Buckling of hybrid orthotropic rectangular plates with one edge
partially restrained against rotation and subjected to uniform
compression strain loading
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This paper presents an analytical stability model to predict the buckling strength of an
orthotropic hybrid rectangular plate. The plate is considered to be a hybrid of two
orthotropic materials and is subjected to in-plane uniform uniaxial compression strain
loading. The loaded edges of the plate are considered to be simply supported while one of
the unloaded edges is free and the other edge is considered to be elastically restrained
against rotation. Based on the stability model presented, the parameters governing the
buckling behavior of the hybrid plate are identified. A parametric study is presented to
investigate the effect of each of the parameters on the overall buckling strength of the plate.
The study results show that providing a stiffer material part near the rotationally restrained
edge generally provides higher overall buckling capacity than providing it near the free edge.
The peak high in plate buckling capacity does not occur with the plate totally made of the
stiffer material. Providing the plate with a stiffer material at its edge might result in a

decrease in its buckling capacity.
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1. Introduction

With the increase of use of composite
materials in structural applications, there has
come a need to develop mathematical models
to analysis the behavior of such materials,
especially their buckling behavior. Fiber
Reinforced Polymers (FRP) are classified as
orthotropic materials that have relatively high
strength to stiffness ratio in the direction of
the fibers that makes them more likely to fail
in buckling. FRP structural profiles such as
angle, channels, and I-sections are basically
assemblies of thin flat plates and they are
typically manufactured using the pultrusion
process [1]. Therefore, buckling analysis of
such shapes can be done by modeling their
flanges or webs individually as orthotropic
composite plates. For example, the problem of
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the local buckling of the compression flange of
an I-beam loaded in bending can be modeled
as a rectangular plate whose two loaded edges
are simply supported, one of the unloaded
edges is free, and other end is elastically
restrained against rotation, which represents
the influence of the web on the flange [2-4].
The stability problem of a rectangular
orthotropic plate that is subjected to uniform
compression stresses has been discussed in
numerous publications [5-9]. However, little
work was reported on the solution of the same
problem but with rotationally restrained
edges. Bank and Yin [10] presented an
analytical solution for the buckling of a
rectangular orthotropic plate that was
subjected to uniform uniaxial compression
and simply supported on the loaded edges
while one of the unloaded edges was free and
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the other edge was elastically restrained
against rotation. Qiao and Zou [3] presented
an explicit elastic stability solution for the
same problem. Mittelstedt [11] presented an
analytical investigation for the buckling of
symmetrically laminated rectangular
orthotropic plates under uniaxial compression
in which the loaded edges were considered to
be simply supported while the unloaded ones
were considered to be elastically restrained
against rotation.

While these models are capable of dealing
with the problem of a hybrid laminated plate
that has several layers of different materials
through its thickness, none of them covers the
case when the plate is a hybrid of more than
one material along its width. For example, the
local buckling of the compression flange of an
FRP I- beam that is a hybrid of more than one
type of fiber along the width of its flange can
not be modeled using any of the currently
available models. In such case, it is important
to note that the compression flange of a non-
hybrid I-beam loaded in bending is uniformly
strained and therefore it is also uniformly
stressed. However, that is not the case when
the compression flange is a hybrid of two
materials. In such case, the compression
flange of the beam will be uniformly strained
but not uniformly stressed, which has to be
taken into consideration while developing a
stability model for it.

The present contribution is devoted to the
development of an analytical model to predict
the buckling strength of an orthotropic
rectangular plate that is a hybrid of two
materials and subjected to in-plane uniform
uniaxial compression strain. The loaded edges
of the plate were considered to be simply
supported while one of the unloaded ones was
considered to be free and the other edge was
considered to be rotationally restrained. A
parametric study was conducted to investigate
the influence of each of the parameters of the
problem on the overall buckling strength of
the plate.

