
Alexandria Engineering Journal, Vol. 48 (2009), No. 3, 241-255 241
© Faculty of Engineering Alexandria University, Egypt.

A double embedding scheme for efficient record linkage

Noha Adly
Department of Computer and Systems Engineering, Alexandria University, Egypt

noha.adly@alex.edu.eg

Record linkage is the problem of identifying similar records across different data sources.
The similarity between two records is defined based on domain-specific similarity functions
over several attributes. In this paper, a novel approach is proposed that uses a two level
matching based on double embedding. First, records are embedded into a metric space of
dimension K, then they are embedded into a smaller dimension K′. The first matching phase
operates on the K′-vectors, performing a quick-and-dirty comparison, pruning a large
number of true negatives while ensuring a high recall. Then a more accurate matching
phase is performed on the matching pairs in the K-dimension. Experiments have been
conducted on real data sets and results revealed a gain in time performance ranging from

30% to 60% while achieving the same level of recall and accuracy as in previous single
embedding schemes. Further, a heuristic has been proposed for the selection of the
parameters and shown to be effective.

حدد التشابه بين سجلين على أساس ويعرف ترابط السجل بمشكلة تحديد السجلات المتماثلة عبر مصادر مختلفة للبيانات. عرف ي
التطابق بين مجموعة من الحقول طبقاً لدوال تشابه محددة المجال. ويقدم هذا البحث خوارزماً جديداً يستخدم به مستويين من

من السجلات داخل نطاق متري ذات بُعد المطابقة و يرتكز على تضمين مزد من في بُعد أصغر Kوج. بداية، تُضَّ . ′K ثم تُضَّ
 صحيحة وتقوم بعمل مقارنة سريعة يُستبعد خلالها عدداً كبيراً من العناصر ′Kتعمل المرحلة الأولى من المطابقة على متجهات و

ك مرحلة أكثر دقة من المطابقة تقوم على مطابقة العناصر الزوجية على قدرة سريعة للاسترجاع. تأتى بعد ذلمع المحافظة السلبية
. ولقد أجريت التجارب على مجموعة من البيانات الفعلية و جاءت النتائج لتكشف عن وفرٍ ملحوظ في الأداء Kالبُعد المُرشحة في

قارنة بخوارزميات أخرى تعتمد على الدقة محافظة على نفس مستوى الاسترجاع ومع الم% 03إلى %03الزمني يتراوح ما بين
نظام تضمين فردى. علاوة على ذلك، يقترح البحث طريقة مساعدة للاختيار الأمثل للبارامترات وأظهرت التجارب كفاءة الطريقة

 المقترحة.

Keywords: Data cleaning, Similarity matching, Record linkage, Embedding schemes

1. Introduction

The record linkage problem is to find

similar records, across different data sources,
that refer to the same real world entity, e.g.

patient, customer or author. When record

linkage is performed within the same source,

the problem is referred to as duplicate

detection. The record linkage arises in the
context of data cleaning that usually precedes

data analysis and mining. It is important

when integrating two data sources into one.

Also it is essential when improving the quality

of data by comparing it to more accurate

sources. The major challenges in record
linkage are reducing computational complexity

while maintaining high recall and accuracy.

Several techniques have been proposed in the

literature, see [7, 16] for recent surveys.

A naïve approach for discovering matching
records in two sources is to perform a nested-

loop comparing each record in one source to

all records in the second source. However,
O(N2) comparisons is computationally

infeasible, especially for large datasets.

Further, performing an approximate matching

between two records requires the computation

of distance functions among textual attributes,

which is an expensive factor in the cost.
Several techniques have been introduced to

reduce the quadratic number of comparisons

that are based on a two phase approach.

Blocking [1-2] use record attributes, or subsets

of attributes as a blocking key (e.g. first 4

characters of the surname) to split the data
into blocks, then a detailed comparison is

carried out only between records that fall into

the same block. Although blocking increase

the speed of comparison, it can lead to an

increased number of false negatives due to
selection of a blocking step that places entries

in the wrong blocks. Multiple runs using

different blocking fields are performed to

N. Adly / A double embedding scheme for efficient record linkage

242 Alexandria Engineering Journal, Vol. 48, No. 3, May 2009

improve effectiveness. Sorted neighborhood

[10], or merge/purge approach, relies on

sorting records based on a sorting key, then
moving a window of fixed size w sequentially

where only records within w are then paired

with each other. This approach relies on the

assumption that duplicate records will be close

in the sorted list. Also, its effectiveness is

dependent upon the comparison key. Similar

to blocking, it has shown to be more effective
with multi-passes, which causes an increase in

the runtime. McCallum et al. [18] proposed a

cheap comparison metric to group records into

overlapping clusters called canopies, then

records within the same cluster are accurately
compared. A recent work [21] exploited the

semantic ambiguity of the data sources, using

social network analysis, and applied relaxed

matchers to less ambiguous data.

Reducing the complexity of record

comparisons has been addressed by tech-
niques such as feature subset selection

algorithms [23]. Recent approaches [15, 20]

have used embedding textual attributes into

Euclidean space while preserving the distances

between the record values and performed the
comparison in the metric space which is much

cheaper than string comparison. In [20]

SparseMap was used to map strings in a

private environment to Euclidean space then

used multidimensional index based on KDTree

to perform the comparison. Jin et al. [15] used
FastMap for converting strings then applied a

similarity-join algorithm based on R-tree to

compare the metric vectors.

This paper proposes a novel two-level

matching scheme that exploits the advances
developed in mapping records into a multidi-

mensional Euclidean space while preserving

the distances between the record values. It

relies on a quick-and-dirty matching process

that is employed first, to prune a large number

of mismatches and produces a smaller set of
pairs of records that are used as input to a

more expensive matching process. Datasets

are first embedded into a metric space of
dimension K, which captures an accurate

representation of the data. It is followed by a

second embedding that converts vectors from
K dimension to vectors of smaller dimension

K′. The quick-and-dirty matching phase is

performed on the output of the second

embedding, with the goal of discarding a large

number of true negatives while ensuring that

the resulting potential matching pairs includes
all true positives and zero false negatives, yet

achieving this with a small cost. The returned

results are ingested to the second level of

matching, which applies a similarity function
on the potential pairs, but in their K-

dimension representation. The second level
matching is more expensive, but more

accurate, and its goal is to refine the results of

the first level by excluding false positives and

any true negatives that have not been pruned
in the first phase. With K′<K, the first level

matching process is much cheaper than
having the similarity function applied on all
pairs in their K-representation. The expensive

matching is performed only on the pairs

detected in the first phase, which are much

less, and cause an overall gain in time

performance while achieving a high recall and
accuracy.

