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Squirrel cage induction motors play an important role in the world's industry. Hence there
is a strong demand on their reliable and safe operation. In this paper, the behavior of a
three phase induction motors with internal fault condition under sinusoidal supply voltage
was examined using Finite Element (FE) model. The concerned fault is rotor broken bars.
Different types of broken bars are considered. Two, three, and 4 broken bars cases are
studied. Two configurations for each fault are considered; separated and consequtive bars
cases are studied. Early detection and diagnosis of these faults are desirable for condition
assessment, maintenance, and improved operational efficiency.
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1. Introduction

Nowadays most of the motors used in
industry are squirrel-cage induction motors
because of their simple design, rugged
construction, reliable operation, low initial
cost, easy operation and maintenance, and
relatively high efficiency. Hence numerous
studies were presented in recent years in the
field of fault detection of these machines. In
general, fault diagnosis of induction motors
has focused on sensing failures in one of three
major components: stator, rotor, and bearing
[1]. In this paper, broken squirrel-cage bars
faults are addressed. Well developed fault
detection of any electrical machine requires a
well-grounded theoretical basis. The use of
simulation tools helps the researchers to
emphasis the effect caused by faults in an
electrical machine, and to develop efficient
fault detection methods. Using Finite Element
Method (FEM) analysis, the changes in
electric, magnetic, and machine behavior due
to any fault can be easily observed without the
need of dismantling the machine, or testing it
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in laboratories. Magnetic field distribution
within the motor contains full information on
the status of stator and rotor of the motor.
Evaluation of the magnetic field distribution
makes it possible to evaluate the actual
performance of the motor [2, 3]. FEM analysis
has been coupled to circuit simulation which
allows simulating the operating conditions of
the induction motor with real power supply
connections. Magnetic field distribution within
the motor can be evaluated using FEM, based
on the dimension and magnetic parameters of
the motor. Knowing the magnetic field
distribution, other quantities, such as induced
voltage waveform, magnetic flux density within
the air gap and inductances of different
windings of the motor are obtained [4-7].

2. Finite element model of the induction
machine

In recent years, the FEM became widely
used in the design and analysis of electric
machines [8]. Several program packages for
magnetic field computation have been
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developed: MagNet, Flux2D, Ansys, Femlab,
Maxwell.

Based on the well-known Maxwell’s
equations the FEM based program can
compute the magnetic field distribution in any
electrical machine, and upon this all the
parameters and characteristics of the machine
can be easily computed. Maxwell software
package was used to perform the required
simulation. Table 1 lists the characteristic of
the 2 pole, 3 phases, 380 v, Y, 95 hp induction
motor.

2.1. Stator slot data

Fig. 1 shows the stator slot shape and its
dimensions, table 2.

2.2. Rotor slot data

Fig. 2 shows the rotor slot shape and its
dimensions, table 2.

Table 1
Characteristics of the 2 pole, 3 phases, 380 v, Y, 95 hp
induction motor.

Number of pole 2
Number of stator slots 36
Number of rotor slots 28
Stator outer diameter (inches) 10.1
25
Rotor outer diameter (inches) 5.525
Shaft diameter (inches) 1.875
Air gap (inches) 0.046

Stack length (inches) 9.5

Stator and rotor material Steel type (D23)

Fig. 1. Stator slot shape.

H:01 " Bl 4

B

| Erl f

Fig. 2. Rotor slot shape.

Table 2
Stator and rotor slots dimension

Filed Value Filed Value
stator stator rotor rotor
HsO 0.0555 HrO 0.0215
Hs1 0.065 HrO1 0
Hs2 0.698 Hrl 0.01
BsO 0.16 Hr2 0.44
Bsl1 0.309 BrO 0.01
Bs2 0.432 Brl 0.3
Br2 0.2

The FEM model of motor geometry is
shown in fig. 3. Material properties are
assigned to the motor components, where
stator windings and rotor bars are considered
copper. Stator and rotor body are assigned as
steel with the BH curve as shown in fig. 4.

[
|
|

Fig. 3. FEA geometry of induction motor.
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Fig. 4. BH curve of the stator and rotor material.

The Shaft is assigned steel with constant
permeability. The air gap between the rotor
and stator is assigned air, the region outside
the stator is assigned vacuum. In transient
solver we need to build a band region to
envelop all the rotational parts (rotor, bars,
and shaft).

