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Record linkage is the problem of identifying similar records across different data sources. 
The similarity between two records is defined based on domain-specific similarity functions 
over several attributes. In this paper, a novel approach is proposed that uses a two level 
matching based on double embedding. First, records are embedded into a metric space of 
dimension K, then they are embedded into a smaller dimension K′. The first matching phase 
operates on the K′-vectors, performing a quick-and-dirty comparison, pruning a large 
number of true negatives while ensuring a high recall. Then a more accurate matching 
phase is performed on the matching pairs in the K-dimension. Experiments have been 
conducted on real data sets and results revealed a gain in time performance ranging from 

30% to 60% while achieving the same level of recall and accuracy as in previous single 
embedding schemes. Further, a heuristic has been proposed for the selection of the 
parameters and shown to be effective. 

حدد التشابه بين سجلين على أساس ويعرف ترابط السجل بمشكلة تحديد السجلات المتماثلة عبر مصادر مختلفة للبيانات. عرف ي
التطابق بين مجموعة من الحقول طبقاً لدوال تشابه محددة المجال. ويقدم هذا البحث خوارزماً جديداً يستخدم به مستويين من 

من السجلات داخل نطاق متري ذات بُعد المطابقة و يرتكز على تضمين مزد من في بُعد أصغر Kوج. بداية، تُضَّ .  ′K ثم تُضَّ
 صحيحة وتقوم بعمل مقارنة سريعة يُستبعد خلالها عدداً كبيراً من العناصر  ′Kتعمل المرحلة الأولى من المطابقة على متجهات و

ك مرحلة أكثر دقة من المطابقة تقوم على مطابقة العناصر الزوجية على قدرة سريعة للاسترجاع. تأتى بعد ذلمع المحافظة السلبية 
.  ولقد أجريت التجارب على مجموعة من البيانات الفعلية و جاءت النتائج لتكشف عن وفرٍ ملحوظ في الأداء Kالبُعد المُرشحة في 

قارنة بخوارزميات أخرى تعتمد على الدقة محافظة على نفس مستوى الاسترجاع ومع الم% 03إلى  %03الزمني يتراوح ما بين 
نظام تضمين فردى. علاوة على ذلك، يقترح البحث طريقة مساعدة للاختيار الأمثل للبارامترات وأظهرت التجارب كفاءة الطريقة 

 المقترحة.
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1. Introduction  
 

The record linkage problem is to find 

similar records, across different data sources, 
that refer to the same real world entity, e.g. 

patient, customer or author. When record 

linkage is performed within the same source, 

the problem is referred to as duplicate 

detection. The record linkage arises in the 
context of data cleaning that usually precedes 

data analysis and mining. It is important 

when integrating two data sources into one. 

Also it is essential when improving the quality 

of data by comparing it to more accurate 

sources. The major challenges in record 
linkage are reducing computational complexity 

while maintaining high recall and accuracy. 

Several techniques have been proposed in the 

literature, see [7, 16] for recent surveys.  

A naïve approach for discovering matching 
records in two sources is to perform a nested-

loop comparing each record in one source to 

all records in the second source. However, 
O(N2) comparisons is computationally 

infeasible, especially for large datasets. 

Further, performing an approximate matching 

between two records requires the computation 

of distance functions among textual attributes, 

which is an expensive factor in the cost.  
Several techniques have been introduced to 

reduce the quadratic number of comparisons 

that are based on a two phase approach. 

Blocking [1-2] use record attributes, or subsets 

of attributes as a blocking key (e.g. first 4 

characters of the surname) to split the data 
into blocks, then a detailed comparison is 

carried out only between records that fall into 

the same block. Although blocking increase 

the speed of comparison, it can lead to an 

increased number of false negatives due to 
selection of a blocking step that places entries 

in the wrong blocks. Multiple runs using 

different blocking fields are performed to 



N. Adly / A double embedding scheme for efficient record linkage 

242                                          Alexandria Engineering Journal, Vol. 48, No. 3, May 2009 

improve effectiveness. Sorted neighborhood 

[10], or merge/purge approach, relies on 

sorting records based on a sorting key, then 
moving a window of fixed size w sequentially 

where only records within w are then paired 

with each other. This approach relies on the 

assumption that duplicate records will be close 

in the sorted list. Also, its effectiveness is 

dependent upon the comparison key. Similar 

to blocking, it has shown to be more effective 
with multi-passes, which causes an increase in 

the runtime. McCallum et al. [18] proposed a 

cheap comparison metric to group records into 

overlapping clusters called canopies, then 

records within the same cluster are accurately 
compared.  A recent work [21] exploited the 

semantic ambiguity of the data sources, using 

social network analysis, and applied relaxed 

matchers to less ambiguous data. 

Reducing the complexity of record 

comparisons has been addressed by tech-
niques such as feature subset selection 

algorithms [23]. Recent approaches [15, 20] 

have used embedding textual attributes into 

Euclidean space while preserving the distances 

between the record values and performed the 
comparison in the metric space which is much 

cheaper than string comparison. In [20] 

SparseMap was used to map strings in a 

private environment to Euclidean space then 

used multidimensional index based on KDTree 

to perform the comparison. Jin et al. [15] used 
FastMap for converting strings then applied a 

similarity-join algorithm based on R-tree to 

compare the metric vectors.  

This paper proposes a novel two-level 

matching scheme that exploits the advances 
developed in mapping records into a multidi-

mensional Euclidean space while preserving 

the distances between the record values. It 

relies on a quick-and-dirty matching process 

that is employed first, to prune a large number 

of mismatches and produces a smaller set of 
pairs of records that are used as input to a 

more expensive matching process. Datasets 

are first embedded into a metric space of 
dimension K, which captures an accurate 

representation of the data. It is followed by a 

second embedding that converts vectors from 
K dimension to vectors of smaller dimension 

K′. The quick-and-dirty matching phase is 

performed on the output of the second 

embedding, with the goal of discarding a large 

number of true negatives while ensuring that 

the resulting potential matching pairs includes 
all true positives and zero false negatives, yet 

achieving this with a small cost. The returned 

results are ingested to the second level of 

matching, which applies a similarity function 
on the potential pairs, but in their K-

dimension representation. The second level 
matching is more expensive, but more 

accurate, and its goal is to refine the results of 

the first level by excluding false positives and 

any true negatives that have not been pruned 
in the first phase. With K′<K, the first level 

matching process is much cheaper than 
having the similarity function applied on all 
pairs in their K-representation. The expensive 

matching is performed only on the pairs 

detected in the first phase, which are much 

less, and cause an overall gain in time 

performance while achieving a high recall and 
accuracy. 