Recently, a similar approach has been

proposed in [27] in the context of private

record linkage. They assumed the data already

embedded in the metric space, which is then

represented as a point in the complex plane
where a relaxed matching is performed,

detecting pairs likely matching. Then a more

accurate matching phase is performed on the

likely matching pairs only. The second

embedding though is bound to the complex
plane where K′=2, and is not contractive. In

this paper, the second embedding is
generalized and a proper K′ is chosen

according to the nature of the data and its

size. It has been shown that as the data size
increases, higher values of K′ results in higher

performance gains.
By selecting a proper embedding scheme in

each phase, preserving the distances between

the record values while guaranteeing

contractiveness, it is ensured that results

obtained are with a high recall and accuracy.

The proposed matching scheme based on
double embedding has been implemented and

a set of experiments have been conducted on

real data sets and compared with a scheme

using a single embedding. Results showed that

improvement in time performance ranging
from 30% to 60% is achieved while

N. Adly / A double embedding scheme for efficient record linkage

 Alexandria Engineering Journal, Vol. 48, No. 3, May 2009 243

maintaining the same level of recall and

accuracy.

The remainder of the paper is organized as
follows: A formal definition of the problem is

presented in Section 2. In Section 3, we

describe a single embedding matching scheme

that is similar to previous schemes proposed

and will be used for comparison. In section 4,

the steps of the matching scheme based on
double embedding are presented. Section 5

discusses the selection of the embedding

parameters and the similarity thresholds

values. In Section 6, the experiments

conducted to evaluate the performance of the
protocol are presented and results are

discussed. Finally, Section 7 concludes the

paper.

2. Problem formulation

The process of identifying similar record

pairs consists of building a classifier that takes

as input a set of thresholds and accurately
classifies pairs of records as match or

mismatch according to a predefined matching

rule. Without loss of generality, it is assumed
that the input datasets R and S are

represented as relations, and the schema of
the two relations is the same R(a1, a2,..an) and

S(a1, a2,..an).

Given a distance function di: Dom(R.ai) x

Dom(S.ai)→
 defined over domains of

corresponding attribute of R and S, and

matching thresholds θi≥0, record linkage can

be expressed as a join operator over R and S. A

record pair (r,s) where rR and sS, is a
matching pair if di(r.ai, s.ai) ≤ θi for all

attributes 1 ≤ i < n. Then the join condition can

be defined based on the following matching
rule that returns true for matching record
pairs and false for mismatching record pairs

otherwisefalse

niasardifftrue
srMR

iiii 1).,.(
),(

The presented definition for the matching

function is used by most of the record linkage
approaches. The distance function di defines

the similarity metric at the attribute level and

is domain specific. In the domain of strings,

there are a variety of metrics including the Edit
distance, Smith-Waterman distance, Jaro

distance, q-gram and others (refer to [5, 7] for

a survey). In this work, the Edit distance a.k.a.

Levenshtein distance, a common measure of

textual similarity, is used although any other

metric could be used. Formally, given two
strings s1 and s2, their edit distance is the

minimum number of insertion, deletions and

replace operations of single characters that are
needed to transform s1 to s2. For instance, the

edit distance between Johnson and Jonsan is

2, as Johnson is obtained by adding h and

replacing a by o. In the metric domain, the
most common metric distance function used is
the Minkowski metrics based on the Lp norms,

p
x = (∑|xi|p)1/p, with p≥1. In this work, the

Euclidean distance dE (p=2), is used as the

distance metric in the embedded space,

although any other metric can be used.

3. Single embedding scheme

In this section, we describe the Single

Embedding Scheme, which consists of two

steps. In the first step, strings are mapped to
objects in a multidimensional Euclidean space,

such that the mapped space preserves the

original string distance. In the second step, a

multidimensional similarity join is performed

in the Euclidean space. This approach is
similar to previous work such as [15, 20] and

will be used for comparison. Several methods

have been proposed to embed a set of objects

in a metric space, including FastMap [8],

SparseMap [13], MetricMap [25] and others

(see [12] for a survey). Among those methods,
SparseMap has been chosen because it has

proven to be contractive when the original

space is strings [12]. Contractiveness ensures

that distances in the embedded space are a

lower bound for distances in the original

space, thus improving the quality of the
embedding in terms of recall. In the following,

the concept of the SparseMap technique is

introduced and a description of how it is used

to embed strings into Euclidean space follows.

Next, the technique used to perform the
similarity join to complete the matching

process is described.

3.1. Embedding strings to K-dimension

 euclidean Space

SparseMap is an embedding method based

on a class of embedding known as Lipschitz

N. Adly / A double embedding scheme for efficient record linkage

244 Alexandria Engineering Journal, Vol. 48, No. 3, May 2009

embedding [3]. Therefore, we first describe

Lipschitz embedding followed by the heuristics

introduced by SparseMap.
Lipschitz embedding defines a coordinate

space where each axis corresponds to a

reference set, drawn from the set of objects to
be embedded. Given a set of objects O and a

distance D in the original space, the

embedding is defined in terms of a set S of

subsets of O, S={S1, S2,..Sk} where Si is a

reference set. Given an object oO, the
mapping F is defined as F(o)= (D(o,S1), …,
D(o,Sk)),where D(o,Si)= minxεSi {D(o,x)}. That is,
the coordinate values of object o are the

distances from o to the closest element in each

set Si. The method is based on the triangle

inequality and exploits the fact that if |d(o1,x)-

d(o2,x)| ≤ d(o1,o2), then the property can be

extended to subset Si and the value |d(o1,Si)-

d(o2,Si)| is a lower bound on d(o1,o2). By using

a set S of subsets, we increase the likelihood

that the distance D(o1,o2) is captured

adequately by the distance in the embedding
space between F(o1) and F(o2) i.e. d(F(o1),F(o2)).

Linial et al. [17] have shown that when d,

the metric distance function used to compare

the embedded object, is one of the Minkowski
metrics Lp, then for N objects, a bound can be

established on d(F(o1),F(o2)), provided that the

space dimension k=log2N2 and Si is of size 2j

with j=(i-1)/log2N+1. Given F(o)=(D(o,S1)/ q,...,
D(o,Sk)/q), where q=k1/p, it has been proved

[17] that the embedding is contractive and the

distortion, that is, the relative amount of

deviation of the distance values in the
embedding space with respect to the original
distance values, is guaranteed to be O(logN).

