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This paper presents an analytical stability model to predict the buckling strength of an 
orthotropic hybrid rectangular plate. The plate is considered to be a hybrid of two 
orthotropic materials and is subjected to in-plane uniform uniaxial compression strain 

loading. The loaded edges of the plate are considered to be simply supported while one of 
the unloaded edges is free and the other edge is considered to be elastically restrained 
against rotation. Based on the stability model presented, the parameters governing the 
buckling behavior of the hybrid plate are identified. A parametric study is presented to 
investigate the effect of each of the parameters on the overall buckling strength of the plate. 
The study results show that providing a stiffer material part near the rotationally restrained 
edge generally provides higher overall buckling capacity than providing it near the free edge. 
The peak high in plate buckling capacity does not occur with the plate totally made of the 
stiffer material. Providing the plate with a stiffer material at its edge might result in a 
decrease in its buckling capacity.   

متبااين الواوا و واللاوح الاذ  تام تناولاج هاو هجاين مان هجين مستطيل يقدم هذا البحث نموذج تحليلي لحساب مقاومة الانبعاج للوح 
هاذا اللاوح يرت اع ارت ااعا بسايطا عناد ماوع  بانتااامو و  محاور نوعين من المواد ذات الووا  المتباينة و معرض لانفعاال غا ط

وبناا  علاا النماوذج التحليلاي تيج ال ير محملتين ممنوعاة جعيياا مان الادوران و الحافاة احوار  حار و حافتيج المحملتين بينما أحد حاف
تم  اذلك تقاديم دراساة تحليلياة لتحدياد ماد  تاهثير هاذ  ولمثل هذا اللوحو  الانبعاجالذ  تم تقديمج تم تحديد المعاملات التي تح م سلوك 

لقاد بينات هاذ  الدراساة أن وجاود مااد   أ ثار جسااية عناد الطارج الممناو  جعيياا مان و  المعاملات علا سلوك الانبعاج ال لا للاوحو
ساة أن الدوران يؤد  عياد   بيار  فاي مقاوماة الانبعااج ال لياة للاوح أ ثار مان وجاود هاذا الجاع  عناد الطارج الحارو ولقاد بينات الدرا

أن وغا  مااد  أ ثار جسااية   ماا و الماد  اح ثر جسااية ي ون اللوح بال امل من ماتحدث بالغرور  عند مقاومة الانبعاج القصو  لا
      عند الطرج الحر قد تؤد  الا تقليل مقاومة اللوح للانبعاج بدلا من عيادتهاو
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1. Introduction 

 
With the increase of use of composite 

materials in structural applications, there has 

come a need to develop mathematical models 

to analysis the behavior of such materials, 

especially their buckling behavior. Fiber 

Reinforced Polymers (FRP) are classified as 
orthotropic materials that have relatively high 

strength to stiffness ratio in the direction of 

the fibers that makes them more likely to fail 

in buckling. FRP structural profiles such as 

angle, channels, and I-sections are basically 
assemblies of thin flat plates and they are 

typically manufactured using the pultrusion 

process [1]. Therefore, buckling analysis of 

such shapes can be done by modeling their 

flanges or webs individually as orthotropic 

composite plates. For example, the problem of 

the local buckling of the compression flange of 

an I-beam loaded in bending can be modeled 
as a rectangular plate whose two loaded edges 

are simply supported, one of the unloaded 

edges is free, and other end is elastically 

restrained against rotation, which represents 

the influence of the web on the flange [2-4].  

The stability problem of a rectangular 
orthotropic plate that is subjected to uniform 

compression stresses has been discussed in 

numerous publications [5-9].  However, little 

work was reported on the solution of the same 

problem but with rotationally restrained 
edges. Bank and Yin [10] presented an 

analytical solution for the buckling of a 

rectangular orthotropic plate that was 

subjected to uniform uniaxial compression 

and simply supported on the loaded edges 

while one of the unloaded edges was free and 
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the other edge was elastically restrained 

against rotation. Qiao and Zou [3] presented 

an explicit elastic stability solution for the 
same problem. Mittelstedt [11] presented an 

analytical investigation for the buckling of 

symmetrically laminated rectangular 

orthotropic plates under uniaxial compression 

in which the loaded edges were considered to 

be simply supported while the unloaded ones 
were considered to be elastically restrained 

against rotation.   

