

Alexandria Engineering Journal

Alexandria Engineering Journal, Vol. 48 (2009), No. 1, 95-106 95
© Faculty of Engineering, Alexandria University, Egypt.

Harvesting OAI-PMH repositories using adaptive synchronization

Noha Adly
Computer and Systems Engg. Dept., Faculty of Engg., Alexandria University, Alexandria 21544, Egypt

noha.adly@alex.edu.eg

Metadata harvesting requires timely propagation of up-to-date information from thousands
of Repositories over a wide area network. It is desirable to keep the data as fresh as possible
while observing the overhead on the Harvester. An important dimension to be considered is
that Repositories vary widely in their update patterns; they may experience different update
rates at different times or unexpected changes to update patterns. In this paper, we define
data Freshness metrics and propose an adaptive algorithm for the synchronization of the
Harvester with the Repositories. The algorithm is based on meeting a desired level of

Freshness while incurring the minimum overhead on the Harvester. We present a

comparison between different policies for the synchronization within the framework devised.
It is shown that the proposed policy outperforms the other policies, especially for
heterogeneous update patterns. Further, we propose a tool for the administrators of the
Harvesters that enable them to choose the level of Freshness to operate at while balancing
the tradeoff between the penalties incurred from staleness of the data and the overall
performance.

 بياناتال أن تكون يجب. والشبكات الواسعة المدى المستودعات عبر آلافمن لمعلوماتل البيانات يتطلب نشر سريع حصادإن
 أنماط تتفاوت على نطاق واسع فيهو أن المستودعات بعدا هاما ل وينبغي النظر .حديثة مع مراعاة الحمل الواقع علي الحاصدة

. التحديث نماطمن الممكن حدوث تغييرات غير متوقعة لأث مختلفة في أوقات مختلفة أوتحدي لمعدلات قد يتعرضونفتحديث؛ ال
المقترح قائم والخوارزملمستودعات. امع الحاصدة قابل للتكيف لتزامن خوارزم حلحداثة البيانات ويقترمقاييس ويقدم هذا البحث

مختلفة خوارزميات مقارنة بينويقدم البحث . كلفة ممكنةت الحاصدة أقلعلى تحقيق مستوى محدد من حداثة البيانات مع تحميل
وعلاوة غير متجانسة. تحديث الأخرى، وخاصة لأنماط خوارزمياتالالمقترح يفوق الخوارزم أداء أنالنتائج أظهرت وقدلتزامن ل

عمل على تحقيق التوازن ذي يي تمكنهم من اختيار مستوى الحداثة الأمثل والالحاصدات التمديري أداة ل البحث قترحعلى ذلك ، ي
 على الحاصدة.الأداء تكلفة البيانات وقدم بين

Keywords: Data synchronisation, Freshness constraints, Distributed objects, Harvesting,

Digital libraries, OAI-PMH

1. Introduction

There is an exponential growth of online
material and digital libraries that play a key

role in managing this information by

structuring the content so that it is discovered

easily and effectively. Many repositories use

the Open Archives Initiative Protocol for
Metadata Harvesting (OAI-PMH) [1] to expose

metadata about their resources and contents.

OAI-PMH is based on the standard

technologies HTTP and XML as well as the

Dublin Core metadata scheme. It is a set of six

verbs or services that provides an open
interface for metadata exchange and
harvesting. Within OAI-PMH, a Data Provider
is a Repository that exposes its structured

metadata; and a Harvester, operated by a

Service Provider, makes OAI-PMH service

requests to harvest that metadata from
Repositories. Service Providers, then, provide

value-added services, such as federated
search [2, 3], on the harvested data extracted
from the Repositories. A general configuration

of OAI-PMH is shown in fig. 1.
Selective harvesting allows Harvesters to

limit harvest requests to portions of the
metadata available from a Repository. The

OAI-PMH supports selective harvesting and
Harvesters are expected to exploit this

property to limit the load placed on
Repositories and Harvesters while maintaining

fresh data for services offered by the Service

Provider. Selective harvesting is supported in

OAI-PMH through timestamps, included as

from argument in the ListRecords requests

and expressed in seconds’ granularity, which

are used to harvest only those records that

N. Adly / Harvesting OAI-PMH

96 Alexandria Engineering Journal, Vol. 48, No. 1, January 2009

were created, deleted or modified within a

specified range.

The synchronization problem addresses
how to keep the metadata records of the
Repositories and Harvester consistent.