Lipschitz embedding is rather impractical

for two reasons. First, due to the number and
sizes of the subsets in S, O(N2) distance

computations is needed to embed an object o,
as the distance between o and practically all

objects need to be computed, which is exactly

what we wish to avoid. Second, the number

=log2N2 of subsets, which is the number of

coordinate values (dimensions) in the

embedding is rather large. SparseMap [13]

introduces heuristics to overcome the above
limitations. The Distance Approximation

heuristic approximates the distance between
object o and subset Si by computing Ŷ(o, Si), an

upper bound on d(o,Si) by exploiting the partial

vector that has been computed for each object.
The EmbedString algorithm for embedding

strings into an Euclidean space of dimension K

is depicted in fig. 1. It operates on a set O

resulting from combining the strings from the
two datasets into one set. It starts by building
the reference sets S={S1, S2,..Sk}. As suggested

in [13], each set Si is composed of any random

strings of O of size 2j where j=(i-1)/ √K+1.
Thus, we get √K reference sets of size 2, √K of

size 4, etc, up to size 2√K+1. Then it proceeds

by computing the first coordinate for all

objects, Ŷ(oj, S1) ojO , followed by the

second coordinates Ŷ(oj, S2) ojO, etc, where
Ŷ denotes the heuristic upper bound on d.

The heuristic for computing Ŷ calculates

only a fixed number of actual distance values

D for each object ojO, as opposed to |Si|

distance values. In particular, for each object

ot Si , it computes dE(Fi-1(oj), Fi-1(ot)) , where Fi-1
is the embedding based on S1, S2,..Si-1. On the

basis of this approximate distance value, a
fixed number of objects σ in Si having the

smallest approximate distance value from oj is

picked and the actual distance value D(oj,ot) for

each such object ot only is computed. The

smallest distance value among those serves as
the upper-bound distance value Ŷ(oj, Si), which

becomes the ith coordinate value of the vector

corresponding to oj in the embedding.

A drawback of the distance approximation
heuristic is that it renders the mapping non-

contractive. In this paper, the heuristic

proposed by [12] is used in order to make

SparseMap contractive. The heuristic suggests

that, instead of computing the actual distance
D(oj,ot) for only a fixed number of objects σ, it

does so for a variable number of objects in Si.

In particular, it first computes the approximate

distances dE(Fi-1(oj),Fi-1(ot)) for all otSi which

are lower bounds on the actual distance value
D(oj,ot). Next, it computes the actual distance

value of the object otSi in increasing order of
their lower bound distances dE(Fi-1(oj), Fi-1(ot)).

Let orSi be the object whose actual distance
value D(oj,or) is the smallest distance value so

far. Once D(oj,or) is smaller than all distances

dE(Fi-1(oj),Fi-1(ot)) of all remaining elements in Si,

then d(oj,Si) = D(oj,or). Although this heuristic

increases the number of distance
computations, it was decided to adopt it in

order to make the embedding contractive.

N. Adly / A double embedding scheme for efficient record linkage

 Alexandria Engineering Journal, Vol. 48, No. 3, May 2009 245

Fig. 1. Pseudo code of embedstring embedding strings

to euclidean space.

3.2. Similarity join in euclidean space

After the two datasets have been mapped

into the metric space, it is required to find

pairs of objects whose distance in the
Euclidean space is within a threshold δ. Many

similarity-join algorithms can be applied [11,
14] and usually they employ a form of

multidimensional index [9]. In this work, the

KDTree index [9] has been used as it is

considered one of the most prominent data

structure for indexing multidimensional spaces
and is designed for efficient nearest neighbor

search [22].

KDTree is a binary tree in which every node

is a k-dimensional point. Every internal node

generates a splitting hyperplane that divides

the space into subspaces. Points left to the
hyperplane represent the left subtree of that

node and the points right to the hyperplane

represents the right subtree. The hyperplanes

are iso-oriented and their direction alternates

among the k possibilities. Building a KDTree is
a O(NlogN) operation.

The Nearest Neighbor (NN) algorithm aims

to find the node in the tree which is nearest to

a given input vector. This search can be done
efficiently (O(logN)) by using the tree properties

to quickly eliminate large portions of the

search space. The search starts with the root

node and moves down the tree recursively

until it reaches a leaf and saves that node
point as the nearest. The algorithm unwinds

the recursion of the tree; if the current node is
closer than the nearest, then it becomes the

nearest. The algorithm checks whether there

could be any points on the other side of the

splitting plane that are closer to the search
point than the nearest. This is done by

intersecting the splitting hyperplane with a
hypersphere around the search node that has

a radius equal to the current nearest distance.

If the sphere crosses the plane, there could be

nearer points on the other side of the plane, so

the algorithm must move down the other
branch of the tree from the current node

looking for closer points, following the same

recursive process as the entire search. If the

hypersphere does not intersect the splitting

plane, then the algorithm continues walking

up the tree, and the entire branch on the other
side of that node is eliminated.

A variation of the NN algorithm [19] has

been adopted that allows performing range
searching. That is, given δ and a vector v, it is

required to retrieve all nodes that are within
distance δ from v. The variation is mainly that

the initial distance is not reduced as closer

points are discovered and all discovered points
within δ are returned, not just the nearest.

The variation of the NN algorithm is

applied in order to compare the vectors
representing the two datasets SE1 and SE2; the

used distance metric is the Euclidean distance.

Specifically, the KDTree for one of the datasets
is built, say SE1. Then, for every vector in SE2

the NN range search algorithm is applied to
retrieve the nodes in SE1 that are within

distance δ.

4. Double embedding scheme

This section introduces the Double

Embedding Scheme, which consists of four

steps. The first step combines the strings from
the two datasets into one set O and maps them
into Euclidean space of dimension K using the

EmbedString algorithm presented in Section

3.1. The second step involves mapping the

embedded strings into a more compressed

representation in the Euclidean space in

Algorithm: EmbedString(O, K)
Input: O: a set of N strings

K: dimensionality of Euclidean space

Output: SE[1,N][1,K] coordinates of the N strings

// Build K reference sets S={S1, S2,..Sk}

for i=1 to K

Si ← 2(i-1)/ √K+1 strings randomly chosen from O

for i=1 to K

 oj O
if (i==1)

// 1st coordinate: the distance is the minimum

// Edit distance between oj and every object in S1
Ŷ(oj, S1) = minxεS1{D(oj ,x)}

else {
// Get Euclidean distance between the (i-1) coordinates

// of oj and all objects in Si

Compute dE(Fi-1(oj), Fi-1(ot)) ot Si

Sort dE(Fi-1(oj), Fi-1(ot)) ot Si ascendingly
Select the first σ objects and place them in set φ

Compute D(oj,ot) for all ot ∊ φ

Select or s.t. D(oj,or) = minot ε φ {D(oj,ot)}
Ŷ(oj, Si) = D(oj,or)

}
SE[j,i] = Ŷ(oj, Si)

N. Adly / A double embedding scheme for efficient record linkage

246 Alexandria Engineering Journal, Vol. 48, No. 3, May 2009

dimension K′, where K′<K. In this step, the

FastMap embedding technique has been

selected, because of its simplicity, efficiency

and contractiveness. The third step performs
the similarity join between the two sets in the
K′ dimensional space using the KDTree as

described in Section 3.2. The fourth and last

step takes its input as the potential matched

pairs produced from the similarity join and

compares the Euclidean distance of the
corresponding objects in the K dimension

space.