Recently, a similar approach has been 

proposed in [27] in the context of private 

record linkage. They assumed the data already 

embedded in the metric space, which is then 

represented as a point in the complex plane 
where a relaxed matching is performed, 

detecting pairs likely matching. Then a more 

accurate matching phase is performed on the 

likely matching pairs only. The second 

embedding though is bound to the complex 
plane where K′=2, and is not contractive. In 

this paper, the second embedding is 
generalized and a proper K′ is chosen 

according to the nature of the data and its 

size. It has been shown that as the data size 
increases, higher values of K′ results in higher 

performance gains.  
By selecting a proper embedding scheme in 

each phase, preserving the distances between 

the record values while guaranteeing 

contractiveness, it is ensured that results 

obtained are with a high recall and accuracy. 

The proposed matching scheme based on 
double embedding has been implemented and 

a set of experiments have been conducted on 

real data sets and compared with a scheme 

using a single embedding. Results showed that 

improvement in time performance ranging 
from 30% to 60% is achieved while 
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maintaining the same level of recall and 

accuracy.  

The remainder of the paper is organized as 
follows: A formal definition of the problem is 

presented in Section 2. In Section 3, we 

describe a single embedding matching scheme 

that is similar to previous schemes proposed 

and will be used for comparison. In section 4, 

the steps of the matching scheme based on 
double embedding are presented. Section 5 

discusses the selection of the embedding 

parameters and the similarity thresholds 

values. In Section 6, the experiments 

conducted to evaluate the performance of the 
protocol are presented and results are 

discussed. Finally, Section 7 concludes the 

paper.  
 

2. Problem formulation 
  

The process of identifying similar record 

pairs consists of building a classifier that takes 

as input a set of thresholds and accurately 
classifies pairs of records as match or 

mismatch according to a predefined matching 

rule. Without loss of generality, it is assumed 
that the input datasets R and S are 

represented as relations, and the schema of 
the two relations is the same R(a1, a2,..an) and 

S(a1, a2,..an).  

Given a distance function di: Dom(R.ai) x 

Dom(S.ai)→
 defined over domains of 

corresponding attribute of R and S, and 

matching thresholds θi≥0, record linkage can 

be expressed as a join operator over R and S. A 

record pair (r,s) where rR and sS, is a 
matching pair if di(r.ai, s.ai) ≤ θi for all 

attributes 1 ≤ i < n. Then the join condition can 

be defined based on the following matching 
rule that returns true for matching record 
pairs and false for mismatching record pairs 
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The presented definition for the matching 

function is used by most of the record linkage 
approaches. The distance function di defines 

the similarity metric at the attribute level and 

is domain specific. In the domain of strings, 

there are a variety of metrics including the Edit 
distance, Smith-Waterman distance, Jaro 

distance, q-gram and others (refer to [5, 7] for 

a survey). In this work, the Edit distance a.k.a. 

Levenshtein distance, a common measure of 

textual similarity, is used although any other 

metric could be used. Formally, given two 
strings s1 and s2, their edit distance is the 

minimum number of insertion, deletions and 

replace operations of single characters that are 
needed to transform s1 to s2. For instance, the 

edit distance between Johnson and Jonsan is 

2, as Johnson is obtained by adding h and 

replacing a by o. In the metric domain, the 
most common metric distance function used is 
the Minkowski metrics based on the Lp norms, 

p
x = (∑|xi|p)1/p, with p≥1. In this work, the 

Euclidean distance dE (p=2),  is used as the 

distance metric in the embedded space, 

although any other metric can be used. 
 

3. Single embedding scheme 
 

In this section, we describe the Single 

Embedding Scheme, which consists of two 

steps. In the first step, strings are mapped to 
objects in a multidimensional Euclidean space, 

such that the mapped space preserves the 

original string distance. In the second step, a 

multidimensional similarity join is performed 

in the Euclidean space. This approach is 
similar to previous work such as [15, 20] and 

will be used for comparison. Several methods 

have been proposed to embed a set of objects 

in a metric space, including FastMap [8], 

SparseMap [13], MetricMap [25] and others 

(see [12] for a survey). Among those methods, 
SparseMap has been chosen because it has 

proven to be contractive when the original 

space is strings [12]. Contractiveness ensures 

that distances in the embedded space are a 

lower bound for distances in the original 

space, thus improving the quality of the 
embedding in terms of recall. In the following, 

the concept of the SparseMap technique is 

introduced and a description of how it is used 

to embed strings into Euclidean space follows. 

Next, the technique used to perform the 
similarity join to complete the matching 

process is described. 
 
3.1. Embedding strings to K-dimension  

  euclidean Space 
 

SparseMap is an embedding method based 

on a class of embedding known as Lipschitz 
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embedding [3]. Therefore, we first describe 

Lipschitz embedding followed by the heuristics 

introduced by SparseMap.  
Lipschitz embedding defines a coordinate 

space where each axis corresponds to a 

reference set, drawn from the set of objects to 
be embedded. Given a set of objects O and a 

distance D in the original space, the 

embedding is defined in terms of a set S of 

subsets of O, S={S1, S2,..Sk} where Si is a 

reference set. Given an object oO, the 
mapping F is defined as F(o)= (D(o,S1), …, 
D(o,Sk)),where D(o,Si )= minxεSi {D(o,x)}. That is, 
the coordinate values of object o are the 

distances from o to the closest element in each 

set Si. The method is based on the triangle 

inequality and exploits the fact that if |d(o1,x)-

d(o2,x)| ≤ d(o1,o2), then the property can be 

extended to subset Si and the value |d(o1,Si)-

d(o2,Si)| is a lower bound on d(o1,o2). By using 

a set S of subsets, we increase the likelihood 

that the distance D(o1,o2) is captured 

adequately by the distance in the embedding 
space between F(o1) and F(o2) i.e. d(F(o1),F(o2)). 