While these models are capable of dealing 

with the problem of a hybrid laminated plate 

that has several layers of different materials 
through its thickness, none of them covers the 

case when the plate is a hybrid of more than 

one material along its width. For example, the 

local buckling of the compression flange of an 

FRP I- beam that is a hybrid of more than one 

type of fiber along the width of its flange can 
not be modeled using any of the currently 

available models. In such case, it is important 

to note that the compression flange of a non-

hybrid I-beam loaded in bending is uniformly 

strained and therefore it is also uniformly 
stressed. However, that is not the case when 

the compression flange is a hybrid of two 

materials. In such case, the compression 

flange of the beam will be uniformly strained 

but not uniformly stressed, which has to be 

taken into consideration while developing a 
stability model for it. 

The present contribution is devoted to the 

development of an analytical model to predict 

the buckling strength of an orthotropic 

rectangular plate that is a hybrid of two 
materials and subjected to in-plane uniform 

uniaxial compression strain. The loaded edges 

of the plate were considered to be simply 

supported while one of the unloaded ones was 

considered to be free and the other edge was 

considered to be rotationally restrained. A 
parametric study was conducted to investigate 

the influence of each of the parameters of the 

problem on the overall buckling strength of 

the plate. 

 
2. Description of the problem 

 

Fig.1 illustrates the current problem of an 

orthotropic plate that is a hybrid of two 

orthotropic materials, namely, A and B. Each 

material had the elastic properties Ex, Ey, G 
and v. Note that the superscripts A and B will 

be used throughout the paper to refer to any 

of parameters of the two materials of the plate. 
The plate has a total width of (b), a length of 

(a), and a constant thickness (t). The solution 

is based on considering the plate as being 

composed of two parts (A and B) that are 

perfectly connected along their border line. 
The width of part A is considered to be (b1) 

where (b1 = r. b)  and  ( r ) is defined herein as 
a width ratio (r = b1/b). The plate was 

considered to be subjected to uniaxial uniform 

strain. Assuming that part B is subjected to a 
uniform compression load per unit width (Nx), 

the stresses acting on this part will be equal to 
(Nx/t). Since the strain is uniform, the 

stresses acting on part A will therefore be 
equal to (ExA/ExB ). (Nx  t). Accordingly, the load 

acting on part A will be equal to (ExA.Nx/ExB).  

 

3. Stability analysis 

 

The analysis is based on dealing with each 

part of the plate independently including its 
boundary conditions. Then, the continuity 

conditions at the border line between the two 

parts were considered.  

 
3.1. Part A 
 

The governing differential equation for the 

linear buckling analysis of an orthotropic plate 

whose axes of material orthotropy coincide 

with the axis of the plate, as expressed by 

Timoshenko and Gere [5], can be applied for 
part A as follows: 
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Fig. 1. An orthotropic hybrid plate with one rotationally restrained edges that is subjected to uniform strain loading. 
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where  ExA and EyA are the moduli of elasticity 

in the two mutually perpendicular principal 
directions x and y, GA is the in-plane shear 

modulus, vxA and vyA are the major and minor 

Poisson's ratios, respectively, and w is the 

transverse displacement of  the plate due to 

buckling.  
The boundary conditions on part A of the 

plate excluding the border line with part B are 

expressed as follows: 

1. The plate is simply supported at the loaded 
edges and therefore the transverse 
displacements at (x = 0, a) must equal to zero: 

 

0][ ,0  ax
Aw .        (2) 