In the following, the technique used in
embedding the datasets in K′ dimension using

FastMap is described, then the overall

matching protocol is presented.

4.1. Embedding K-dimension objects into
 K′-dimension

FastMap [8] is a general embedding

technique that is inspired by dimensionality
reduction methods for Euclidean space based

on linear transformation. Objects are mapped
into points in K′ dimensional space, where the

coordinate values corresponding to these
points are obtained by projecting them on K′

mutually orthogonal directions, thereby
forming the coordinate axes of the space in

which the points are embedded. The

projections are computed using the original
distance function D. In our case, where the

original space is K-dimension Euclidean space

D= dEK. The coordinate axes are constructed

one by one, where at each iteration, two

objects (referred to as pivot objects) are

chosen, a line is drawn between them that

serves as the coordinate axis, and the
coordinate value along this axis for each object
o is determined by projecting o into this line.

For setting the K′-coordinate axis, pivot

objects are chosen at each step to anchor the

line that form the newly formed axis. To

extract more distance information, FastMap

attempts to identify a pair of pivot objects that
are far away from each other. In order to avoid
O(N2) distance computations to determine the

farthest pair of objects, a heuristic is proposed

in [8] for computing an approximation of the

farthest pair of objects. This heuristic first
arbitrary chooses one of the objects t. Next, it
finds the object r which is farthest from t.
Finally, it finds the object s which is farthest

from r. The last step can be iterated a number

of m times in order to obtain a better estimate.

Although [8] indicated that setting m=5

provides good estimates, [13] has shown that
negligible improvements are achieved for m>2.

Deriving the first coordinate for the N

objects is obtained by projecting each object a
on a line between pivots p1 and p2
xa=[D(p1,a)2+D(p1,p2)2 – D(p2,a)2]/2D(p1,p2). To

derive the ith coordinate, the (i-1)-dimensional

hyperplane H, which is perpendicular to the

line that forms the previous coordinate axis, is

determined and all objects are projected onto
H. The projection is performed by defining a

new distance dH that measures the distance
between the projections of the objects on H.

Fig. 2-a. Algorithm EmbedNum mapping numbers into K′ Fig. 2-b. Methods used with EmbedNum algorithm.

Algorithm EmbedNum(SE, K′)
Input: SE[1,N][1,K]: coordinates of the N strings
 K′: dimensionality of Euclidean space
Output: DE[1,N][1,K′] coordinates of the N strings in
K′ dimension
for (h=1 to K′) {

(p1,p2) = ChoosePivot(h);
 v = FastAproxDist(p1, p2, h);
 if (v==0) // all inter-objects distances are zero

 DE[i][h] =0 i=1 to N
 else // compute coordinate on this axis h
 for (i=1 to N) {
 x = FastAproxDist (i, p1, h);
 y = FastAproxDist (i, p2, h);
 DE[i][h]= (x2 + v2 – y2)/ 2*v;
 }
}

FastAproxDist (a, b, h) {
v = dE

K (SE[a],SE[b]);
for (i=1 to h-1) {
w = DE[a][i] – DE[b][i];
v = |v2-w2|1/2;
}
return v;
}
ChoosePivot(h) {
// choose two pivots from objects represented in SE on the hth -
dimension
select an object and set it to be the second pivot b
for (i=1 to m) {
// FastAproxDist() is used to get distance between a and b

Set a = farthest object from b; Let pa be index of a in SE
Set b= farthest object from a; Let pb be index of b in SE

}
return(pa , pb);
}

N. Adly / A double embedding scheme for efficient record linkage

 Alexandria Engineering Journal, Vol. 48, No. 3, May 2009 247

Let x0i be the ith coordinate for object o, Fi(o)

= {x01, x02,…,x0i} be the first i coordinate value

for F(o), di be the distance function used in the

ith iteration, and p1i and p2i be the two pivots

chosen at iteration i, then x0i = [di(p1i,o)2+ di

(p1i, p2i)2 – di (p2i,o)2]/2 di (p1i, p2i)

The algorithm of embedding objects from
the metric space of dimension K into

dimension K′ using FastMap is described in

fig. 2.
In the method FastApproxDist(), since the

distance v can be negative, the heuristic

developed by [26] has been adopted, namely
using the square root of the absolute value of
(v2-w2). FastMap has the advantage of being

simple and efficient as its cost is linear; it
needs O(2+2m)K′N distance computations. It

should be noticed that FastMap has not been

chosen as the embedding technique in the first

step because it has been proven in [12] that
FastMap is not contractive when the original

object space is not the Euclidean space.

4.2. Overall matching scheme

In this section, the pseudo-code of the

overall matching scheme is illustrated. It starts

by combining the strings from the two source
datasets into one set O and maps them into

Euclidean space of dimension K using the

EmbedString algorithm, generating a global

matrix SE[N1+N2][K] containing the K-

coordinates of all strings. SE is then split to
SE1[N1][K] and SE2[N2][K] representing each

dataset to be matched. This is followed by
embedding the K-dimensional vector of each

record in a more compressed representation in
K′-dimension generating DE1[N1][K′] and

DE2[N2][K′] for each source. Next, objects in

their K′-representation are compared and

returns the set P′ including those pairs whose
Euclidean distance is within a threshold δ′,

using the similarity join algorithm described in
Section 3.2. The set of matching pairs P′ has

been pruned such that most true negatives

have been discarded. Further, it is ensured

that all true positives are included with no

false negatives, since the embedding used is
contractive. Finally, all pairs in P′ are

compared in K dimension, and those pairs

whose Euclidean distance is within threshold δ

are extracted. The scheme is presented in

fig. 3. It is worth mentioning that one

advantage of the presented scheme is that it is

open to many embedding schemes, as long as
they are contractive, and any multidimensional

similarity join algorithms. Also, it does not

depend on specific similarity functions,

whether in the string domain or the Euclidean

space.

5. Selection of parameters

In this section, the selection of the
embedding parameters K and K′ as well as the

similarity thresholds δ and δ′ are discussed.

For the selection of K, the guidelines presented

in [13] and [20] were adopted. The selected
values have been also validated through

experiments as described in Section 6.
Ideally δ and δ′ should be set to the

maximal value of the new distance between

any two similar pairs in the original pairs to

ensure zero false negatives. For the selection of
δ, δ′ and K′, a heuristic is proposed using a

random sample from both datasets. The

heuristic is described in fig. 4. The set of
actual matching pairs Ps in the sample are

determined using the string similarity

function. Then, the Euclidean distance
between each pair in Ps is computed after

applying the first embedding. The largest value
among them is the chosen as δ, and let it be

for pair px,y. For the second embedding, we

 Fig. 3. Pseudo code of double embedding algorithm.