Linial et al. [17] have shown that when d, 

the metric distance function used to compare 

the embedded object, is one of the Minkowski 
metrics Lp, then for N objects, a bound can be 

established on d(F(o1),F(o2)), provided that the 

space dimension k=log2N2 and Si is of size 2j 

with j=(i-1)/log2N+1. Given F(o)=(D(o,S1)/ q,..., 
D(o,Sk)/q), where q=k1/p, it has been proved 

[17] that the embedding is contractive and the 

distortion, that is, the relative amount of 

deviation of the distance values in the 
embedding space with respect to the original 
distance values, is guaranteed to be O(logN).  

Lipschitz embedding is rather impractical 

for two reasons. First, due to the number and 
sizes of the subsets in S, O(N2) distance 

computations is needed to embed an object o, 
as the distance between o and practically all 

objects need to be computed, which is exactly 

what we wish to avoid. Second, the number 

=log2N2 of subsets, which is the number of 

coordinate values (dimensions) in the 

embedding is rather large. SparseMap [13] 

introduces heuristics to overcome the above 
limitations. The Distance Approximation 

heuristic approximates the distance between 
object o and subset Si by computing Ŷ(o, Si), an 

upper bound on d(o,Si) by exploiting the partial 

vector that has been computed for each object. 
The EmbedString algorithm for embedding 

strings into an Euclidean space of dimension K 

is depicted in fig. 1. It operates on a set O 

resulting from combining the strings from the 
two datasets into one set. It starts by building 
the reference sets S={S1, S2,..Sk}. As suggested 

in [13], each set Si is composed of any random 

strings of O of size 2j where j=(i-1)/ √K+1.  
Thus, we get √K reference sets of size 2, √K of 

size 4, etc, up to size 2√K+1. Then it proceeds 

by computing the first coordinate for all 

objects, Ŷ(oj, S1)  ojO , followed by the 

second coordinates Ŷ(oj, S2)    ojO, etc, where 
Ŷ denotes the heuristic upper bound on d.  

The heuristic for computing Ŷ calculates 

only a fixed number of actual distance values 

D for each object ojO, as opposed to |Si| 

distance values. In particular, for each object 

ot  Si , it computes dE(Fi-1(oj), Fi-1(ot)) , where Fi-1  
is the embedding based on S1, S2,..Si-1. On the 

basis of this approximate distance value, a 
fixed number of objects σ in Si having the 

smallest approximate distance value from oj is 

picked and the actual distance value D(oj,ot) for 

each such object ot only is computed. The 

smallest distance value among those serves as 
the upper-bound distance value Ŷ(oj, Si), which 

becomes the ith coordinate value of the vector 

corresponding to oj  in the embedding. 

A drawback of the distance approximation 
heuristic is that it renders the mapping non-

contractive. In this paper,  the heuristic 

proposed by [12] is used in order to make 

SparseMap contractive. The heuristic suggests 

that, instead of computing the actual distance 
D(oj,ot) for only a fixed number of objects σ, it 

does so for a variable number of objects in Si. 

In particular, it first computes the approximate 

distances dE(Fi-1(oj),Fi-1(ot)) for all otSi which 

are lower bounds on the actual distance value 
D(oj,ot). Next, it computes the actual distance 

value of the object otSi in increasing order of 
their lower bound distances dE(Fi-1(oj), Fi-1(ot)). 

Let orSi be the object whose actual distance 
value D(oj,or) is the smallest distance value so 

far. Once D(oj,or) is smaller  than  all  distances 

dE(Fi-1(oj),Fi-1(ot)) of all remaining elements in Si, 

then d(oj,Si) = D(oj,or). Although this heuristic 

increases the number of distance 
computations, it was decided to adopt it in 

order to make the embedding contractive.  
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Fig. 1.  Pseudo code of embedstring embedding strings 

to euclidean space. 
 

3.2. Similarity join in euclidean space 
 

After the two datasets have been mapped 

into the metric space, it is required to find 

pairs of objects whose distance in the 
Euclidean space is within a threshold δ. Many 

similarity-join algorithms can be applied [11, 
14] and usually they employ a form of 

multidimensional index [9]. In this work, the 

KDTree index [9] has been used as it is 

considered one of the most prominent data 

structure for indexing multidimensional spaces 
and is designed for efficient nearest neighbor 

search [22].  

KDTree is a binary tree in which every node 

is a k-dimensional point. Every internal node 

generates a splitting hyperplane that divides 

the space into subspaces. Points left to the 
hyperplane represent the left subtree of that 

node and the points right to the hyperplane 

represents the right subtree. The hyperplanes 

are iso-oriented and their direction alternates 

among the k possibilities. Building a KDTree is 
a O(NlogN) operation. 

The Nearest Neighbor (NN) algorithm aims 

to find the node in the tree which is nearest to 

a given input vector. This search can be done 
efficiently (O(logN)) by using the tree properties 

to quickly eliminate large portions of the 

search space. The search starts with the root 

node and moves down the tree recursively 

until it reaches a leaf and saves that node 
point as the nearest. The algorithm unwinds 

the recursion of the tree; if the current node is 
closer than the nearest, then it becomes the 

nearest. The algorithm checks whether there 

could be any points on the other side of the 

splitting plane that are closer to the search 
point than the nearest. This is done by 

intersecting the splitting hyperplane with a 
hypersphere around the search node that has 

a radius equal to the current nearest distance. 