Frequent harvesting results in the data at the
Service Provider being up-to-date and

consistent with the Data Provider. However,

frequent harvesting results in a high overhead
on both the Harvester and the Repositories,

which renders the harvesting inefficient,
especially if the Data Provider has not been

updated during the harvest interval. On the

other hand, without frequent harvesting,
Service Providers may become inconsistent

with Data Providers: not only can new records

be missed, but deletions and modifications as
well and hence mislead the results offered to
the user by the Service Provider. The challenge

is how to design a harvesting algorithm that
strikes the balance between the Freshness of

the data and the overhead incurred.

A large number of repositories have been

using OAI-PMH to expose their data, which
are of different domains; ranging from

scholarly publishing data such as E-print

repositories [4-6] or education material such

as HEAL [7], multimedia resources, biomedical

data [8], and archeological data [9]. These
applications are likely to have a small but

steady stream of daily or weekly updates.

However, different applications started to arise

that manage data of different nature. Recent

initiatives [10] have proposed making usage

data of scholarly information service, collected

Fig. 1. General configuration of OAI-PMH.

from web logs, available using OAI-PMH and

focused on promoting its applications and

creating value-added services on this data
such as derivation of global measures of

impact and the identification of global trends.

Also, recently, there has been a growing

interest in harvesting news, annotations [11],

reviews of articles and RSS feeds. Those

applications are likely to have a large number
of updates and with high frequency.

Therefore, it is expected with current
applications that Repositories would be

heterogeneous in nature: different Repositories

may have different update rate and a
Repository may have different update rate at

different times of the day. The update pattern
of Repositories plays a major role in

determining the balance between frequent

harvesting, which guarantees Freshness of

data at the expense of high overhead and

infrequent harvesting which could result in

stale data. Inconsistency or stale data,
although could be acceptable in some

applications, would be undesirable for some

other applications e.g. news feeds, which are

sensitive to data Freshness. Therefore there is

a need for an adaptive policy that adjusts the
harvesting according to the update patterns of
the Repositories.

Other major potential users of OAI-PMH

are search engines. Although, current

commercial search engines make a limited use

of OAI-PMH to index their data, a study [12]
performed on 10 millions records of OAI-PMH

repositories revealed that Google, Yahoo! and

MSN indexed only 60%, 44% and 7%

respectively of these records. However, as

interest in revealing site content to web

crawlers in a structured manner has
increased recently, it is expected that major

search engines will support more of OAI-PMH

in order to index more content. This will lead
to a larger number of Repositories registering

and implementing OAI-PMH to be able to

share their contents. Hence, efficient
Harvesters are needed that will be able to pull

data with dynamic behavior from a large
number of Repositories.

This growing interest in variety of

applications suggests that the environment

will be much more dynamic than before, with
a larger number of Repositories to be

N. Adly / Harvesting OAI-PMH

 Alexandria Engineering Journal, Vol. 48, No. 1, January 2009 97

harvested and with a variety of natures of
Repositories, with different update patterns.

In this paper, we present an adaptive pull-

based policy for harvesting data from a set of
Repositories that aims to reduce the overhead

on the Harvester, and consequently on the

Repositories, while maintaining Freshness of

data at a certain level. In order to ensure
Freshness of data without wasting resources,

we provide a framework for measuring the
Freshness of data at the Harvester as well as

the cost, which allows devising an optimal

algorithm for harvesting that is able to adapt

to changes in the update patterns at
Repositories. The algorithm presented is

compliant with the OAI_PMH protocol with
minimal changes required at the Repository

and the Harvester. It relies on piggybacking
compact representation of the Repository

workload on ListRecords response. It is

shown that the proposed policy results in a
reduction in the cost on the Harvester

compared to other policies while providing
comparable level of Freshness. The benefits

have shown to be maximized for

heterogeneous update patterns. Further, we

propose an alternative formulation of the

overall cost which combines the penalties
incurred from the Staleness of the data and

the overhead on the Harvester and devise a

tool that would help the administrator of the
Harvester to choose an adequate level of

Freshness that would balance the tradeoff

between the Freshness of the data and overall

performance.

The structure of the paper is as follows.

section 2 discusses previous work in
synchronization and measuring data
Freshness. In section 3, we present a

framework for deriving measures for the
Freshness of data and cost on the Harvester

that allows us to formulate the optimization

problem and derive its solution. Section 4
presents the Optimal Adaptive Policy OAP(θ).
In section 5, we provide a comparison between
OAP(θ) and three other policies for harvesting.