 
2. The simply supported conditions at the 

loaded edges guarantees that the bending 

moment per unit length (Mx) must equal to 

zero and therefore: 
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Since the edges at x = 0 and at x = a are 

simply supported, the value of 
2

2

y

wA



  must 

equal zero and therefore: 
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3. The bending moment per unit length (My) at 

the free edge must be equal to zero and hence: 
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Dividing both sides by ( AD2 ):  
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4. The magnitude of the shearing forces per 
unit length (Vy) at the free edge of the plate 

must be equal to zero. Timoshenko and Gere 

[5] showed that the magnitude of the shearing 

forces is equal to the shearing force per unit 
length (Qy) plus the equivalent shearing forces 
resulting from of the twisting moment Mxy and 

therefore: 
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Dividing both sides by D2A  
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3.2. Part B 

 

The governing differential equation for part 

B is similar to that of part A except that load 
acting on the plate will be replaced by (Nx) and 

therefore it will take the form: 
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.
).1(12

.
1

3

B
y

B
x

B
B

vv

tE
D

x


  

.
).1(12

.
2

3

B
y

B
x

B
B

vv

tE
D

y


  

 

.
6

.
.13

3tG
vDD

B
B

y
BB   

 
The boundary conditions on the edges of part 

B excluding the borderline with part A are 
expressed as follows: 

1. The simply supported conditions at the 

loaded edges give zero transverse 

displacements and therefore: 

 

0][ ,0  ax
Bw .        (7) 

 
2. The bending moments Mx at the loaded 

edges are equal to zero 
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3. The transverse displacements at the 

rotationally restrained edge are equal to zero: 

 

0][ by
Bw .         (9) 

 

4. The moment equilibrium at the rotationally 
restrained edge (y = b) of the plate gives the 

following relation [10] 
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where (S) is the restraining moment along the 

rotationally restrained edge per unit length per 
unit rotation.  
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Since the transverse displacements at y = b 

are equal to zero, the value of 
2

2

x

wB
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  is equal to 

zero and therefore eq. (10) becomes: 
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Introducing the dimensionless factor R = 
BD

bS

2

.
 

and multiplying both sides by (b), eq. (10) 

becomes:  
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The boundary conditions at border line 
between the two parts of the plate are: 

1 –The transverse displacements from both 

parts of the plate become identical at the 
border line, i.e., at y = b1.  
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2- The bending moments My from both parts 

of the plate become equal at the border line 

between the two parts: 
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3- Similarly, the magnitude of the shearing 

forces calculated from both parts are equal at 
the y = b1.  
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4- In order to verify the continuity of the plate 

at the border line between its two parts, the 

slope calculated from both parts must be 
equal and therefore,  
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4. Solution of the differential equations 
 

It is convenient to solve the differential 

eqs. (1 and 6) using the Levy's solution. The 

equations shown below give an expression for 
the buckling displacements wA and wB that 

satisfy the boundary conditions expressed in 
eqs. (2, 3, 7 and 8). Accordingly, the solution 

will take the following forms: 

 
a- For part (A) 

 

  









a

xm
Yfw AA 

sin. .         (16) 

 
b- For part (B) 
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where 
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Substituting with eqs. (16 and 17) into the 

differential eqs. (1 and 6), respectively, they 

become: 
a- For part (A) 
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Where, KxA is a dimensionless factor that is 

given from 
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b- For part (B) 
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where, KxB is a dimensionless factor that is 

given from: 
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The boundary conditions expressed above 

in eqs. (4, 5, 9, 11 and 12 through 15) are 
rewritten below in view of the solutions of the 

governing differential equations, i.e., eqs. (16 

and 17). Accordingly, these boundary 

conditions will be: 
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Rewriting the governing differential eqs. 

(18 and 19) in the following simplified form: 
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The solution of the differential equations 

above will take the following form: 

 

   YA
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           YACYAC .2cos.4.2sin.3   , (30) 

 

where 
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where: 
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.4225.02
2
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The boundary conditions related to the y-

coordinates of the plate, i.e., eqs. (20 through 

27) were used to get eight equations in terms 

of the constants C1 through C8. Details of 

these equations can be found in Appendix I.  
This system of equations can be organized in 

the following matrix form: 
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The nontrivial solution of this system of 

equation can be obtained by setting the 

determinant of the ( ) matrix to zero.  