2. Description of the problem
Fig.1 illustrates the current problem of an

orthotropic plate that is a hybrid of two
orthotropic materials, namely, A and B. Each

material had the elastic properties Ex, Ey, G
and v. Note that the superscripts A and B will
be used throughout the paper to refer to any
of parameters of the two materials of the plate.
The plate has a total width of (b), a length of
(@), and a constant thickness (f). The solution
is based on considering the plate as being
composed of two parts (A and B) that are
perfectly connected along their border line.
The width of part A is considered to be (bl)
where (b1 =r. b) and ( r) is defined herein as
a width ratio (r = bl/b). The plate was
considered to be subjected to uniaxial uniform
strain. Assuming that part B is subjected to a
uniform compression load per unit width (N,
the stresses acting on this part will be equal to
(Nx/t). Since the strain is uniform, the
stresses acting on part A will therefore be
equal to (ExA/E:B ). (Nx t). Accordingly, the load
acting on part A will be equal to (Ex*.Nx/E:B).

3. Stability analysis

The analysis is based on dealing with each
part of the plate independently including its
boundary conditions. Then, the continuity
conditions at the border line between the two
parts were considered.

3.1. Part A

The governing differential equation for the
linear buckling analysis of an orthotropic plate
whose axes of material orthotropy coincide
with the axis of the plate, as expressed by
Timoshenko and Gere [5], can be applied for
part A as follows:

4 A 4 A 4 A
D142 = +2D3A%+D2A.a—w4
ox 0x“0y oy
A 2. A
s By TV o (1)
E,~ ox
where:
D14 - E At
12(1-v, v, %)
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Fig. 1. An orthotropic hybrid plate with one rotationally restrained edges that is subjected to uniform strain loading.
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oot Bt
A A
12(1-v,".v,")
A .3
D34 =D14 v, A Gt
6

where E.A and E, are the moduli of elasticity
in the two mutually perpendicular principal
directions x and y, G2 is the in-plane shear
modulus, vt and vy are the major and minor
Poisson's ratios, respectively, and w is the
transverse displacement of the plate due to
buckling.

The boundary conditions on part A of the
plate excluding the border line with part B are
expressed as follows:

1. The plate is simply supported at the loaded
edges and therefore the transverse
displacements at (x = 0, a) must equal to zero:

[W?] x=0,a=0. (2)

2. The simply supported conditions at the
loaded edges guarantees that the bending
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moment per unit length (M) must equal to
zero and therefore:

[Mx] x=0,a =0
[MX]x:O,a
2 A A
| p1a W, A pia 2 = =0.
0x oy x=0.a
Since the edges at x = 0 and at x = a are
simply supported, the value of 0 “;A must
9y

equal zero and therefore:

2 A
{6 w } 0.
x=0,a

ox?
3. The bending moment per unit length (M) at
the free edge must be equal to zero and hence:

(3)

[My],-0=0.
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2 A 2 _ A
r,] =Dt T Apt T,
y=0 dy ox® |
y=0

Dividing both sides by (—D2%):

2 A 2 A
{86:)2 +v, A 68102 :l =0 . (4)
y=0

4. The magnitude of the shearing forces per
unit length (V) at the free edge of the plate
must be equal to zero. Timoshenko and Gere
[5] showed that the magnitude of the shearing
forces is equal to the shearing force per unit
length (Qy) plus the equivalent shearing forces
resulting from of the twisting moment My, and
therefore:

oM
[Vy]y:0 = |:Qy + 6):1! i| =0
y=0

o3wh

6y3

D24

3, A
+(2D34 —p A D24yl - -0.
o0x“ 0oy |, _
y=0

Dividing both sides by D24

+(2 -v
ay® D24 "

o3wh D34
ox? oy

3
A)aww 0. (3
y=0

3.2. Part B

The governing differential equation for part
B is similar to that of part A except that load
acting on the plate will be replaced by (V) and
therefore it will take the form:

D188 WP o pge WP s STw?
ox? 6x26y2 6y4
2. B
+N,. 86“’2 -0, (6)
X
where
DlB EXB.t3
121 —va.uyB)

DB = EyB.t3
12(1-v,%.v,%)
B ,3
DSBleB.vyB+G 120
6

The boundary conditions on the edges of part
B excluding the borderline with part A are
expressed as follows:

1. The simply supported conditions at the

loaded edges give ZEero transverse
displacements and therefore:
(W] v=0,a=0. (7)

2. The bending moments M at the loaded
edges are equal to zero

0% wP
[Mx]x=0,a: I:—2:| =0. (8)
0x
x=0,a
3. The transverse displacements at the

rotationally restrained edge are equal to zero:
(W] -p=0. ©)

4. The moment equilibrium at the rotationally
restrained edge (y = b) of the plate gives the
following relation [10]

B
{My—sag“} -0. (10)
v,

where () is the restraining moment along the
rotationally restrained edge per unit length per
unit rotation.

BGQLUB

M, :—{DZ

Since the transverse displacements at y = b

2,,,B
are equal to zero, the value of OW” g equal to
ox’

zero and therefore eq. (10) becomes:
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S.b

D28
and multiplying both sides by (b), eq. (10)
becomes:

Introducing the dimensionless factor R =

2 B B
b 2 “—+R. 62" -0. (11)
oy Y lyop

The boundary conditions at border line
between the two parts of the plate are:

1 -The transverse displacements from both
parts of the plate become identical at the
border line, i.e., at y = b1.

[wA]y= b1 Z[WB]y:m . (12)

2- The bending moments My from both parts
of the plate become equal at the border line
between the two parts:

oy o ax?
2 B 2. B
{DQBa_“;+DzB.uxB g = } . (13)
oy 0x y=bl

3- Similarly, the magnitude of the shearing
forces calculated from both parts are equal at
the y =bl.

lVyAJy=b1: [VyBJy=b1

3. A A
p2Al it +2D3% - A p2%)? = 1
y 0x“ oy b1
3. B 3. B
_|p28? = +(2DSB—va.DZB)62w 1 . (14)
Jy 0x“ 0y y=hl

4- In order to verify the continuity of the plate
at the border line between its two parts, the
slope calculated from both parts must be
equal and therefore,

ow? ow?
Y 1y-n Y lyom

4. Solution of the differential equations

It is convenient to solve the differential
egs. (1 and 6) using the Levy's solution. The
equations shown below give an expression for
the buckling displacements u® and w?f that
satisfy the boundary conditions expressed in
egs. (2, 3, 7 and 8). Accordingly, the solution
will take the following forms:

a- For part (A)

wA:fA(Y).sin(mZx). (16)

wB=£B(Y) sin(mﬂxj, (17)
a
where
vy=Y.
b

Substituting with eqs. (16 and 17) into the
differential eqgs. (1 and 6), respectively, they
become:

a- For part (A)

ﬁ_Q[DSA](QJQ(mz )21

ov? D24 \a

(25 (& e )2

(18)

Where, K4 is a dimensionless factor that is
given from

Alexandria Engineering Journal, Vol. 48, No. 3, May 2009 309



W.F. Ragheb / Buckling of hybrid orthotropic rectangular plates

A
KA = NXEL L
ExB D24 72

b- For part (B)

W—z[mB][bf(mQ ng)ﬁ

oy* D2B \a oY?

() &) ot b2 oo
(19)

where, KB is a dimensionless factor that is
given from:

KP-v,) 2
X VX poB g27

The boundary conditions expressed above
in eqgs. (4, 5, 9, 11 and 12 through 15) are
rewritten below in view of the solutions of the
governing differential equations, i.e., egs. (16
and 17). Accordingly, these boundary
conditions will be:

8- |£2] y_1-0. 22)

4-{82fQB+RafB} 0. (23)
oY oY Vo1

5- [fA]Y: r :[fB]Y:r' (24)

6-

p24)o% f4 (oA b)?
DQB] a;; +[D23 'v"A'(a] cms) 1

Y=r

2
=[a§ff +va[9) (—mQﬂQ)fB} . (29)

7-

p2* ) o°fh [, (D3%)[D2t) 4 [D2"
D28 ) av? D24 ) D28 ) * | D2f
(bf (~m? ”2)£
a oY
=r

3 rB 2 B
- e [@] —va)[é) (m? )L
oY D2 a oY v
(26)