If the sphere crosses the plane, there could be 

nearer points on the other side of the plane, so 

the algorithm must move down the other 
branch of the tree from the current node 

looking for closer points, following the same 

recursive process as the entire search. If the 

hypersphere does not intersect the splitting 

plane, then the algorithm continues walking 

up the tree, and the entire branch on the other 
side of that node is eliminated.   

A variation of the NN algorithm [19] has 

been adopted that allows performing range 
searching. That is, given δ and a vector v, it is 

required to retrieve all nodes that are within 
distance δ from v. The variation is mainly that 

the initial distance is not reduced as closer 

points are discovered and all discovered points 
within δ are returned, not just the nearest.  

The variation of the NN algorithm is 

applied in order to compare the vectors 
representing the two datasets SE1 and SE2; the 

used distance metric is the Euclidean distance. 

Specifically, the KDTree for one of the datasets 
is built, say SE1. Then, for every vector in SE2 

the NN range search algorithm is applied to 
retrieve the nodes in SE1 that are within 

distance δ. 
 

4. Double embedding scheme 

 

This section introduces the Double 

Embedding Scheme, which consists of four 

steps. The first step combines the strings from 
the two datasets into one set O and maps them 
into Euclidean space of dimension K using the 

EmbedString algorithm presented in Section 

3.1. The second step involves mapping the 

embedded strings into a more compressed 

representation in the Euclidean space in 

Algorithm: EmbedString(O, K) 
Input: O: a set of N strings 

K: dimensionality of Euclidean space 

Output: SE[1,N][1,K] coordinates of the N strings 
 

// Build K reference sets S={S1, S2,..Sk} 

for i=1 to K 

Si ← 2(i-1)/ √K+1  strings randomly chosen from O 

for i=1 to K 

 oj  O 
if (i==1) 

// 1st coordinate: the distance is the minimum 

// Edit distance between oj and every object in S1 
Ŷ(oj, S1) = minxεS1{D(oj ,x)} 

else { 
// Get Euclidean distance between the (i-1) coordinates 

// of oj and all objects in Si 

Compute dE(Fi-1(oj), Fi-1(ot))  ot  Si 

Sort dE(Fi-1(oj), Fi-1(ot))  ot  Si ascendingly 
Select the first σ objects and place them in set φ 

Compute D(oj,ot) for all ot ∊ φ 

Select or  s.t. D(oj,or) = minot ε φ {D(oj,ot)} 
Ŷ(oj, Si) = D(oj,or) 

} 
SE[j,i]  = Ŷ(oj, Si) 
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dimension K′, where K′<K. In this step, the 

FastMap embedding technique has been 

selected, because of its simplicity, efficiency 

and contractiveness. The third step performs 
the similarity join between the two sets in the 
K′ dimensional space using the KDTree as 

described in Section 3.2. The fourth and last 

step takes its input as the potential matched 

pairs produced from the similarity join and 

compares the Euclidean distance of the 
corresponding objects in the K dimension 

space. 

In the following, the technique used in 
embedding the datasets in K′ dimension using 

FastMap is described, then the overall 

matching protocol is presented. 
 

4.1. Embedding K-dimension objects into  
  K′-dimension 

 

FastMap [8] is a general embedding 

technique that is inspired by dimensionality 
reduction methods for Euclidean space based 

on linear transformation. Objects are mapped 
into points in K′ dimensional space, where the 

coordinate values corresponding to these 
points are obtained by projecting them on K′ 

mutually orthogonal directions, thereby 
forming the coordinate axes of the space in 

which the points are embedded. The 

projections are computed using the original 
distance function D. In our case, where the 

original space is K-dimension Euclidean space 

D= dEK. The coordinate axes are constructed 

one by one, where at each iteration, two 

objects (referred to as pivot objects) are 

chosen, a line is drawn between them that 

serves as the coordinate axis, and the 
coordinate value along this axis for each object 
o is determined by projecting o into this line.  

For setting the K′-coordinate axis, pivot 

objects are chosen at each step to anchor the 

line that form the newly formed axis. To 

extract more distance information, FastMap 

attempts to identify a pair of pivot objects that 
are far away from each other. In order to avoid 
O(N2) distance computations to determine the 

farthest pair of objects, a heuristic is proposed 

in [8] for computing an approximation of the 

farthest pair of objects. This heuristic first 
arbitrary chooses one of the objects t. Next, it 
finds the object r which is farthest from t. 
Finally, it finds the object s which is farthest 

from r. The last step can be iterated a number 

of m times in order to obtain a better estimate. 

Although [8] indicated that setting m=5 

provides good estimates, [13] has shown that 
negligible improvements are achieved for m>2.  

Deriving the first coordinate for the N 

objects is obtained by projecting each object a 
on a line between pivots p1 and p2 
xa=[D(p1,a)2+D(p1,p2)2 – D(p2,a)2]/2D(p1,p2). To 

derive the ith coordinate, the (i-1)-dimensional 

hyperplane H, which is perpendicular to the 

line that forms the previous coordinate axis, is 

determined and all objects are projected onto 
H. The projection is performed by defining a 

new distance dH that measures the distance 
between the projections of the objects on H.  

 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

Fig. 2-a. Algorithm EmbedNum mapping numbers into K′                  Fig. 2-b. Methods used with EmbedNum algorithm. 