Algorithm: DoubleEmbedding(Set1, Set2, K, δ, K′, δ′)
Input: Set1, Set2: two datasets of Strings of size N1 and
N2
 K, K′: dimension of first and second embedding
 δ, δ′ : threshold of first and second embedding
Output: P: set of matching pairs

Combine Set1 and Set2 into one set O
Embed O using EmbedString(O, K) and get
SE1[N1][K], SE2[N2][K]
Embed SE using EmbedNum(SE,K′) and get
DE1[N1][K′] and DE2[N2][K′]
// perform similarity join between DE1 and DE2

Build the KDtree T for DE1
Set P′ = {};
for i=1 to N2
 P′ = P′ U NNSearch(DE2[i], T, δ′)
// compare the pairs in P′ in K dimension
Set P = {};

 pairs (pi,j) P′
 if dE

K(SE1[i], SE2[j]) ≤ δ
 P = P U (pi,j)

N. Adly / A double embedding scheme for efficient record linkage

248 Alexandria Engineering Journal, Vol. 48, No. 3, May 2009

map the numbers using different values of K′.
For each K′, δ′ is set to be the Euclidean

distance in K′ representation between px,y. Here

it is assumed that the pair yielding the
maximal Euclidean distance in the K space,
will be the same in the K′ space. For the

selection of K′, the matching process is applied

on the sample given δ′ and the number of

detected pairs PK′ is computed. The total cost is

then computed and the K′ yielding the minimal

cost is selected. The total cost is composed of
three components: cost of embedding Costemb,

cost of matching using KDTree CostKDTree and

the cost of matching the pairs resulting from
the first matching phase CostMP

Costemb = Cemb * (2+2m) K′N

CostMP = CMP * K * | PK′|

CostKDTree= cost of building the tree + cost of

NN search
 = CBK′NlogN + (C1 + C2K′)N2

The set of experiments conducted allowed
us to determine the constants. Cemb was found
to be 1.13E-03 and CMP was 1.20E-05. The

cost of building the tree has been found to be
negligible (<0.4% of CostKDTree). For the cost of

NN with range search, the curves obtained
from various experiments varying K′ have been

approximated as a straight line function of K′
and divided by N2. Using linear regression

analysis the constants were found to be C1=
5.96E-05 and C2=5.81E-06. Deviation of the

results with various experiments was < 11%.

6. Experiments

In order to evaluate the potential benefits
of the proposed solution, a set of experiments

has been conducted on real datasets with

different sizes, with the following goals:

 Tune the parameters of the Single
Embedding Scheme (SES) while analyzing the

quality of the embedding and evaluating the

effectiveness of the resulting matching scheme.
Several embedding parameters, namely K and

δ, are varied experimentally and the distortion

of the embedding and the effectiveness of the

matching are measured. The goal is to reach a
reasonable selection of K and δ and validate

them against previous published results.

Fig. 4. Pseudo code of heuristic for selecting parameters.

 Tune the parameters of the Double
Embedding Scheme (DES) while analyzing the

efficiency and effectiveness of the matching

protocol in comparison with the SES.

 Analyzing the efficiency of the DES while
varying the size of the datasets, when

compared to the SES. Also, the time
performance is compared to record matching

performed in the original string space.

 Finally, the heuristic proposed for the
selection of the embedding and matching
parameters δ, K′ and δ′ is validated against the

results obtained from the extensive

experiments on the real datasets.
In the experiments, a real dataset has been

used, representing British Columbia voters’ list

containing 34,264 records of voters’ names

and addresses. This data is available at

http://www.rootsweb.com/~canbc/vote1898.

Only the first name and last name fields were
used in the experiments. Removing all

duplicates from the original set resulted in

29,299 distinct records. From such dataset,

two datasets are generated where we controlled

and identified the percentage of similar records
between each set pair. Three different sizes of

datasets pairs were generated, namely with

each set containing 4,000, 10,000 and 20,000

records respectively in order to evaluate the

Algorithm: SelectParameters(Set1, Set2, K)

Input: Set1, Set2: two datasets of Strings

 K: dimension of first embedding

Output: δ, δ′ and K′

Select random samples from Set1 and Set2

Get Ps: set of similar pairs by computing Edit distance

between all strings

// Compute Euclidean distance between matched pairs

∀ pi,j ∊ PS, compute dE
K(i,j)

Set δ = max∀ pi,j ∊ PS{ dE
K(i,j)}, let corresponding pair be

px,y

// choose K′, δ′

∀ K′

 Set δ′K′ = dE
K′(x,y)

 // compute Euclidean distance between all pairs

 ∀ pi,j ∊ sample, get P′
K the set of pairs where dE

K′< δ′K′

Select K′ that yields minimum CostK′

http://www.rootsweb.com/~canbc/vote1898

N. Adly / A double embedding scheme for efficient record linkage

 Alexandria Engineering Journal, Vol. 48, No. 3, May 2009 249

scalability of the proposed solution.
Throughout the experiments the threshold θ in

the string space was set to 2.

Efficiency is measured by the total
execution time needed to perform the

embedding, indexing and matching.

Effectiveness of the scheme is analyzed in

terms of:

 Recall: the ratio of the number of matched
records pairs are generated by the matching
protocol to the total number of true matched

record pairs. This metric has been sometimes

referred by others [4, 6, 15, 24] as pairs

completeness.

 Accuracy: the percentage of the correctly
classified pairs [6, 24]. It is defined as the

number of pairs correctly classified as matches
or non-matches to the total number of pairs.

This metric has been sometimes referred by

others [1, 18, 20] as precision.

The platform used for these experiments

was a PC with an Intel dual-Core Duo

processor 2.2 GHz and 3GB of memory. The
protocol was implemented using Java and

tested under Windows XP. In the

implementation, the SecondString library [5]

has been used for similarity matching and

Levenshtein distance has been used. The
library is available at

http://secondstring.sourceforge.net/. For

indexing the embedded space, the KDTree

implementation available at

http://www.cs.wlu.edu/~levy/kd has been

used. The Java source was modified in order to
implement the nearest neighbor using range

search as described in Section 3.2.

6.1. Selection of parameters for first embedding

 The selection of a small dimension K would

result in a misrepresentation of the data,

hence distance would not be preserved and

similar pairs and dissimilar pairs will not be
distinguished. However, setting K to a high

value results in high cost, both for embedding

and matching, and we risk the curse of
dimensionality. For the selection of K, samples

of 4000 records from the datasets have been

embedded in different dimensions and the

quality of the embedding is evaluated with
respect to the stress [12], measuring the

distortion of the embedding defined as

stress =

21

21

,

2

21

,

2

2121

),(

)),())(),(((

oo

oo

ood

oodoFoF
.