Each phase of the stator three phase
sources is divided into two groups, for go and
return current. Phase A has PHAgo and
PHAret, phase B has PHBgo, and PHBret,
phase C has PHCgo and PHCret. Rotor bars
are connected all as one group. The whole
model is discredited into small elements,
where the more elements used, the more
accurate solution is obtained. Fig. 5 shows the
mesh model of the induction motor.

Fig. 5. Mesh distribution of the FEA model.

2.3. Circuit modeling

All stator and rotor conductor areas are
represented in the circuit domain of FEM
analysis. Stator windings are assigned as
stranded conductors, with relevant resistances
and inductances assigned to each phase. In
the circuit schematic diagram stator windings
are assigned in star connection with three
phase supply applied to them. Fig. 6. shows
the three phase winding of the stator winding.
Rotors bars are considered as parallel
winding, (for the squirrel cage case). Broken
bars are assigned as a solid current source
with total current equals zero, which is to
represent the breaking effect of the bar.

3. Maxwell’s equations

The transient solver of the FEM analysis
allows solving and analyzing the magnetic
fields, energy, force, power, power loss, speed,
and flux of the model at various time steps of
the solution over a specified period of time. It
allows a non sinusoidal current or voltage
excitation as well as rotational or translational
motion. The transient solver of the FEM
analysis assumes the following conditions
about the problem:

1. If motion occurs in the model, no motion
occurs outside the band object.

2. Only one type of motion (translational or
rotational) occurs in the model.

3. More than one object can be assigned
identical motion within the band object.

The time-dependent magnetic filed eq. [9]
is expressed in eq. (1)
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Fig. 6. The external electric circuit of the stator circuit.
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VxuVx A=
OA
Jg —GE—GVV-FVX H, +ovxVxA, (1)

Where,

Hc is the coercivity of the permanent magnet,
V is the velocity of the moving parts,

A is the magnetic vector potential, and

Js is the source current density.

The transient solver applies a reference
frame that is fixed with respect to the
components in the model by setting the
velocity, v, equal to zero. Because the moving
components have now been fixed to their own
coordinate system, the partial time derivative
becomes in the total time derivative of A.
Thus, the motion equation becomes:

quVxA=JS—O'%—o’Vv+VxHC. 2)

The induction motor has two types of current
source; stranded and solid. Stator winding are
assigned as a stranded current source, where
stranded conductors lack eddy current
behavior and are considered to be filaments
too thin to model in a practical finite element
grid. Because of this, the transient solver
assumes that their contribution to the current
density is averaged over the area of problem
region. The current density is based on eq (3).

VxoVxA=Jg. (3)

Rotor bars are assigned parallel solid
conductor, where solid conductor is large
enough to model with finite element. The skin
effect depends not only on the frequency of the
systems, but also on the location of nearby
conductors. Based on Ampere’s law, the total
current density, J;, in the system is given by
egs. (4, 5 and 6). For the broken bars the total
current density is equal zero.

Where,

hi=—o—-oVv. (5)

Which it reduces to

oA o
Ji=—c—+—V,, 6
t PR (6)
Where,
V. is the voltage difference across the

b
conductors end points,
Je is the eddy current density, and
Js is the source current density.

3.1. Rotational motion

The transient motion simulator generates
rotational motion based on the following
motion equation, eq (7).

JB+Do= Tcomp"'TIoad . (7)

Where,

J is the inertial force, in kg.m?2,

T is the torque, in N.m,

o is the angular speed, in rad/sec,

£ is the angular acceleration, in rad/sec?,
and

D is the damping factor, in N.m.s.

4. Simulation results

In order to simulate the internal faults,
geometry modification as well as circuit
modification is necessary. The broken bars are
realized by assigning the broken rotor bars as
a solid current source with zero current,
where there is no source current passing on it.
But, there will be surface induced eddy
current in it. The transient solver helps us to
investigate the magnetic flux distribution in
the air gap during transient as well as steady
state conditions. The machine behavior under
broken bars faults was investigated under
sinusoidal voltage source. Different types of
broken bars faults are investigated. Two
broken bars and four broken bars were
investigated, in two distribution manner,
separate broken bars and sequential broken
bars.
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4.1. Starting simulation

Simulation results are investigated at
starting and steady state conditions, where it
is expected that the big effect will be at
starting.

