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The main purpose of this paper is to optimize the multiplication process in Multiple Valued
Logic (MVL) multipliers by using a method called "mixed radices of MVL/binary". An
introduction of ternary multipliers is mentioned only as a preface for quinary multipliers.
The mixing of radices (quinary/binary) will allow to represent quinary numbers by binary
vectors with two bits only instead of three bits. The implementation of this method by using
the Logic Oriented Neural Network (LOGO-NN) will also enable us to reduce the number of
elements and interconnections. For evaluation purposes, we will compare the proposed
multiplier with other techniques.
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1. Introduction

Recent advances in neural sciences and
microelectronic technologies increased greatly
the challenges in the domain of development
of high speed, efficient, complicated, and high
computational engineering tasks. In this
paper, a new approach of neural networks, to
implement a quinary arithmetic multiplier
model, has been proposed. The LOGO-NN is
able to perform several independent
computations in parallel [1] by a single
network. The multiple-valued logic LOGO-NN
[2] provides powerful computation for large
quantities of data. The new Logic Oriented
Neural Network (LOGO-NN) system is
accompanied by mathematical tools which will
allow us to analyze and synthesize any logic
model in a simple and systematical approach.
The LOGO-NN is proposed in a way to form a
complete system (completeness) that can
realize any multiple-valued logic function [3].
It has been found that the mixed radices [4, 5]
provide a convenient way to analyze,
synthesize and minimize the multiple valued
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logic functions. Also, it has been proven that
the mixed radices LOGO-NN [4] allow us to
reduce the number of elements and
interconnections. In this paper, we will use
mixed radices quinary /quaternary / binary to
reduce the binary representation of quinary
numbers hence to reduce the number of
elements and interconnections of quinary
multiplier LOGO-NN.

2. Neuron model
2.1. General overview

The LOGO-NNs are composed of one
neural type and all the synapse’s weights
between neurons are natural integers. These
two characteristics make LOGO-NNs useful,
simple to design and more realistic in
comparison with that of [2]. The Galois field
algebra [4] provides a convenient way to
specify the structure of binary, ternary and
quaternary. The LOGO-NN operators of Galois
field along with the logic constants, form a
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finite field.The structure of k-valued logic
LOGO-NN is defined as:

NNQ = (G, GF (k), /(2), (1)

where,
G Finite directed graph is defined as:

G=(N, L, W), (2)

where,

N is the set of nodes (neurons)

L is the set of links (connections)

w is the set of synapse’s weights

GF(k) Galois field of k elements

GF (k) ={0,1,2,...., k- 1} K> 2, (3)

/(2 Output signal of processing elements
(neuron)

F2)= 222, @
n

Z= zizo x;w; — 6, (5)

Wo

Lo——
x*f(z)

xnw
Fig. 1. Processing element.
where,
X Input signals
x € GFk) ={0,1,2,..,K-1}
Wi Multiplicative coefficient (weight)
for x
i =0,1,...,n
0 Threshold of the processing
element
w, 0 € {...,-2,-1,0,1,2, ..}

7(z)

Fig. 2. Linear transfer function.

2.2. Galois field of 2-elements LOGO-NN

Any binary logic function can be
represented by the familiar Galois field
structures [4]. The flexibility of this modular
algebra demonstrated above is its suitability
for the applications of LOGO-NN. The Galois
field of 2-elements is defined as K = 2, then GF
(2) = {0, 1}. Where GF(2) is defined by addition
(®) and multiplication (¢) functions, as given in
the table 1 below and as shown in fig. 3.

Table 1
® and * functions of GF(2)

@ 0 1 . 0 1
0 0 1 0 0 0
1 1 0 1 0 1

Fig. 3. LOGO-NN of GF(2) functions.

2.3. Basic binary LOGO-neural networks

The basic binary Logo Neural Networks are
the same as in binary logic function such as
complement, AND, OR, NOR, NAND.

Complement function

The complement function is defined by (7)
and table 2, where its LOGO-NN operator is
designed as shown in fig. 4.

x=1-x (6)
Table 2
Complement functions
x x
0 1
1 0

Lot : —

Fig. 4. LOGO-NN of complement function.
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GF(2) Multiplication of n-input signals
The LOGO-NN of GF(2) multiplication of n-
input signals fig. 5 is designed for:

Wo=wW=Uh=..=W =1 andd=n
Then:
f(Z) = xo. x1. X2....%Xn (7)

1

To
X, 1

. XLpeLqee X,
Toe— 1

Fig. 5. LOGO-NN for GF(2) multiplication of n-input.