Therefore, for a given plate geometry (a, b, r, t), 
plate stiffness (D1A, D2A, D3A, D1B, D2B, D3B, 
vxA, vxB, R), and the mode number m, the 

buckling coefficient KxA can be obtained. Note 

that KxB can be easily obtained as it is related 

to the value of KxA.  

 

5. Parametric study  
 

In view of the analytical model presented, 

it is obvious that the dimensionless 

parameters that govern the buckling behavior 
of the plate are (D1/D2)A, (D1/D2)B, (D2/D3)A, 
(D2/D3)B, (D2A/D2B), vxA, vxB, KxA, KxB, r, (a/b), 

and R. Since the values of KxA and KxB are 

related to each others, it was necessary and 

more convenient to combine them into a single 

parameters by introducing the dimensionless 
parameter Kx*. This parameter reflects the 

overall buckling capacity of the plate and it is 

defined as follows: 
 

,
2.

.
K

2

2
*
x

av

av

D

bNx


  

 

Where 
 

Nxav = [Nx 
B

x

A
x

E

E
. r + Nx . (1 -  r)]. 

 
D2av = (D2A + D2B) / 2.   

 

A computer program was prepared to solve 

the problem where the parameters mentioned 

above were set as the inputs of the program 
and the value of Kx* was calculated by the 

program as an output. The program was used 

to conduct a parametric study to investigate 

the effect of each of the parameters on the 

buckling strength of the plate. 

 
6. Study results and discussion 

 

The main objective of the parametric study 

was to investigate the effect of the relative 

stiffness of the materials of the two parts of 
the plate, as well as, their relative location on 

the overall buckling strength of the plate. The 

relative material stiffness and location are 
mainly describes by the parameters (D1/D2)A, 

(D1/D2)B, (D2A/D2B), and (r ). 
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6.1. Typical buckling curves 

 

Fig. 2 through fig. 4 show the buckling 
curves of an orthotropic plate that is a hybrid 

of two materials. The curves are plotted for 

multiple values of the parameters mentioned 

above. Fig. 2 shows the buckling curves for 
multiple values of R. It is obvious from the 

values of Kx* shown in figure that providing 

the material with the greater (D1/D2), i.e., the 

stiffer material, near the rotationally 
restrained edge resulted in higher Kx* than 

providing it near the free edge. Fig. 3 shows 

similar buckling curves but with multiple 
values of (D1/D2)B and (D1/D2)A. It is evident 

that increasing (D1/D2)B results in significant 

increases in Kx*, which was not relatively the 

same when the value of (D1/D2)A was 

increased. It can be noticed from fig. 4-i that 
the case with (r = 1) gives the highest values of 
Kx* while it appears from fig. 4-ii that the 

peak values of Kx* occured at a value of (r) 

between 0.33 and 0.66.  

It can be noticed from fig. 2 through fig. 4 
that there are peak low values in Kx* that 

appear to be constant regardless the value of 
(a/b). This value will be referred to as Kx*min 

as it reflects the minimum buckling capacity 
of the plate regardless the value of (a/b). 
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(b) Stiffer material at the rotationally restrained edge. 

 
Fig. 2.  Buckling curves for a hybrid plate for multiple values of R. 
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Fig. 3.  Buckling curves for a hybrid plate (i) for multiple values of (D1/D2)B and (ii) for multiple values of (D1/D2)A . 
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(a)  Stiffer material at the free edge. 
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(b) Stiffer material at the rotationally restrained edge.  
 

Fig. 4.  Buckling curves for a hybrid plate for multiple values of r. 
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6.2. Influence of various parameters 

 

In order to comprehensively investigate the 
effect of each of the parameters mentioned, 

they were plotted as an x-axis in fig. 5 through 
fig. 8 against the value of Kx*min. Fig. 5 and fig. 