Fig. 7 shows the flux distribution for
healthy motor at transient, at t = 0.051 sec.
Healthy case will be the reference for all other
cases.

Figs. (8-a, b, c¢, d) show the flux
distribution under different number of broken
bars and different locations, at the same time
of the investigated healthy motor. In the case
of broken bars, the magnetic field is no longer
sinusoidal around the circumference of the
air-gap due to lack of the induced currents in
the broken bars. Also the broken bars are
considered as a flux barrier now due to the
surface induced currents in them. Also for
sequential broken bars, they have great effect
in distorting the air gap flux more than if the
broken bars are separate from each others.

The magnetic flux distribution is
fundamentally altered during broken rotor
bars fault. Fig. 9-a - d show the magnetic
vector potential distribution around the
contour located at the bottom of the rotor
bars. And fig. 10-a - d shows the magnetic
vector potential distribution around the
contour located at the top of the rotor bars.
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Fig. 7. Magnetic flux distribution for healthy motor.
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4.2. Steady state simulation

Simulation results for the magnetic
distribution at steady state are investigated at
t = 0.1 sec. Fig. 11 show the magnetic flux
distribution at t = 0.1 sec. The magnetic flux
distribution is not distorted due to the broken
bars. This means that the broken bars have
no effect after transient period, where the
current is in the steady state. Broken bars are
working as a flux barrier in the transient
period only.

Transient simulation for the developed
torque and stator current give clear
investigation about the effect of the broken
bars in the starting period and steady state
period. Fig. 12-a-d shows the developed torque
generated at different cases for broken bars,
comparing with developed torque at healthy
case which are investigated in related to the
magnetic flux distribution. Fig. 12-a shows
that at starting there is difference between the
healthy case and the one with two sequential
broken bars. An extra torque is observed due
to the reluctance torque which is developed
due to the 2 broken bars, (this is due to the
non-homogenous of the air gap now). The two
broken bars are working as a flux barrier now,
which cause reluctance torque due to the no-
uniform air gap now. At steady state there is
no effect of the broken bars on the developed
torque that is what is shown in the flux
distribution. Comparing between 2 sequential
broken bars and 2 separate broken bars, 2
sequential broken bars have effect more than
the two separate broken bars. Fig.12-c, d
show the developed torque for 4 broken bars
compared with the healthy case.

As approved for 2 broken bars, four
sequential broken bars have more effect that
the two broken bars. There is a pulsating
torque appearing in the case of 4 broken bars,
in the steady state period, while there is drift
in the transient torque compared by the
healthy case. In this case we find that the
sequential broken bars have big effect that the
separate bars.

Transient currents for the stator are
investigated and analyzed by FEM. Fig.13-a-d,
show the transient current for phase A for
healthy motor and defected motor with the
broken bars.
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Fig. 11-a. Magnetic flux distribution at steady state t=0.1
sec for 2 separate broken bars.
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Fig. 11-d. Magnetic flux distribution at steady state t=0.1
sec for 4 sequential broken bars.
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Fig. 11-b. Magnetic flux distribution at steady state t=0.1
sec for 2 sequential broken bars.
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Fig. 11-c. Magnetic flux distribution at steady state t=0.1
sec for 4 separate broken bars.
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Fig. 13-a. Transient phase current for healthy and 2
separate broken bars.
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In the study of induced eddy current in the
neighbors’ bars of the broken bars, current
density is investigated at transient period at t=
0.005 sec.

Using FEM proves that the rotors bars
next to the broken ones are the most exposed
to future damage, due to their very high
current density, and it can be expected that
the fault will soon propagate to these
overloaded bars.

5. Conclusions

This paper has presented the utilization of
FEM in diagnosis of the flux distribution in
the three phase squirrel cage induction motor,
under internal fault of broken bars. Using
FEM, most of the typical fault of the machine
can be studied. Using FEM proves that the
rotor bars next to the broken ones are the
most exposed to future damage, due to their
very high current, and it can be expected that
the fault will soon propagate to these
overloaded bars.

It is proved also that steady state analysis
of the induction motor doesn’t change that
much in the fault case. The faults can be
detected from the transient simulation, which
can not be simulated using convention model.
FEM is a powerful tool to simulate the
transient condition of any machine and
different faults can be detected.
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