OR function
The OR function is defined as given in
Table 3 and as shown in fig. 6.

Table 3
Or functions

+ 0
0 0
1 1

—_ [

2

x
i }—>I+y

Y 2 "

Fig. 6. LOGO-NN of OR function.

Minimization rule of LOGO neural networks

The LOGO neural networks of fig. 7, shows
a simple example for reduction rule that can
be wused to minimize LOGO-NN of the
expression (f= x.y. z).

Te 4 To 1

Yo bl 8= Ve ! f
,11 -1

z

Z

Fig. 7. Minimized network.

3. Ternary multiplier based on mixed
radices

3.1. Ternay logic multiplier

The ternary logic multiplication process of
two ternary input variables is defined as given
in table 4, where M is the multiplier (M = X.Y)
and C is the carry of M.

Table 4
Ternary multiplication table

N NN~ B = O O O
N — O N = O N = O X
-~ N O N+~ OO OO =
—_ O O O O O © © O O

X, Y and M belong to ternary set {0,1,2}. To
represent these variables in binary, we need
two bits for each. Then we will obtain 16
different binary combinations between X and Y
where 7 of them will be dropped or unused.

Let: Y = (Y2, Y1), X=(X2,X1), M=(M2,M1)
and C= (c)

In order to reduce the calculation
complexity, we will try to represent the input
variables by one binary bit only instead of two
bits and hence the problem will become
similar to the binary, thus we will have only 4
binary combinations and this will lead us to
minimize the expressions of the functions of M
and C. To achieve this objective, we suppose
the following methodology:

e We have noticed from table 4 that M=C=0
when X=0 or Y=0 and this will enable us to
remove these cases from table 4 because the
result here could be predicted. Hence the
values of X, Y and M belong now to the set
{1,2}.

e The next step is to subtract "1" from the
digits of X, Y and M, then the set of numbers
become the same of the binary one {0,1}.
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e After the subtraction, we could then
represent the numbers 0, 1 by one bit binary
vectors. Hence, and after we apply the above
procedures, we obtain a reduced table which
is shown in table 5. The equations of y, x, m
and C are as follows,

y=Y-1 (8)

x= X-1 9)

m= M-1 (10)

C=c (11)
Table 5

Subtraction of 1 from
X, Y, and M for X#0, Y=0

= = O O|<
= O = OfX
o ~ = OfB8
= O O o0

Now we have a traditional functions m, and ¢
with two variables x, y. To find the optimized
functions, it could be done by using
karnaugh map [6], where we have obtained
the following

m=xXORy=x. Yy +x.y (12)
c=(x. y) (13)
But actually we have to find the real
multiplier M(M2,M1),where M= (m+1). Table 5

becomes, after the addition of ‘1’ as shown
below in table 6.

M=m+1=(x XORy) + 1 (14)
Table 6
Addition of 1 for m (M=m+1I)
y x (MO1,M02)| ¢
0 0 0,1 0
0 1 1,0 0
1 0 1,0 0
1 1 0,1 1

By reference to the results obtained in the
previous two tables 5 and 6, we notice that the
equations of M and C:

MOI=xXORy=xy +xy (15)
MO02= MO1 (16)
CO=c=x.y (17)

But in the cases where X=0 or Y=0, all the
equations of M and C should equal to zero.
Therefore, the final equations of M should be
ANDed by X.Y
Where

0O f X=0o0rY=0
x,y=|0 ¥X=00r (18)
1 otherwise

Hence, the final equations of the multiplier
become:

M1=MO1.X.Y (19)
M2=MO02.X.Y (20)
C1=C01.X.Y (21)

The final equations could be easily

implemented by the basic binary LOGO-NN.
The main purpose for analyzing ternary
multiplier based on mixed radices is to
introduce the quinary multiplier as described
in the next paragraph.

4. Quinary logic multiplier based on mixed
radices and its logo-nn implementation

4.1. Quinary logic multiplier

The quinary logic multiplication process
of two quinary input variables is defined as
given in table 7, where M is the multiplier
(M= X.Y) and C is the carry of M.