6 shows a plot of the width ratio (r) against the 

value of Kx*min for an isotropic and an 

orthotropic material cases, respectively. It is 

very clear from both figures that providing the 
stiffer material near the rotationally restrained 

edge generally provides higher buckling 

capacity to the plate than providing it near the 

free edge. It is important to notice that there 
was a peak high value of Kx*min that did not 

occur with the plate which is entirely made of 

the stiffer material. More important, there are 
certain values of (r) that may result in peak 

low values of Kx*min when the stiffer part is 

placed near the free edge of the plate. Fig. 7 
shows that Kx*min generally decreases with the 

increase of (D2A/D2B) except in cases with 

higher values of (r). It can be noticed from fig. 

8 that Kx*min significantly increases with the 

increase of (D1/D2)B relative to (D1/D2)A.   
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(a)  Stiffer material at the free edge. 
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(b) Stiffer material at the rotationally restrained edge.  

 

Fig. 5.  Relation between Kx*min with the value of (r) for an isotropic material case. 
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(a)  Stiffer material at the free edge. 
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(b) Stiffer material at the rotationally restrained edge.  

 

Fig. 6.  Relation between Kx*min and the value of (r) for an orthotropic material case. 
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(a) Isotropic material.  

 
 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

0.1 1 10

 

K
x

* 
m

in

 r = 0.00

r = 0.25

r = 0.50

r = 0.75

r = 1.00 3.0

1
3

2
,10

2

1

1
3

2
,10

2

1

1212 





































BA

BB

AA

vv

D

D

D

D

D

D

D

D

 BA DD 2/2
 

 vx
A = vx

B = 0.30   , R = 1

 

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

0.1 1 10

 

K
x
* 

m
in

r = 0.00

r = 0.25

r = 0.50

r = 0.75

r = 1.00

 

3.0

1
3

2
,1

2

1

1
3

2
,1

2

1

1212 





































BA

BB

AA

vv

D

D

D

D

D

D

D

D

 BA DD 2/2
 

 vx
A = vx

B = 0.30   , R = 1

 
(b)  Orthotropic material.  

 
Fig. 7.  Relation between Kx*min and the value of (D2A/D2B). 
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6.3. Application example 

 

As an application example of the analytical 
model presented, a typical FRP plate that is a 

hybrid of glass and carbon fibers was studied 

using the analytical model presented. Two 

cases of plate hybridization were considered in 

the investigation see fig. 9. In the first case, 

the carbon fiber part was beside the free edge 
while it was beside the rotationally restrained 

edge in the other case. The properties of the 

materials of the plate were similar to those 

reported by Bank and Yin [10] and they are 

listed in table 1.  In order to have a fair 
comparison between the two cases, the value 
of (S.b) were chosen to be identical in both 

cases. It is very clear from figure that 

providing the carbon fibers near the 

rotationally restrained edges resulted in a 

higher overall buckling capacity with a peak 
high value that typically occurred at a width 
ratio (r) of about 0.40.  

 

7. Conclusions   

 

An analytical model was presented for the 
buckling of an orthotropic plate that is a 

hybrid of two materials. The plate was 

considered to be subjected to uniaxial uniform 

strain loading and was considered to be 

simply supported at the loaded edges while it 
was free at one of the unloaded edges and 

rotationally restrained at the other one. A 

parametric study was presented to investigate 

the influence of each of the parameters of the 

problem. The study results showed that 

providing a stiffer material part near the 
rotationally restrained edge generally provides 

higher overall buckling capacity than 

providing it near the free edge. The peak high 

in plate buckling capacity does not occur with 

the plate totally made of the stiffer material. 
Providing the plate with a stiffer material at its 

edge might result in a decrease in its buckling 

capacity.  

  
Table 1 
Typical properties of FRP materials used  
in analysis 

 

Property Glass FRP Carbon FRP 

Ex (GPa) 17.24 181 
Ey (GPa) 6.90 10.8 
G (GPa) 2.93 7.17 
vx 0.30 0.28 
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Fig. 9. Results of a hybrid FRP Carbon/Glass fiber plate. 
 

Appendix I. 

 
The equations listed below resulted from substituting with eqs. (30 and 31) into the boundary 

conditions related to the y-coordinates of the plate, i.e., eqs. (20 through 27). These equations are 
in terms of the constants C1 through C8: 
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