8{&} {ﬁ} , o7
oY Y=r oY Y=r

Rewriting the governing differential eqgs.
(18 and 19) in the following simplified form:

Y=r

4 A 2 A
ot O

poe e Ba-fA=0. (28)

64fB aZfB B
+ Bs. fB=0. 29
o e S (29)
where,
D34\ 5 o
aA:Q(DzAJ(Ej b =)
Ba=
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The solution of the differential equations
above will take the following form:

MA.(Y) ~21A.(Y)

fA=cl.e +C2.e
+ C3.sin(12A.(Y)) + C4 .cos(12A.(Y)), (30)

where

/IlA:O.S\/ Doy +2 a2 — 48,
/12A:0.5\/ —2a,+2 Ja,®— 4B,

J1B.(Y)

fB_cs5. e + c6. e MB(Y)

+ C7.sin(12B.(Y)) + C8 .cos(42B.(Y)), (31)

where:

/11B=O.5\/ 2ap+2 \Jag>- 485 .
/IQB:O.S\/ —2ap+2 \Jag® - 4 5.

The boundary conditions related to the y-
coordinates of the plate, i.e., eqs. (20 through
27) were used to get eight equations in terms
of the constants C1 through C8. Details of
these equations can be found in Appendix I.
This system of equations can be organized in
the following matrix form:

[7[c]=[o]

mi m2 0 mgq O 0 0 0 C1
Moy Ma2 23 O 0O 0 0 0 ||C2
0 0 0 0 ms me m37 n38||C3
0 0 O O 145 n46 747 Nag||C4
Ms1 NMsa Nss Nsa Nss 7se Ms7 7ss | |CS
N61 Me2 63 Mea Mes Nee Me7 Nes || CO
N7y N7z NM73 NM7a NM7s M6 M77 M7s | |C7
|781 Ns2 183 Tlg4 Ngs Tge Ns7 1ss | |C8

SO O O O O O © O

The nontrivial solution of this system of
equation can be obtained by setting the
determinant of the (7) matrix to zero.
Therefore, for a given plate geometry (a, b, r, t),
plate stiffness (D14, D24, D34, D15, D25, D35,
v, UB, R), and the mode number m, the
buckling coefficient KxA can be obtained. Note

that Ki® can be easily obtained as it is related
to the value of KA.

5. Parametric study

In view of the analytical model presented,
it is obvious that the dimensionless
parameters that govern the buckling behavior
of the plate are (D1/D2)4, (D1/D2)5, (D2/D3)A,
(D2/D3)B, (D24/D2B), vA, viB, KA, KiB, r, (a/b),
and R. Since the values of K¥* and K. are
related to each others, it was necessary and
more convenient to combine them into a single
parameters by introducing the dimensionless
parameter Ki* This parameter reflects the
overall buckling capacity of the plate and it is
defined as follows:

K* _ Nxav .b2
2. D2,

X

Where

A

r+Ne. (1- 7).

E
Nxay = [Nx XB
E

X
D2 = (DQA + DQB) / 2.

A computer program was prepared to solve
the problem where the parameters mentioned
above were set as the inputs of the program
and the value of Kix* was calculated by the
program as an output. The program was used
to conduct a parametric study to investigate
the effect of each of the parameters on the
buckling strength of the plate.

6. Study results and discussion

The main objective of the parametric study
was to investigate the effect of the relative
stiffness of the materials of the two parts of
the plate, as well as, their relative location on
the overall buckling strength of the plate. The
relative material stiffness and location are
mainly describes by the parameters (D1/D2)4,
(D1/D2)B, (D24/D25B), and (r).
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6. 1. Typical buckling curves

Fig. 2 through fig. 4 show the buckling
curves of an orthotropic plate that is a hybrid
of two materials. The curves are plotted for
multiple values of the parameters mentioned
above. Fig. 2 shows the buckling curves for
multiple values of R. It is obvious from the
values of Kx* shown in figure that providing
the material with the greater (D1/D2), i.e., the
stiffer material, mnear the rotationally
restrained edge resulted in higher Kx* than
providing it near the free edge. Fig. 3 shows
similar buckling curves but with multiple
values of (D1/D2)B and (D1/D2)A. It is evident

4.5

that increasing (D1/D2)? results in significant
increases in Kx* which was not relatively the
same when the value of (D1/D2)4 was
increased. It can be noticed from fig. 4-i that
the case with (r = 1) gives the highest values of
Kx* while it appears from fig. 4-ii that the
peak values of Kx* occured at a value of (r)
between 0.33 and 0.66.