Also, the recall and accuracy were recorded.
Results when varying K for three dataset sizes

(4K, 10K and 20K) are shown in fig. 5. As
expected, increasing K results in lower stress

values and higher recall and accuracy. Results
revealed that with K set to 25 and higher, very

small variation in the stress is obtained and

very small improvement in the recall and

accuracy are reached. Therefore, in the
remaining of the experiments, K is set to 25.

These results are similar to the results

obtained by [13] and [20].

Another important parameter that affects

the performance and the effectiveness of the
matching protocol is the threshold δ. We ran a

set of experiments on the full datasets 4K, 10K
and 20K while varying δ from 0.1 to 2. It

should be noticed that there is no need to set δ

higher than 2 since the mapping used is

contractive. Since we knew which records were

the true matches, we could compute the recall

and accuracy. Results are shown in fig. 6.
As expected, increasing δ results in

improving the recall fig. 6-a as large value of δ

ensures that all true matches are included in

the results returned from the matching

protocol, at the cost of an increase in the

matching time fig. 6-c. The recall reaches good
values close to 1 for δ larger than 1.6. At δ=1.8

the recall reaches 100% for all the three data
sets. However, increasing δ results in a

decrease in the accuracy as larger values of δ

results in more false positives returned.

However, it is noticed from fig. 6-b that the

decrease in accuracy is very small, ranging
from 0.5% to 0.6% at δ=1.8. On the basis of

these experiments, the chosen embedding
parameters were for K to be set to 25 and for δ

to be set at 1.8.

http://secondstring.sourceforge.net/
http://www.cs.wlu.edu/~levy/kd

N. Adly / A double embedding scheme for efficient record linkage

250 Alexandria Engineering Journal, Vol. 48, No. 3, May 2009

0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

5 10 15 20 25 30 35 40

S
tr

e
ss

K

4K

10K

20K

(a)

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

5 10 15 20 25 30 35 40

R
e
c
a

ll

K

4K

10K

20K

(b)

0.976

0.978

0.98

0.982

0.984

0.986

0.988

0.99

0.992

0.994

0.996

5 10 15 20 25 30 35 40

A
c
c
u

r
a

c
y

K

4K

10K

20K

(c)

Fig. 5. Stress, recall and accuracy of first embedding,
varying K.

6.2. Selection of parameters of second

 embedding

In this section, the effectiveness of the

proposed DES is evaluated, measured in terms

of the recall and accuracy as well as its
efficiency measured in terms of the total

execution time. The two parameters affecting

the performance of the double embedding are
K′ and δ′. A set of experiments has been

conducted varying K′ from 2 to 10 and varying

δ′ from 0.1 to 2 for each K′. Again, δ′ does not

need to be larger than 2 since the FastMap

algorithm used in the second mapping is

contractive. The experiments are repeated for
the three datasets in order to demonstrate the

scalability of the protocol and to observe the
effect of variation of the parameters K′ and δ′

when the data size increases.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

R
e
c
a

ll

δ

4K

10K

20K

(a)

0.988

0.990

0.992

0.994

0.996

0.998

1.000

1.002

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

A
c
c
u

r
a

c
y

δ

4K

10K

20K

(b)

0

20

40

60

80

100

120

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

M
at

ch
 T

im
e

(s
e

c)

δ

4K

10K

20K

(c)

Fig. 6. Recall and accuracy and matching time of first
embedding, varying δ.

N. Adly / A double embedding scheme for efficient record linkage

 Alexandria Engineering Journal, Vol. 48, No. 3, May 2009 251

Fig. 7 shows the recall and accuracy for the
4K dataset, varying δ′ from 0.1 to 2 for

different values of K′. The results of the Single

Embedding Scheme (SES) are also shown for
comparison, with K=25 and δ=1.8.

As expected, increasing δ′ results in an

increase in the recall as larger values of δ′

increases the number of true positives

returned from the matching protocol. High
recall values are reached for δ′ >1.4 for all K′.

The primary reason is that the embedding
used is contractive and provides a good

distance/similarity preservation. The accuracy
on the other hand decreases as δ′ increases,

since more false positives are returned.

However, it reaches the accuracy of SES for
δ′>1.4. The same results were obtained for the

10K and 20K datasets, not shown for space
constraint.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

R
e
c
a

ll

δ′

K'=2

K'=3

K'=4

K'=5

K'=8

K'=10

SES

(a)

0.991

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1.000

1.001

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

A
c
c
u

r
a

c
y

δ′

K'=2

K'=3

K'=4

K'=5

K'=8

K'=10

SES

(b)

Fig. 7. effectiveness of DES for 4K dataset..

Fig. 8-a shows the execution time of DES
while varying δ′ and K′. It is observed that the

cost increases as δ′ increases. This is expected

as while matching in the KDTree, less pruning
is done as there are more nodes to be retrieved
for larger δ′. Also, this increase is due to the

increase in the number of potential matching

pairs generated from the first level matching.
However, for all δ′ and K′, the cost of the DES

is substantially lower than SES, resulting in a
minimum of 30% improvement for all K′. The
effect of the variation of K′ on the cost is

somehow complex since it consists of three

components. The first component is the
embedding time, which increases as K′

increases. The second component is the cost of

indexing, that is building the KDtree for one of
the embedded sets, then applying the nearest

neighbor algorithm using range search for the

second set. This cost increases as well with the
increase of K′. The third component is the final

stage of matching, which consists of

computing the Euclidean distance between the
set of matching pairs resulting from indexing

and searching the KDtree. This cost is

dependent on the number of matching pairs
returned, which decreases as K′ increases.

This decrease is attributed to a more accurate

representation of the doubly embedded records
and hence more accurate matching pairs are

obtained.

Fig. 8-b shows the total execution time for
δ′ larger than 1.4. It is plotted separately in

order to show the effect of varying K′ more

closely. δ′ is chosen from 1.4 to 2.0 since this

is the range δ′ will be chosen from to achieve a

good recall. It is observed that the cost of DES
gives improvement for δ′>1.4 ranging from 30%

to 64% than SES for all values of K′. The

lowest cost is achieved with K′=3, which

achieves the best balance in the cost of the

indexing versus the number of potential
matching pairs. For K′=2, the cost is higher

than K′=3 because the number of detected

pairs in the first matching phase is much
higher than for K′=3 (2.2m pairs versus 1.7m

pairs for δ′ =1.5). Hence, the pair matching

cost is higher, which increases for larger
values of δ′. For K′= 4 and 5, the cost is quite

similar. It is higher than that of K′=3 because

the increase in the indexing and matching cost

N. Adly / A double embedding scheme for efficient record linkage

252 Alexandria Engineering Journal, Vol. 48, No. 3, May 2009

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

E
x

e
c
u

ti
o

n
 T

im
e
 (

se
c
)

δ′

K'=2

K'=3

K'=4

K'=5

K'=8

K'=10

SES

(a)

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

1.4 1.5 1.6 1.7 1.8 1.9 2

E
x

e
c
u

ti
o

n
 T

im
e
 (

se
c
)

δ′

K'=2

K'=3

K'=4

K'=5

K'=8

K'=10

(b)

Fig. 8. Cost of DES for 4K dataset.

