhead due to 

unnecessary aborts. In such cases, the SSI 
algorithm can be a viable choice. 

As a future work, it is planned to perform 

a detailed performance evaluation study of the 

proposed algorithm compared to the original 

snapshot isolation algorithm and the 

serializable snapshot isolation algorithm. 
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