It can be noticed from fig. 2 through fig. 4
that there are peak low values in Kx* that
appear to be constant regardless the value of
(a/b). This value will be referred to as Kx*min
as it reflects the minimum buckling capacity
of the plate regardless the value of (a/b).

40 F

35

3.0 |

25 F

Kx*

20 |

15 f

1.0 f

05 |

0.0

1 3 5

Aspect Ratio (a/b)

(a) Stiffer material at the free edge.
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8.0

70

6.0 |

50 F

Kx*

4.0 f

3.0 F

20 r

1.0 f

0.0

1 3 5

7 9 11

Aspect Ratio (a/b)

(b) Stiffer material at the rotationally restrained edge.

Fig. 2. Buckling curves for a hybrid plate for multiple values of R.
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Fig. 3. Buckling curves for a hybrid plate (i) for multiple values of (D1/D2)8 and (ii) for multiple values of (D1/D2)4 .
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(a) Stiffer material at the free edge.
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(b) Stiffer material at the rotationally restrained edge.

Fig. 4. Buckling curves for a hybrid plate for multiple values of r.
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6.2. Influence of various parameters

In order to comprehensively investigate the
effect of each of the parameters mentioned,
they were plotted as an x-axis in fig. 5 through
fig. 8 against the value of Kx*min. Fig. 5 and fig.
6 shows a plot of the width ratio (1) against the
value of Kx*un for an isotropic and an
orthotropic material cases, respectively. It is
very clear from both figures that providing the
stiffer material near the rotationally restrained
edge generally provides higher buckling
capacity to the plate than providing it near the

2.00

free edge. It is important to notice that there
was a peak high value of Kx*mn that did not
occur with the plate which is entirely made of
the stiffer material. More important, there are
certain values of (1) that may result in peak
low values of Kx*mn when the stiffer part is
placed near the free edge of the plate. Fig. 7
shows that Kx*nin generally decreases with the
increase of (D24/D2B) except in cases with
higher values of (). It can be noticed from fig.
8 that Kx*min significantly increases with the
increase of (D1/D2)B relative to (D1/D2)A.
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(a) Stiffer material at the free edge.
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(b) Stiffer material at the rotationally restrained edge.

Fig. 5. Relation between Kx*nin with the value of (r) for an isotropic material case.
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Fig. 6. Relation between Kx*nn and the value of (r) for an orthotropic material case.
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Fig. 7. Relation between Kx*nin and the value of (D24/D25).
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6.3. Application example

As an application example of the analytical
model presented, a typical FRP plate that is a
hybrid of glass and carbon fibers was studied
using the analytical model presented. Two
cases of plate hybridization were considered in
the investigation see fig. 9. In the first case,
the carbon fiber part was beside the free edge
while it was beside the rotationally restrained
edge in the other case. The properties of the
materials of the plate were similar to those
reported by Bank and Yin [10] and they are
listed in table 1. In order to have a fair
comparison between the two cases, the value
of (S.b) were chosen to be identical in both
cases. It is very clear from figure that
providing the carbon fibers near the
rotationally restrained edges resulted in a
higher overall buckling capacity with a peak
high value that typically occurred at a width
ratio (1) of about 0.40.

7. Conclusions
An analytical model was presented for the

buckling of an orthotropic plate that is a
hybrid of two materials. The plate was

considered to be subjected to uniaxial uniform
strain loading and was considered to be
simply supported at the loaded edges while it
was free at one of the unloaded edges and
rotationally restrained at the other one. A
parametric study was presented to investigate
the influence of each of the parameters of the
problem. The study results showed that
providing a stiffer material part near the
rotationally restrained edge generally provides
higher overall buckling capacity than
providing it near the free edge. The peak high
in plate buckling capacity does not occur with
the plate totally made of the stiffer material.
Providing the plate with a stiffer material at its
edge might result in a decrease in its buckling
capacity.