(KDTree) is higher than the decrease in the
matching pair cost. They are higher than K′=2
for δ′ smaller than 1.5. Then they outperform

K′=2 since the increase in their indexing and

matching cost is lower than its increase in the
matching pair cost. When K′ is set to 8 and 10

the cost gets higher as the indexing and

matching cost increases.

Running the same experiments on the 10K
dataset revealed that although the
improvement in the cost decreases as δ′
increases, it ranges from 30% to 60% for all K′
for δ′>1.4. Fig. 9-a shows the cost for the 10K

dataset for δ′>1.4 and fig. 9-b shows the

breakdown of the total cost for δ′=1.5 for all K′.
It is noticed that for δ′=1.5, the total cost

reaches its minimum at K′=4, where the

increase in the embedding time and the
KDTree is lower than the decrease in the pair

matching time. From fig. 9-a, it is observed
that K′=4 and 5 yield the best balance between

the three components. The cost of K′=2 and 3

is higher because the matching pair time is

8

9

10

11

12

13

14

15

16

17

1.4 1.5 1.6 1.7 1.8 1.9 2

Ex
e

cu
ti

o
n

 T
im

e
 (

se
c)

δ′

K'=2

K'=3

K'=4

K'=5

K'=8

K'=10

 (a)

0

2

4

6

8

10

12

14

2 3 4 5 6 7 8 9 10

E
x

e
c
u

ti
o

n
 T

im
e
 (

se
c
)

K′

Embed

KDTree

Pair-Match

Total

(b)

Fig. 9. cost of DES for 10K dataset.

dominant. The cost of K′=8 and 10 are higher

than all where the indexing and matching

(KDTree) increase is more dominant.
Fig. 10-a shows the cost for the 20K

dataset for δ′>1.4. Fig. 10-b shows that for

δ′=1.5, the total cost reaches its minimum at

K′=6, where the increase in the embedding

time and the KDTree is lower than the

decrease in the pair matching time. From fig.
10-a, it is observed that K′=6 yields the best

balance between the three cost components,
followed by K′=5, then K′=8. The cost of K′=2

and 3 experience the highest cost, especially
for δ′ larger than 1.4 where the matching pair

time is dominant. The cost of K′=10 is high,

specially for small value of δ′, where the

indexing and matching (KDTree) increase is
more dominant. As δ′ increases, K′ set to 10
shows lower cost than K′ set to 4 or smaller, as

the increase in the matching pair time is
minimal compared to smaller K′.

N. Adly / A double embedding scheme for efficient record linkage

 Alexandria Engineering Journal, Vol. 48, No. 3, May 2009 253

30

35

40

45

50

55

60

65

70

75

1.4 1.5 1.6 1.7 1.8 1.9 2

E
x

e
c
u

ti
o

n
 T

im
e
 (

se
c
)

K′

K'=2

K'=3

K'=4

K'=5

K'=6

K'=8

K'=10

 (a)

0

5

10

15

20

25

30

35

40

45

50

2 3 4 5 6 8 10

E
x

e
c
u

ti
o

n
 T

im
e
 (

se
c
)

K′

Embed

KDTree

Pair-Match

Total

(b)

Fig. 10. Cost of DES for 20K dataset.

The above experiments show that the
selection of K′ affects the improvement of the

cost, and is dependent on the size of the

dataset. As the size of the dataset increases,
larger values of K′ yields lower cost. However, it

is shown that for δ′ set to 1.5, the worst

selection of K′ would result in a 40%

improvement, while an optimum selection can

lead to improvement ranging from 50% to 60%

over SES.

6.3. Effect of datasize variation

To evaluate the scalability of DES, its run

time is compared with the run time of

matching records in the original space, varying
the datasets from 4K to 20K, shown in

fig. 11-a. It is obvious that matching strings
requires by far more time due to O(N2) string

distance computations and the difference is

more dramatic as the data size increases. The

scalability of the protocol is studied also in
comparison with SES as shown in fig. 11-b.
The parameters used for SES were K=25,

δ=1.8, and for DES δ′ =1.5 and K′=3 for N=4K,

K′=4 for N<10K, K′=5 for N<16K and K′=6 for

N<20K. The results show that DES

outperforms SES, especially for large datasets,

showing improvement ranging from 59% to
64%.

6.4. Selection of δ, K′ and δ′

In this section, the suggested heuristic

based on sampling is applied to select the
parameters δ, K′ and δ′. The experiment is

based on the forming of two sets, each drawn

at random from the original datasets. The size

of the sample has been chosen to be 20% of

the original dataset with a minimum size of

1000 records per set. Table 1 shows the values
of δ, δ′ and the execution time (in msec)

obtained using the proposed heuristic for the
three datasets for different values of K′.

For the 20K dataset, the selection yields δ

being 1.8, which agrees with the above

experiments on the real data set. Further, the
selection of K′ resulted in the optimum being 6,

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

4 6 8 10 12 14 16 18 20

E
x

e
c
u

ti
o

n
 T

im
e
 (

se
c
)

records in each dataset (in 1000)

DES

String

 (a)

0

20

40

60

80

100

120

4 6 8 10 12 14 16 18 20

Ex
e

cu
ti

o
n

 T
im

e
 (

se
c)

records in each dataset (in 1000)

SES

DES

 (b)

Fig. 11. Cost of DES vs string matching and SES.

N. Adly / A double embedding scheme for efficient record linkage

254 Alexandria Engineering Journal, Vol. 48, No. 3, May 2009

Table 1
Values of δ, δ′ and execution time while varying K′ obtained using select

parameters heuristic

N 20K 10K 40K

δ 1.800 1.649 1.700
K′ δ′ Cost δ′ Cost δ′ Cost

2 1.468 1,852.03 1.297 433.26 1.239 106.15

3 1.509 1,876.41 1.303 426.32 1.350 114.08
4 1.510 1,795.36 1.340 447.26 1.364 121.31

5 1.528 1,740.86 1.350 468.92 1.368 130.97
6 1.612 1,720.38 1.350 492.33 1.415 141.16
7 1.620 1,851.46 1.353 520.54 1.420 152.55

8 1.622 2,051.96 1.374 552.68 1.421 163.96
9 1.631 2,130.18 1.374 585.24 1.436 175.94

10 1.631 2,234.28 1.387 619.87 1.475 188.45

which again coincides with the experiments.
The choice for δ′ was returned to be 1.612,

with 7% deviation from results obtained from

experiments. For the 10K dataset the choices
for δ, K′ and δ′ were 1.649, 3 and 1.303

respectively deviating between 8% to 10%. For
4K dataset, the choices for δ, K′ and δ′ were

1.709, 2 and 1.239 reaching a deviation of

17%. Although the sample selection is not
exactly the same as the ones resulting from the

experiments, they are not far off and follow the

trend discovered by the experiment, namely,
that K′ needs to be higher for larger datasets.