X, Y and M belong to quinary set
{0,1,2,3,4}. To represent these variables in
binary, we need three bits for each. Then we
will obtain 64 different binary combinations
between X and Y where 39 of them will be
dropped or unused.
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Let:Y=(Y3,Y2,Y1),X=(X3,X2,X1),M=(M3,M2,M1)
and C=(c2,cl).

Table 7
Quinary multiplication table

A WN+~ O DM WNR~RO DM WNRO DN WNDRODNWDNDHO|NX
— N WA ON DA~ WO WK ADNO PP WNROOOOOO|R
W N H=OONFRKROOHRMKROOOOOOOOOOOOOoOIO

AR A DA DL WWWOWNNNNNRRR L Lo OO0 O O

In order to reduce the -calculation
complexity, we will try to represent the input
variables by two binary bits only instead of
three bits and hence the problem will become
similar to the quaternary issue [4], thus we
will have only 16 binary combinations and this
will lead us to minimize the expressions of the
functions of M and C. To achieve this
objective, we suppose the following
methodology:

e We have noticed from table 4 that M=C=0
when X=0 or Y=0 and this will enable us to
remove these cases from table 4 because the
result could be predicted. Hence the values of
X, Y and M belong now to the set {1,2,3,4}.

e The next step is to subtract “1” from the
digits of X, Y and M, then the set of numbers

becomes the same of the quaternary one
{0,1,2,3}.

After the subtraction , we represent the

numbers 0,1,2 and 3 by two bits binary
vectors, that is to say 0=(0,0), 1=(0,1), 2=(1,0)
e and 3=(1,1).Hence, and after we apply the
above procedure, we obtain a reduced table
which is shown in table 8. The equations of y,
x, mand C are as follows,

y=Y-1=(y2,y1) (22)
x=X-1=(x2,x1) (23)
m=M-1=(m2,m1) (24)
C=(c2,cl) (295)
Table 8
Subtraction of 1 from X, Y, and M
for X+0, Y0
y2,yl| x2,x1| m2,ml| c2,cl
0,0 0,0 0,0 0,0
0,0 0,1 0,1 0,0
0,0 1,0 1,0 0,0
00| 1,1 1,1 0,0
0,1 0,0 0,1 0,0
0,1 | 0,1 1,1 0,0
0,1 1,0 0,0 0,1
0,1 1,1 1,0 0,1
1,0 0,0 1,0 0,0
1,0 0,1 0,0 0,1
1,0 1,0 1,1 0,1
1,0 1,1 0,1 1,0
1,1 0,0 1,1 0,0
1,1 0,1 1,0 0,1
1,1 1,0 0,1 1,0
1,1 1,1 0,0 1,1

Now we have a traditional functions mil,
m2, cl and c2 with four variables x1, x2, y1,
and y2. The optimized functions can be easily
done by using karnaugh map [6], where we
have obtained the followings.

ml= xl.ﬁ ﬁ 4 X2 .yl.ﬁ+ x_l.yl.y2
+ x2. ﬁ.yQ (26)

m2 = X2;ﬁy_2 + X1.y1.1ﬁ+x_2.y1.y2
=xl.yl.y2 (27)

cl =x2.yl1 ﬁ +x1l.yly2 + Xl.x_2y2
+x1.x2. yl.y2 (28)
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c2=x2.yl.y2 + x1.x2.y2 (29)

But actually we have to find the real
multiplier M(M3,M2,M1),where M= (m+1).
Table 5 becomes, after the addition of ‘1’ as
shown below in table 9.

Table 9
Addition of 1 for m (M=m+1)

y2,y1| x2,x1| MO3,M02,M01| C2,C1
0,0 0,0 0,0,1 0,0
0,0 0,1 0,1,0 0,0
0,0 1,0 0,1,1 0,0
0,0 1,1 1,0,0 0,0
0,1 0,0 0,1,0 0,0
0,1 0,1 1,0,0 0,0
0,1 1,0 0,0,1 0,1
0,1 1,1 0,1,1 0,1
1,0 0,0 0,1,1 0,0
1,0 0,1 0,0,1 0,1
1,0 1,0 1,0,0 0,1
1,0 1,1 0,1,0 1,0
1,1 0,0 1,0,0 0,0
1,1 0,1 0,1,1 0,1
1,1 1,0 0,1,0 1,0
1,1 1,1 0,0,1 1,1

By reference to the results obtained in the
previous two tables 8 and 9, we notice that
the equations of M:

MO1=ml (30)
M02=m1XOR m2=m1.m2.ml.m2 (31)
MO03= (m1.m2) (32)

But in the cases where X=0 or Y=0, all the
equations of M and C should equal to zero.
Therefore, the final equations of M should be
ANDed by X.Y
Where

O f X=0o0rY=0
X,Y = .
1 otherwise

Hence, the final equations of multiplier
become:

M1= MO1.X.Y (33)
M2=MO02.X.Y (34)
M3=MO03 X.Y (395)

C1=CO01.X.Y (36)
C2=C02.X.Y (37)

The block diagram in fig. 8 shows the
major units involved in the structure of the
multiplier. This block diagram is composed of
three units. The input unit is the quinary to
binary converter which is designed by LOGO-
NN to convert directly any quinary numbers
to binary with two bits only. Many methods
were proposed [7, 8] to design radix
converters. The second unit is the LOGO-NN
multiplier which represents the heart or the
main unit.

The ANDING with X0YO at the output unit
with binary coded quinary where we get the
final results for the multiplier and carries of
the multiplication process of the two quinary
numbers X and Y.

The LOGO-NN of the three units are as
shown in figures 9, 10 and 11 respectively.

In fig. 9, the LOGO-NN quinary to binary
converter is designed to give for quinary
inputs (X and Y) corresponding binary vectors
with two bits (x1, x2) and (y1l,y2). First, we
have a rotary switch that select one quinary
digit as input. For the input O, we put an
inverter to get O logic when we activate the
input by 1 logic. Hence, we deal with the
remaining 4 quinary iputs (1, 2, 3, 4) are
considered as quaternary inputs that need two
binary bits only for representation.

Fig. 10 shows the LOGO-NN
implementation of the main unit of the
multiplier with mixed radices quaternary to
binary coded quinary (LOGO-NN of the egs.
(27-32 and 33).

Xo

Ofguinary) e l L
NuTs | | LOSONN g o | LOCO-NN: | LOGO-KN 1 yrpurs

QUINARY/ | QUNARY ANDing XY .
T BINARY MULTIPLIER 7 by Ms Co

converTer | Co

! T

Fig. 8. Block diagram for quinary / binary multiplier.
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= MO2=mi®m2

MO3=m1.m2

Fig. 10. Multiplier Unit LOGO-NN.

In fig. 11, we get the final multiplier and
carries through the LOGO-NN of the ANDing
unit with X0YO (LOGO-NN of the egs. 35-38
and 39).

1
L. M1

MO1=m1

| |
| |
| |
| |
| |
T T
| |
| |
| |
1 1
niwl
MO2=m1®m2— 1 (] e M2
| |
| |
1 j 1
| |
| |
il
MO3=m1- m2 L L M3
| |
1 ] 1
| |
| |
| 1 |
1 ,E 1
Co1 : ] 1 = C1
| |
| | |
| |
A
L | 1
1 1
| |
| |

Co2 C2
I

Fig. 11. ANDing (X0YO) by (MO, CO) LOGO-NN.

5. Conclusions

This paper presents the development of a
new technique concerning the quinary
multiplier LOGO-NN through the use of mixed
radices (quinary / quaternary / binary) in
order to simplify and minimize as possible the
used elements and to increase the
performance of quinary multiplier to the
maximum. The advantages of mixing the
radices are the simplicity of binary design, and
the availability of binary components. The
algorithm here makes the representation of
the quinary as binary with two variables only,
possible. But, in general, it needs to be
represented with three bits for each quinary
digit (quits). For evaluation, the advantages of
the proposed quinary LOGO neural network
multiplier are the followings:

1. Interesting results were obtained upon
doing a simulation on MATLAB R2007A using
a core 2 duo processor of frequency 1.73 GHz,
where we found that it takes about 8
microseconds to multiply two numbers (4 * 3

for instance) using the mixed radices
algorithm, while it takes about 80
microseconds using a classical binary
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multiplication which is already embedded in
the computer processor.

2. In comparison with other
techniques [2], the advantages are:
e The proposed multiplier is composed of
one neuron type, while that of [2] is composed
of three neuron types.

e The proposed multiplier performs the
complete operation in a single LOGO neural
network, while that of [2] is decomposed into
three sub-circuits which are controlled by an
individual circuit.

e Integers are representing the synapse’s
weights and thresholds of neurons while that
of ref. [2] are non integer numbers.

multipliers
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