Algorithm EmbedNum(SE, K′)  
Input: SE[1,N][1,K]:  coordinates of the N strings 
           K′: dimensionality of Euclidean space 
Output: DE[1,N][1,K′] coordinates of the N strings in 
K′ dimension 
for (h=1 to K′) { 

(p1,p2) = ChoosePivot(h); 
  v = FastAproxDist(p1, p2, h); 
  if (v==0)       // all inter-objects distances are zero 

    DE[i][h] =0   i=1 to N 
  else              // compute coordinate on this axis h 
      for (i=1 to N) { 
         x = FastAproxDist (i, p1, h); 
         y = FastAproxDist (i, p2, h); 
         DE[i][h]= (x2 + v2 – y2)/ 2*v; 
      } 
} 

FastAproxDist (a, b, h) { 
v = dE

K (SE[a],SE[b]); 
for (i=1 to h-1) { 
w = DE[a][i] – DE[b][i]; 
v = |v2-w2|1/2; 
} 
return v; 
} 
ChoosePivot(h) { 
// choose two pivots from objects represented in SE  on the hth -
dimension 
select an object and set it to be the second pivot b 
for (i=1 to m) { 
// FastAproxDist() is used to get distance between a and b 

Set a = farthest object from b;  Let pa be index of a in SE 
Set b= farthest object from a;   Let pb be index of b in SE 

} 
return(pa , pb); 
} 



N. Adly / A double embedding scheme for efficient record linkage 

                                                 Alexandria Engineering Journal, Vol. 48, No. 3, May 2009                           247 

Let x0i be the ith coordinate for object o, Fi(o) 

= {x01, x02,…,x0i} be the first i coordinate value 

for F(o), di be the distance function used in the 

ith iteration, and p1i and p2i be the two pivots 

chosen at iteration i, then x0i = [di(p1i,o)2+ di 

(p1i, p2i)2 – di (p2i,o)2]/2 di (p1i, p2i) 

The algorithm of embedding objects from 
the metric space of dimension K into 

dimension K′ using FastMap  is described in 

fig. 2. 
In the method FastApproxDist(), since the 

distance v can be negative, the heuristic 

developed by [26] has been adopted, namely 
using the square root of the absolute value of 
(v2-w2). FastMap has the advantage of being 

simple and efficient as its cost is linear; it 
needs O(2+2m)K′N distance computations. It 

should be noticed that FastMap has not been 

chosen as the embedding technique in the first 

step because it has been proven in [12] that 
FastMap is not contractive when the original 

object space is not the Euclidean space.  

 
4.2. Overall matching scheme 

 
In this section, the pseudo-code of the 

overall matching scheme is illustrated. It starts 

by combining the strings from the two source 
datasets into one set O and maps them into 

Euclidean space of dimension K using the 

EmbedString algorithm, generating a  global 

matrix SE[N1+N2][K] containing the K-

coordinates of all strings. SE is then split to 
SE1[N1][K] and SE2[N2][K] representing each 

dataset to be matched. This is followed by 
embedding the K-dimensional vector of each 

record in a more compressed representation in 
K′-dimension generating DE1[N1][K′] and 

DE2[N2][K′] for each source. Next, objects in 

their K′-representation are compared and 

returns the set P′ including those pairs whose 
Euclidean distance is within a threshold δ′, 

using the similarity join algorithm described in 
Section 3.2. The set of matching pairs P′ has 

been pruned such that most true negatives 

have been discarded. Further, it is ensured 

that all true positives are included with no 

false negatives, since the embedding used is 
contractive. Finally, all pairs in P′ are 

compared in K dimension, and those pairs 

whose Euclidean distance is within threshold δ 

are extracted. The  scheme  is  presented  in 

fig. 3. It is worth mentioning that one 

advantage of the presented scheme is that it is 

open to many embedding schemes, as long as 
they are contractive, and any multidimensional 

similarity join algorithms. Also, it does not 

depend on specific similarity functions, 

whether in the string domain or the Euclidean 

space. 

 
5. Selection of parameters 

 

In this section, the selection of the 
embedding parameters K and K′ as well as the 

similarity thresholds δ and δ′ are discussed. 

For the selection of K, the guidelines presented 

in [13] and [20] were adopted. The selected 
values have been also validated through 

experiments as described in Section 6.  
Ideally δ and δ′ should be set to the 

maximal value of the new distance between 

any two similar pairs in the original pairs to 

ensure zero false negatives. For the selection of 
δ, δ′ and K′,  a heuristic is proposed using a 

random sample from both datasets. The 

heuristic is described in fig. 4. The set of 
actual matching pairs Ps in the sample are 

determined using the string similarity 

function. Then, the Euclidean distance 
between each pair in Ps is computed after 

applying the first embedding. The largest value 
among them is the chosen as δ, and let it be 

for  pair  px,y.  For  the  second  embedding,  we 

 

 

 
 

 

 

 

 
 

 

 

 

 

 
 

 

 

 
 Fig. 3. Pseudo code of double embedding algorithm. 

Algorithm: DoubleEmbedding(Set1, Set2, K, δ, K′, δ′ ) 
Input: Set1, Set2: two datasets of Strings of size N1 and 
N2 
           K, K′: dimension of first and second embedding 
           δ, δ′ : threshold of first and second embedding 
Output: P: set of matching pairs 
 
Combine Set1 and Set2 into one set O 
Embed O using EmbedString(O, K) and get 
SE1[N1][K], SE2[N2][K] 
Embed SE using EmbedNum(SE,K′) and get 
DE1[N1][K′] and DE2[N2][K′]  
// perform similarity join between DE1 and DE2 

Build the KDtree T for DE1 
Set P′ = {}; 
for i=1 to N2 
  P′ = P′ U NNSearch(DE2[i], T, δ′ ) 
// compare the pairs in P′ in K dimension 
Set P = {}; 

 pairs (pi,j)   P′ 
   if dE

K(SE1[i], SE2[j]) ≤ δ 
     P = P U (pi,j)     
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map the numbers using different values of K′. 
For each K′, δ′ is set to be the Euclidean 

distance in K′ representation between px,y. Here 

it is assumed that the pair yielding the 
maximal Euclidean distance in the K space, 
will be the same in the K′ space. For the 

selection of K′, the matching process is applied 

on the sample given δ′ and the number of 

detected pairs PK′ is computed. The total cost is 

then computed and the K′ yielding the minimal 

cost is selected. The total cost is composed of 
three components: cost of embedding Costemb, 

cost of matching using KDTree CostKDTree and 

the cost of matching the pairs resulting from 
the first matching phase CostMP 

Costemb = Cemb * (2+2m) K′N 

CostMP = CMP * K * | PK′| 

CostKDTree= cost of building the tree + cost of 

NN search 
                = CBK′NlogN + (C1 + C2K′)N2 

The set of experiments conducted allowed 
us to determine the constants. Cemb was found 
to be 1.13E-03 and CMP was 1.20E-05. The 

cost of building the tree has been found to be 
negligible (<0.4% of CostKDTree). For the cost of 

NN with range search, the curves obtained 
from various experiments varying K′ have been 

approximated as a straight line function of K′ 
and divided by N2. Using linear regression 

analysis the constants were found to be C1= 
5.96E-05 and C2=5.81E-06. Deviation of the 

results with various experiments was < 11%.  