In section 6 we introduce an alternative metric

for the cost and devise an approach that helps
in the selection of the level of Freshness and

tuning the overall performance. Finally,

section 7 concludes the paper.

2. Related work

Synchronization and Freshness problems
arise in various contexts. In [13], several
definitions of data Freshness and the metrics

measuring them are introduced according to

the applications where they are used; whether

replications systems, federated databases,

data warehousing, web portal, cashing
systems, etc. They presented a taxonomy

based upon the nature of the data, the type of

the application and the synchronization policy

used. Our work is driven by synchronizing
Harvester with Repositories within OAI-PMH

protocol.
Synchronization of large collection of

objects, for example, web crawlers, has been

addressed in [14, 15] where they have defined

age and freshness metrics by modeling the

average update frequency of individual

elements of a database as well as the whole
database. They analyzed different

synchronization policies based on the

frequency of synchronizing the local database,

the frequency of synchronizing individual

elements, the synchronization order and the
synchronization points over time. However,

their approach relies on discovering the

update time of each individual web page,

which is different from than the incremental

harvesting model of the OAI-PMH.

Labrinidis [16] considered freshness in the
context of view materialization in caching

dynamic web content. They studied selecting

which views to materialize in order to

maximize performance while keeping data

freshness at acceptable level. A Quality of
Data (QoD) metric was defined to evaluate how

fresh the data served to the users is. They

propose an algorithm which constantly

monitors the QoD of served data and

periodically adjusts the materialization plan

by allocating more (or less) resources when
there is a QoD deficit (or surplus). This study

also focuses on individual web pages.

Driven by results showing that in web

caching 30–50% of cache hits result in

unnecessary validations, which incur high
latency, Bright et al. [17] presented two

history-based policies, that establish their

prediction on the repetitive nature of update

history. They are an extension to the TTL

N. Adly / Harvesting OAI-PMH

98 Alexandria Engineering Journal, Vol. 48, No. 1, January 2009

(Time-To-Live) policy, where each object is

assigned a TTL and a validation occurs for any

cached object whose TTL has expired. The TTL
value is usually estimated as a function of the

time that an object was last modified.

However, in [17] they are targeting an

environment where updates patterns are non-

homogenous, capturing updates in a timely

manner is critical and some degree of
staleness is unacceptable. Hence, they

modeled update history of an object as a cyclic

stochastic model that can be extended with

bursts or deviations from the cyclic history. It

has been shown that the history based
policies outperform TTL either for cyclic

update pattern or acyclic history that exhibits

bursts. It should be noted that this approach

is different from the OAI-PMH synchronization

because within web caching, synchronization

is done on the object level, that is, only when
this particular object is accessed it is

refreshed; while in OAI-PMH the

synchronization is applied to all objects of the

repository.

In [18], they studied the synchronization
problem of the OAI-PMH. By examining the

harvest logs of Arc [19], an OAI harvester for

e-print services, they concluded that most
Repositories change at a steady rate, but the

rates vary dramatically from site to site. They

suggested four possibilities for adaptive
policies for synchronization. The first is based
on the Harvester estimating the update

frequency by learning the harvest history and
the second is based on the Repository

notifying the Harvester of its update frequency

as a response to an Identify request.

Although both policies are OAI-PMH

compliant, the details of the algorithms were

not discussed. Also, relying on information

sent through the Identify request is not

adequate since this verb is used only for newly
registering Repositories. Further, the metrics

introduced for studying the synchronization

were mainly used for formalization of some

definitions and did not allow for quantification
of the Freshness or the overhead that could

help in evaluating the proposed algorithms.
The other two algorithms were based on either
Repositories notifying the Harvester whenever

content is changed or on a Push-based

mechanism. Other than they have not been

presented in details or evaluated, both

proposals are not OAI-PMH compliant and

would require major changes in the protocol.

3. Framework

To study the synchronization problem, we

present a framework that allows us to study

and measure the metrics that affect the
performance. One important measure is the
quality of the data or, Freshness. The other

metric which we take into consideration is the
overheard, or the Cost, incurred on the

Harvester.

3.1. Freshness measure

When an element is updated at a
Repository R, this element becomes stale with

respect to the Harvester. The element remains

stale until a harvest occurs where the value of
the element at the Harvester is updated.

Obviously, it is required that the data
elements harvested be as fresh as possible,
that is more up-to-date. Let {R1, R2,…RM} be M

Repositories to be harvested and Ri = {e1,

e2,…eNi} be Repository i with Ni elements.