Also, it is observed that the estimation from

sampling is more relevant when the dataset
size increases.

7. Conclusions

This paper introduced a novel scheme for
record linkage based on double embedding of

the data, aiming at improving the efficiency. A

two level matching is proposed, with the first

level performing a fast and inaccurate

matching, ensuring high recall while the

second level performs a more expensive
matching, on a smaller set of pairs, to improve

the accuracy. Experimental evaluation on real

datasets revealed that, by using contractive

embedding techniques that preserve the

distance between records values, the suggested
scheme outperforms the single embedding

scheme achieving gains in time performance

ranging from 30% to 60%, while achieving the

same level of recall and accuracy. Further, a

heuristic based on sampling has been

proposed for the selection of the values of the

parameters and its application has been

validated against the experimental results and
showed to be very effective. Future work will

address scenarios with more than two parties

and different data types such as DNA

sequence, etc.

References

[1] Al-Lawati, D. Lee and P. McDaniel,

Blocking-aware Private Record Linkage,

IQIS (2005).

[2] R. Baxter and P. Christen, A comparison of
Fast Blocking Methods for Record

Linkage, In KDD Workshop on Data

Cleaning, Record Linkage and Object

Consolidation (2003).

[3] J. Bourgain, "On Lipschitz Embedding of
Finite Metric Spaces in Hilbert Space",

Israel Journal of Mathematics, (1-2)

(1985).

[4] P. Christen, "Automatic Record Linkage

Using Seeded Nearest Neighbour and

Support Vector Machine Classification".
In Proc. of 14th ACM SIGKDD Intl Conf.

on Knowledge Disc. and Data Mining

(2008).

[5] W. Cohen, P. Ravikumar and S. Fienberg,

A Comparison of String Distance Metrics

for Matching Names and Records. In
KDD Workshop on Data Cleaning,

Record Linkage and Object Consolidation

(2003).

[6] M. Elfeky and V. Verykios, "A.

Elmagarmid: TAILOR: A Record Linkage
Toolbox", In Proc. of ICDE (2002).

N. Adly / A double embedding scheme for efficient record linkage

 Alexandria Engineering Journal, Vol. 48, No. 3, May 2009 255

[7] A. Elmagarmid, G. Panagiotis and S.

Verykios, "Duplicate Record Detection: A

Survey", IEEE TKDE, Vol. 19 (1) (2007).
[8] C. Faloutsos and K. Lin, "FastMap: A

Fast Algorithm for Indexing, Data-Mining

and Visualization of Traditional and

Multimedia Datasets", SIGMOD Record,

Vol. 24 (2), pp. 163–174 (1995).

[9] V. Gaede and O. Günther,
"Multidimensional Access Methods",

ACM Computing Survey. Vol. 30 (2)

(1998).

[10] M. Hernandez and S. Stolfo, "Real-World

Data is Dirty: Data Cleansing and the
Merge/Purge Problem", Data Mining and

Knowledge Discovery, Vol. 2 (1) pp. 9-37

(1998).

[11] G. Hjaltason and H. Samet, "Incremental

Distance Join Algorithms for Spatial

Databases", ACM SIGMOD (1998).
[12] G.R. Hjaltason and H. Samet, "Properties

of Embedding Methods for Similarity

Searching in Metric Spaces", IEEE

TPAMI, Vol. 25 (2003).

[13] G. Hristescu and M. Farach-Colton,
Cluster-preserving Embedding of

Proteins, Technical Report, Rutgers

Univ., Piscataway (1999).

[14] E. Jacox and H. Samet, Metric Space

Similarity Joins, ACM Transactions on

Database Systems, Vol. 33 (2) (2008).
[15] L. Jin, C. Li and S. Mehrotra, Efficient

Record Linkage in Large Data Sets,

DASFAA (2003).

[16] N. Koudas, S. Sarawagi and D.

Srivastava, Record Linkage: Similarity
Measures and Algorithms, ACM

SIGMOD (2006).

[17] N. Linial, E. London and Y. Rabinovich,

"The Geometry of Graphs and Some of

its Algorithmics Application",

Combinatorica, Vol. (15) (1995).
[18] McCallum, K. Nigam and L. Ungar,

"Efficient Clustering of High-Dimensional

Data Sets with Application to Reference

Matching. In Proc. of 6th ACM SIGKDD

Intl Conf. on Knowledge Disc. and Data
Mining (2000).

[19] Moore, "An Introductory Tutorial on Kd-

Trees", Extract from Efficient Memory-

Based Learning for Robot Control

(Technical Report 209). Computer

Laboratory, University of Cambridge

(1991).
[20] M. Scannapieco, I. Figotin, E. Bertino

and A. Elmagarmid, "Privacy preserving

Schema and Data Matching", In

Proceedings of the 2007 ACM SIGMOD

Intl Conference on Management of Data

(2007).
[21] W. Shen, P. DeRose, L. Vu, A. Doan

and R. Ramakrishnani, "Source-Aware

Entity Matching: A Compositional

Approach", In Proc. of 23rd Intl Conf. on

Data Eng., ICDE, April (2007).
[22] D. Talbert and D. Fisher, "An Empirical

Analysis of Techniques for Constructing

and Searching k-Dimensional Trees", In

Proc. of 6th ACM SIGKDD Intl Conf. on

Knowledge Disc. and Data Mining, Aug

(2000).
[23] V. Verykios, A. Elmagarmid and E.

Houstis, "Automating the Approximate

Record-Matching Process", Information

Sciences, Vol. 126 (1-4), pp. 83-98

(2000).
[24] V. Verykios, M. Elfeky, A.

Elmagarmid, M. Cochinwala and S.

Dalal, "On the Accuracy and

Completeness of the Record Matching

Process", In Proc. of the 2000 Conf. on

Information Quality, Oct. (2000).
[25] J. Wang, X. Wang, K. Lin, D. Shasha, B.

shapiro and K. Zhang, "An Index

Structure for Data Mining and

Clustering", Knowledge and Information

Systems, Vol. 2 (2) (2000).
[26] J. Wang, X. Wang, K. Lin, D. Shasha, B.

shapiro and K. Zhang, "Evaluating a

Class of Distance-Mapping Algorithms

for Data Mining and Clustering", Proc.

ACM SIGKDD Int’l Conf. Knowledge

Discorvery and Data Mining, pp. 307-
311, (1999).

[27] M. Yakout, M. Atallah and A.

Elmagarmid, Efficient Private Record

Linkage, In Proc. of 25th Intl Conf. on

Data Eng., ICDE (2009).

Received March 9, 2009

Accepted May 2, 2009