 

6. Experiments 

 

In order to evaluate the potential benefits 
of the proposed solution, a set of experiments 

has been conducted on real datasets with 

different sizes, with the following goals: 

 Tune the parameters of the Single 
Embedding Scheme (SES) while analyzing the 

quality of the embedding and evaluating the 

effectiveness of the resulting matching scheme. 
Several embedding parameters, namely K and 

δ, are varied experimentally and the distortion 

of the embedding and the effectiveness of the 

matching are measured. The goal is to reach a 
reasonable selection of K and δ and validate 

them against previous published results. 

 

 

 
 

 

 

 

 

 
 

 

 

 

 
 

 

 
 
 
 

 
 

Fig. 4. Pseudo code of  heuristic for selecting parameters. 

 

 Tune the parameters of the Double 
Embedding Scheme (DES) while analyzing the 

efficiency and effectiveness of the matching 

protocol in comparison with the SES. 

 Analyzing the efficiency of the DES while 
varying the size of the datasets, when 

compared to the SES. Also, the time 
performance is compared to record matching 

performed in the original string space. 

 Finally, the heuristic proposed for the 
selection of the embedding and matching 
parameters δ, K′ and δ′ is validated against the 

results obtained from the extensive 

experiments on the real datasets.   
In the experiments, a real dataset has been 

used, representing British Columbia voters’ list 

containing 34,264 records of voters’ names 

and addresses. This data is available at 

http://www.rootsweb.com/~canbc/vote1898. 

Only the first name and last name fields were 
used in the experiments. Removing all 

duplicates from the original set resulted in 

29,299 distinct records. From such dataset, 

two datasets are generated where we controlled 

and identified the percentage of similar records 
between each set pair. Three different sizes of 

datasets pairs were generated, namely with 

each set containing 4,000, 10,000 and 20,000 

records respectively in order to evaluate the 

Algorithm: SelectParameters(Set1, Set2, K) 

Input: Set1, Set2: two datasets of Strings 

           K: dimension of first embedding 

Output: δ, δ′  and K′ 

 

Select random samples from Set1 and Set2 

Get Ps: set of similar pairs by computing Edit distance 

between all strings  

// Compute Euclidean distance between matched pairs 

∀ pi,j ∊ PS, compute dE
K(i,j) 

Set δ = max∀ pi,j ∊ PS{ dE
K(i,j)}, let corresponding pair be 

px,y 

// choose K′, δ′  

∀ K′  

  Set δ′K′ = dE
K′(x,y) 

  // compute Euclidean distance between all pairs 

  ∀ pi,j ∊ sample, get P′
K the set of pairs where dE

K′< δ′K′ 

                                                                                                

Select K′ that yields minimum CostK′ 

 

http://www.rootsweb.com/~canbc/vote1898
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scalability of the proposed solution. 
Throughout the experiments the threshold θ in 

the string space was set to 2.  

Efficiency is measured by the total 
execution time needed to perform the 

embedding, indexing and matching.  

Effectiveness of the scheme is analyzed in 

terms of: 

 Recall: the ratio of the number of matched 
records pairs are generated by the matching 
protocol to the total number of true matched 

record pairs. This metric has been sometimes 

referred by others [4, 6, 15, 24] as pairs 

completeness.  

 Accuracy: the percentage of the correctly 
classified pairs [6, 24]. It is defined as the 

number of pairs correctly classified as matches 
or non-matches to the total number of pairs. 

This metric has been sometimes referred by 

others [1, 18, 20] as precision.  

The platform used for these experiments 

was a PC with an Intel dual-Core Duo 

processor 2.2 GHz and 3GB of memory. The 
protocol was implemented using Java and 

tested under Windows XP. In the 

implementation, the  SecondString library [5] 

has been used for similarity matching and 

Levenshtein distance has been used. The 
library is available at 

http://secondstring.sourceforge.net/. For 

indexing the embedded space, the KDTree 

implementation available at 

http://www.cs.wlu.edu/~levy/kd has been 

used. The Java source was modified in order to 
implement the nearest neighbor using range 

search as described in Section 3.2. 

 
6.1. Selection of parameters for first embedding 

 
 The selection of a small dimension K would 

result in a misrepresentation of the data, 

hence distance would not be preserved and 

similar pairs and dissimilar pairs will not be 
distinguished. However, setting K to a high 

value results in high cost, both for embedding 

and matching, and we risk the curse of 
dimensionality. For the selection of K, samples 

of 4000 records from the datasets have been 

embedded  in  different   dimensions   and  the  

quality of the embedding is evaluated with 
respect to the stress [12], measuring the 

distortion of the embedding defined as 
 

stress = 
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Also, the recall and accuracy were recorded. 
Results when varying K for three dataset sizes 

(4K, 10K and 20K) are shown in fig. 5. As 
expected, increasing K results in lower stress 

values and higher recall and accuracy. Results 
revealed that with K set to 25 and higher, very 

small variation in the stress is obtained and 

very small improvement in the recall and 

accuracy are reached. Therefore, in the 
remaining of the experiments, K is set to 25. 

These results are similar to the results 

obtained by [13] and [20].  