An element in a Repository is considered

fresh at time t if it is up-to-date at time t w.r.t.

to the Harvester i.e. if its value at Repository is

equivalent to its value at Harvester at time t.

Otherwise the element is considered stale.
Definition 1: Freshness of element ej at time t:

otherwise 0

 time at date -to -up is if 1
,

te j
teF j

The Freshness of Ri, F(Ri,t), is defined as

the fraction of the Ri that is up-to-date. F(Ri,t)

is a rational number between 0 and 1, with a
value of one, if all elements of Ri are up-to-

date and would be zero if all elements are
stale. Given that Ri contains Ni elements,

F(Ri,t) is the average of the freshness values of

all elements that compose Ri .

iN

j j
i

i teF
N

tRF
1

,
1

,

Note that Freshness is hard to measure

exactly in practice, since we need to
instantaneously compare the data elements of
the Repository to the Harvester. But it is

N. Adly / Harvesting OAI-PMH

 Alexandria Engineering Journal, Vol. 48, No. 1, January 2009 99

possible to estimate Freshness given some

information about how the elements of the
Repository change. In order to measure

Freshness, we observe the synchronization

stream and the update stream for a certain
observation period T. Assume that the average

update rate of Ri is λi and that the Harvester
performs Pi pulls for each Ri at regular

intervals Ii=T/Pi. Fig. 2 shows the evolution of

updates with the horizontal axis representing

the time and the vertical axis representing the

number of stale items.
The synchronization stream during the

observation period T is viewed as a sequence

of harvests requests made at time Ii , 2Ii , 3Ii ,
…. Then the number of stale items at Ri at

time t:
Si = λi * t t = 0,1,2,…Ii

Assume we synchronize at t=0 and t= Ii, then,

from fig. 2 the average number of stale items:

2

i
ii

I
S

The Freshness of a Repository Ri:

iiRi NSF 1

ii

i

i

ii
R

PN

T

N

I
F

i 2
1

2
1

 .

The Freshness of Harvester H is defined as

the average Freshness of all the Repositories it

harvests.

M

i

i

M

j

jj

M

i

i

M

j

Rj

H

N

I

N

FN

F

j

1

1

1

1

2

1

. (1)

Fig. 2. Evolution of updates at a Repository Ri.

3.2. Cost measure

Another important measure that affects
the performance is the overhead incurred on
the Harvester. The Cost on the Harvester
depends on the update rate λi and the pull

rate Pi for each Repository it harvests. For

each harvest, the Harvester extracts new

records from Ri, which incurs a

communication cost as well as a processing

cost. This cost is paid even if there are no new
records to harvest. Also, the Harvester

extracts, processes and applies every new

update to his local copy of the database. Let
CU = Cost incurred from extracting and

processing a single update.
Cp = Cost of initiation, negotiation and

communication of a pull. Then,
CH|Pi = Cost of Harvester for pulling Ri

CH |Pi= T λi * CU + Pi * CP

M

i

ip

M

i

iuH PCTCC

11

 . (2)

3.3. Optimal harvest intervals

This section will study how often a
Harvester should pull each Repository, when it

knows how often they change, in order to
minimize the Cost while maintaining a certain
level of Freshness. We formulate the problem

as an optimization problem with the objective
to determine the optimal harvest interval I.

Problem: Given λi, Ni, FH = θ, find Ii which

minimize the cost CH

M

i

ip

M

i

iuH ITCTCIC

1

1

1

 .

Given freshness FH=θ or

M

j

j

M

j

jj

N

I

1

1

2

1

 .

We can solve the above constrained

optimization problem using the method of
Time

T 2Ii Ii t

of stale items

tan α=λi

α α

α

N. Adly / Harvesting OAI-PMH

100 Alexandria Engineering Journal, Vol. 48, No. 1, January 2009

Lagrange multipliers [20], where the

constraint function is

 012

11

M

j

j

M

j

jj NIIg

Define the Lagrangian Λ as

M

j

j

M

j

jj

M

i

ip

M

i

iu

H

NIITCTC

IgICI

111

1

1

12

.,

Solving for points I where

 0., IgICI H

From the partial derivatives with respect to I,

we can deduce

MjII
j

j 2 1
1

Substituting into the partial derivate with
respect to the Lagrange multiplier μ

We get

M

j

ji

M

j

j

i

N

I

1

1

12

, (3)

and

M

j

j

M

i

i

p

M

i

iuH

N

TCTCIC

1

2

1

1 12

 . (4)

4. Optimal adaptive policy algorithm

Current harvesting algorithms are based

on a fixed uniform harvest interval that is
applied to all Repositories. Such algorithms

will not work well in an environment where

updates patterns change dynamically. The
heterogeneous nature of Repositories

workloads mandates that the harvesting

algorithm, be adaptive in order to evolve under
changing workload pattern.