Table 1
Typical properties of FRP materials used
in analysis

Property Glass FRP Carbon FRP
E.(GPa) 17.24 181
E,(GPa) 6.90 10.8

G (GPq) 2.93 7.17

Ux 0.30 0.28
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Fig. 8. Relation between Kx*nin and [Dl jB / [Dl JA .
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Fig. 9. Results of a hybrid FRP Carbon/Glass fiber plate.

Appendix I.

The equations listed below resulted from substituting with egs. (30 and 31) into the boundary
conditions related to the y-coordinates of the plate, i.e., egs. (20 through 27). These equations are

in terms of the constants C1 through C8:

1- {(MA)Q v A [ZJZ m%ﬂ Cl+ {(m)2 v A [ZJZ m%ﬂ C2+ {— (124) - uxA[ZJQ m%ﬁ] C4=0
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A 2 A 2
{(/HA) - 21A. {zg‘; - UXAJ (Sj mz;ﬁ} C1+[—(/11A) + 1A, [2 22 - UXAJ [Ej mQHQJCZ
A 2
+| - (124) - 224, 223 —-v," [9] m?z% | C3=0
D2 a

3- (e’“B) .c5+(e"“B) .C6+sin(42B).C7 +cos (A12B).C8 = 0

2-

(11BP. MB. R, 11B. ¢MB) s+ (uBR. ¢ HB- R, 11B. ¢M1B)co

4-
+ [— (A2B) sin(42B) +R.A2B. cos(A2B)|C7 + |- (12BY cos (412B) -R./2B. sin(zzB)]cs =0

[er'ﬂA} cn[e‘r'im} C2 + [sin(12A. 1)]C3 +[cos (124. r)]C4{er' AB }05—[5”1’3 } C6

~ [sin(A2B. r)|C7 - [cos(42B. r)]C8= 0

D2* r.AlA r.A1A D2* —r.J1A ~r.J1A
{DQ ] (114)? ( ) +K1(e ﬂ Cl+ [DQBJ (214)%, ( ) +K1(e )1@
2A

A
6- + []; z ] (12A) sin(A2A. r) + K1. sin(A2A. r)} c3 +HDQJ (12A) cos(12A. r) + K1. cos (12A. r)} C4

5-

(11B)? .(e" MB )2 +K2.(er' MB )}cs - {(/113)2 .(e"' HB )2 +K2.(e"' HB )}C6
- (/12B)2 sin(A2B. r) + K2. sin(A2B. r)] Cc7 —[— (/12B)2 cos(A2B.r) + K2. cos(A2B. r)] Cc8=0

Where,

_ (D24 b\’
KI= (DQB] v, A [E) (~m27?)

A
(gz ](MA)S e HA KS.(/llA).er'MA]CH

A
[LD; ](MA)S e TMA Ks.(mA).e‘r'MA]cz

(-2)

(I-3)

(I-4)

(I-6)

7-
D2* D2* .
1 oF (12AF .cos (. 124) + K3.(224).cos (r. 224)| C3 + 0P (12A) sin (r. 124) - K3.(124).sin (r. 224)|C4
—l(/llB)S e MB ka4 (114).e"MB Jc5— [—(/113)3 e TMB_ga (11A).eTMB JC6
- [— (A2Bf.cos (. A2B) + K4.(12B).cos (. 123)] C7 - {(AQB)S.sin (r. 22B) - K4.(42B).sin (r. zzmjcs:o
(I-7)
where
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o)) (4 e
D2 a

[/IIA el MA }01 - [ﬂlA e T AA }02 + [12A.cos (r. 424)]C3 - [12A .sin(r . 124)|C4

—[MB.er' A1B }cs{/uB.e‘r' A1B }06— [12B.cos (r. 12B)|C7 +[12B .sin(r. 12B)|c8 =0
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