Another important parameter that affects 

the performance and the effectiveness of the 
matching protocol is the threshold δ. We ran a 

set of experiments on the full datasets 4K, 10K 
and 20K while varying δ from 0.1 to 2. It 

should be noticed that there is no need to set δ 

higher than 2 since the mapping used is 

contractive. Since we knew which records were 

the true matches, we could compute the recall 

and accuracy. Results are shown in fig. 6.  
As expected, increasing δ results in 

improving the recall fig. 6-a as large value of δ 

ensures that all true matches are included in 

the results returned from the matching 

protocol, at the cost of an increase in the 

matching time fig. 6-c. The recall reaches good 
values close to 1 for δ larger than 1.6. At δ=1.8 

the recall reaches 100% for all the three data 
sets. However, increasing δ results in a 

decrease in the accuracy as larger values of δ 

results in more false positives returned. 

However, it is noticed from fig. 6-b that the 

decrease in accuracy is very small, ranging 
from 0.5% to 0.6% at δ=1.8. On the basis of 

these experiments, the chosen embedding 
parameters were for K to be set to 25 and for δ 

to be set at 1.8.  

 

 

http://secondstring.sourceforge.net/
http://www.cs.wlu.edu/~levy/kd


N. Adly / A double embedding scheme for efficient record linkage 

250                                          Alexandria Engineering Journal, Vol. 48, No. 3, May 2009 

0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

5 10 15 20 25 30 35 40

S
tr

e
ss

K

4K

10K

20K

 
(a) 

 

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

5 10 15 20 25 30 35 40

R
e
c
a

ll

K

4K

10K

20K

 
(b) 

0.976

0.978

0.98

0.982

0.984

0.986

0.988

0.99

0.992

0.994

0.996

5 10 15 20 25 30 35 40

A
c
c
u

r
a

c
y

K

4K

10K

20K

 
(c)  
 

Fig. 5. Stress, recall and accuracy of first embedding, 
varying K. 

 
6.2. Selection of parameters of second  

  embedding 

 

In this section, the effectiveness of the 

proposed DES is evaluated, measured in terms 

of the recall and accuracy as well as its 
efficiency measured in terms of the total 

execution time. The two parameters affecting 

the performance of the double embedding are 
K′ and δ′.  A set of experiments has been 

conducted varying K′ from 2 to 10 and varying 

δ′ from 0.1 to 2 for each K′. Again, δ′ does not 

need to be larger than 2 since the FastMap 

algorithm used in the second mapping is 

contractive. The experiments are repeated for 
the three datasets in order to demonstrate the 

scalability of the protocol and to observe the 
effect of variation of the parameters K′ and δ′ 

when the data size increases. 
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Fig. 6. Recall and accuracy and matching time of first 
embedding, varying δ. 
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Fig. 7 shows the recall and accuracy for the 
4K dataset, varying δ′ from 0.1 to 2 for 

different values of K′.  The results of the Single 

Embedding Scheme (SES) are also shown for 
comparison, with K=25 and δ=1.8.  

As expected, increasing δ′ results in an 

increase in the recall as larger values of δ′ 

increases the number of true positives 

returned from the matching protocol. High 
recall values are reached for δ′ >1.4 for all K′. 

The primary reason is that the embedding 
used is contractive and provides a good 

distance/similarity preservation. The accuracy 
on the other hand decreases as δ′ increases, 

since more false positives are returned. 

However, it reaches the accuracy of SES for 
δ′>1.4. The same results were obtained for the 

10K and 20K datasets, not shown for space 
constraint. 
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Fig. 7. effectiveness of DES for 4K dataset.. 

  

Fig. 8-a shows the execution time of DES 
while varying δ′ and K′. It is observed that the 

cost increases as δ′  increases. This is expected 

as while matching in the KDTree, less pruning 
is done as there are more nodes to be retrieved 
for larger δ′. Also, this increase is due to the 

increase in the number of potential matching 

pairs generated from the first level matching. 
However, for all δ′ and K′, the cost of the DES 

is substantially lower than SES, resulting in a 
minimum of 30% improvement for all K′. The 
effect of the variation of K′ on the cost is 

somehow complex since it consists of three 

components. The first component is the 
embedding time, which increases as K′ 

increases. The second component is the cost of 

indexing, that is building the KDtree for one of 
the embedded sets, then applying the nearest 

neighbor algorithm using range search for the 

second set. This cost increases as well with the 
increase of K′. The third component is the final 

stage of matching, which consists of 

computing the Euclidean distance between the 
set of matching pairs resulting from indexing 

and searching the KDtree. This cost is 

dependent on the number of matching pairs 
returned, which decreases as K′ increases. 

This decrease is attributed to a more accurate 

representation of the doubly embedded records 
and hence more accurate matching pairs are 

obtained.  

Fig. 8-b shows the total execution time for 
δ′ larger than 1.4. It is plotted separately in 

order to show the effect of varying K′ more 

closely. δ′ is chosen from 1.4 to 2.0 since this 

is the range δ′ will be chosen from to achieve a 

good recall.  It is observed that the cost of DES 
gives improvement for δ′>1.4 ranging from 30% 

to 64% than SES for all values of K′. The 

lowest cost is achieved with K′=3, which 

achieves the best balance in the cost of the 

indexing versus the number of potential 
matching pairs. For K′=2, the cost is higher 

than K′=3 because the number of detected 

pairs in the first matching phase is much 
higher than for K′=3 (2.2m pairs versus 1.7m 

pairs for δ′ =1.5). Hence, the pair matching 

cost is higher, which increases for larger 
values of δ′. For K′= 4 and 5, the cost is quite 

similar. It is higher than that of K′=3 because 

the increase in the indexing and matching cost  
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Fig.  8. Cost of DES for 4K dataset. 

 

(KDTree) is higher than the decrease in the 
matching pair cost.  They are higher than K′=2 
for δ′ smaller than 1.5. Then they outperform 

K′=2 since the increase in their indexing and 

matching cost is lower than its increase in the 
matching pair cost. When K′ is set to 8 and 10 

the cost gets higher as the indexing and 

matching cost increases. 

Running the same experiments on the 10K 
dataset revealed that although the 
improvement in the cost decreases as δ′ 
increases, it ranges from 30% to 60% for all K′ 
for  δ′>1.4. Fig. 9-a shows the cost for the 10K 

dataset for δ′>1.4 and fig. 9-b shows the 

breakdown of the total cost for δ′=1.5 for all K′. 
It is noticed that for δ′=1.5, the total cost 

reaches its minimum at K′=4, where the 

increase in the embedding time and the 
KDTree is lower than the decrease in the pair 

matching time. From fig. 9-a, it is observed 
that K′=4 and 5 yield the best balance between 

the three components. The cost of K′=2 and 3 

is higher  because  the  matching  pair  time  is  
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Fig.  9. cost of DES for 10K dataset. 

 
dominant. The cost of K′=8 and 10 are higher 

than all where the indexing and matching 

(KDTree) increase is more dominant. 
Fig. 10-a shows the cost for the 20K 

dataset for δ′>1.4. Fig. 10-b shows that for 

δ′=1.5, the total cost reaches its minimum at 

K′=6, where the increase in the embedding 

time and the KDTree is lower than the 

decrease in the pair matching time. From fig. 
10-a, it is observed that K′=6 yields the best 

balance between the three cost components, 
followed by K′=5, then K′=8. The cost of K′=2 

and 3 experience the highest cost, especially 
for δ′ larger than 1.4 where the matching pair 

time is dominant. The cost of K′=10 is high, 

specially for small value of δ′, where the 

indexing and matching (KDTree) increase is 
more dominant. As δ′ increases, K′ set to 10 
shows lower cost than K′ set to 4 or smaller, as 

the increase in the matching pair time is 
minimal compared to smaller K′. 
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Fig. 10. Cost of DES for 20K dataset. 

 

The above experiments show that the 
selection of K′ affects the improvement of the 

cost, and is dependent on the size of the 

dataset. As the size of the dataset increases, 
larger values of K′ yields lower cost. However, it 

is shown that for δ′ set to 1.5, the worst 

selection of K′ would result in a 40% 

improvement, while an optimum selection can 

lead to improvement ranging from 50% to 60% 

over SES. 
 

6.3. Effect of datasize variation 

 

To evaluate the scalability of DES, its run 

time is compared with the run time of 

matching records in the original space, varying 
the  datasets    from  4K to  20K,  shown  in 

fig. 11-a. It is obvious that matching strings 
requires by far more time due to O(N2) string 

distance computations and the difference is 

more dramatic as the data size increases.  The 

scalability of the protocol is studied also in 
comparison with SES as shown in fig. 11-b. 
The parameters used for SES were K=25, 

δ=1.8, and for DES δ′ =1.5 and K′=3 for N=4K, 

K′=4 for N<10K, K′=5 for N<16K and K′=6 for 

N<20K. The results show that DES 

outperforms SES, especially for large datasets, 

showing improvement ranging from 59% to 
64%. 
 
6.4. Selection of δ, K′ and δ′  

 

In this section, the suggested heuristic 

based on sampling is applied to select the 
parameters δ, K′ and δ′. The experiment is  

based on the forming of two sets, each drawn 

at random from the original datasets. The size 

of the sample has been chosen to be 20% of 

the original dataset with a minimum size of 

1000 records per set. Table 1 shows the values 
of δ, δ′ and the execution time (in msec) 

obtained using the proposed heuristic for the 
three datasets for different values of K′.  

For the 20K dataset, the selection yields δ 

being 1.8, which agrees with the above 

experiments on the real data set. Further, the 
selection of K′ resulted in the optimum being 6, 
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Fig. 11. Cost of DES vs string matching and SES. 
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Table 1 
Values of δ, δ′ and execution time while varying K′ obtained using select 

parameters heuristic  
 

N 20K   10K   40K   

δ 1.800   1.649     1.700 
K′ δ′  Cost δ′  Cost δ′   Cost 

2 1.468 1,852.03 1.297 433.26 1.239 106.15 

3 1.509 1,876.41 1.303 426.32 1.350 114.08 
4 1.510 1,795.36 1.340 447.26 1.364 121.31 

5 1.528 1,740.86 1.350 468.92 1.368 130.97 
6 1.612 1,720.38 1.350 492.33 1.415 141.16 
7 1.620 1,851.46 1.353 520.54 1.420 152.55 

8 1.622 2,051.96 1.374 552.68 1.421 163.96 
9 1.631 2,130.18 1.374 585.24 1.436 175.94 

10 1.631 2,234.28 1.387 619.87 1.475 188.45 

 

 

which again coincides with the experiments. 
The choice for δ′ was returned to be 1.612, 

with 7% deviation from results obtained from 

experiments. For the 10K dataset the choices 
for δ, K′ and δ′ were 1.649, 3 and 1.303 

respectively deviating between 8% to 10%.  For 
4K dataset, the choices for δ, K′ and δ′ were 

1.709, 2 and 1.239 reaching a deviation of 

17%. Although the sample selection is not 
exactly the same as the ones resulting from the 

experiments, they are not far off and follow the 

trend discovered by the experiment, namely, 
that K′ needs to be higher for larger datasets. 

Also, it is observed that the estimation from 

sampling is more relevant when the dataset 
size increases.  

 

7. Conclusions 

 

This paper introduced a novel scheme for 
record linkage based on double embedding of 

the data, aiming at improving the efficiency. A 

two level matching is proposed, with the first 

level performing a fast and inaccurate 

matching, ensuring high recall while the 

second level performs a more expensive 
matching, on a smaller set of pairs, to improve 

the accuracy.  Experimental evaluation on real 

datasets revealed that, by using contractive 

embedding techniques that preserve the 

distance between records values, the suggested 
scheme outperforms the single embedding 

scheme achieving gains in time performance 

ranging from 30% to 60%, while achieving the 

same level of recall and accuracy. Further, a 

heuristic based on sampling has been 

proposed for the selection of the values of the 

parameters and its application has been 

validated against the experimental results and 
showed to be very effective. Future work will 

address scenarios with more than two parties 

and different data types such as DNA 

sequence, etc.  
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