In this section we propose an Optimal
Adaptive Policy algorithm, OAP(θ), a

harvesting algorithm that is executed at the
Harvester, where θ is a threshold specified by

the Harvester. OAP(θ) strives to maintain the

overall Freshness above the specified
threshold θ and also keeps the cost at the

Harvester as low as possible.

OAP(θ) is inherently adaptive. The

algorithm relies on the Harvester collecting

statistics from the Repositories concerning

their workloads and computes the optimal
intervals at which it pulls each Repository to

achieve the level of Freshness desired θ while

minimizing the cost incurred. Namely, the
Harvester H estimates λi and Ni for each Ri and

computes the optimal intervals from eq. (3).
One main concern while devising OAP(θ) is to

be compliant with the OAI-PMH protocol with

minimum or no changes introduced to the

protocol.
The main OAI-PMH verb used by OAP(θ) is

the ListRecords verb, which is used to

harvest records from a Repository based on a

timestamp, where the from argument specifies

the lower bound for the timestamp-based

selective harvesting. OAI-PMH controls the

return of large number of records through

partitioning the records into batches and the

use of a resumptionToken with each batch.

This partitioning is accomplished as follows: a

Repository replies to a ListRecords request

with an incomplete list and a

resumptionToken; in order to retrieve the

next portion of the complete list, the next
request from the Harvester must use the value

of that resumptionToken element as the value

of the resumptionToken argument of the

request. Finally, the response containing the

incomplete list that completes the list must

include an empty resumptionToken element.

The complete list then consists of the
concatenation of the incomplete lists from the

sequence of requests.

OAP(θ) will be using the resumptionToken

as the mean to pass on the information
needed from the Repository to the Harvester. It

N. Adly / Harvesting OAI-PMH

 Alexandria Engineering Journal, Vol. 48, No. 1, January 2009 101

makes use of the fact that the

resumptionToken is already incorporated into

the protocol and has associated attributes

that are useful to the implementation of
OAP(θ), without the need to change the

operation of a verb or to introduce a new verb

or to change the XML schema. Namely,

completeListSize, an attribute associated

with the resumptionToken, is an integer

indicating the cardinality of the complete list

to be sent; which basically represent the
number of updates sent from the Repository

during this harvest cycle. OAP(θ) introduces a

new attribute to the resumptionToken, which

is totElements, indicating the total number

of elements at the Repository at the time.

These two values are passed with every

response to a ListRecords request from the

Repository to the Harvester. Therefore, OAP(θ)

suggests a minor change in the

implementation of the ListRecords verb at

the Repository side. More precisely, it suggests

that the Repository includes a

resumptionToken in every response to

ListRecords, even if the need for partitioning

does not arise. The resumptionToken will be

empty if the whole set of updates are to be
sent in one partition, and will have an

identifier if the set of updates is partitioned. It

should be noted that making

resumptionToken mandatory for the

Repository does not present an overhead since

these attributes are sent with the whole list

and not on the record level. Further, the

values of the attributes totElements and

completeListSize sent are already known to

the Repository and do not need to be

computed.
Harvester H estimates the update rate of

Ri, λi from the number of updates it receives

from Ri in the current harvest. Let the number

of updates H receives from Ri at Pull j is UiR

and the total number of elements at Ri
received is NiR. The value of UiR and NiR

represent the value of the completeListSize

and totElements attributes of the

resumptionToken transmitted from Ri along

with the response to the ListRecords

request. H can use the recursive prediction
error method [21] to estimate the update rate

in the near future. Namely, λiH= (1-g)λiP+g λiR,

where

 λiH = new estimate of update rate of Ri for

the next period

 λiP = old estimate for update rate in the

last interval

 λiR = update rate for the current
interval=UiR/Ii, where Ii is the interval at which

these updates occurred.

 g = gain factor, 0<g<1 suggested [21] to be
set to 0.25

Although more sophisticated methods
could be used by the Harvester for estimating

the number of updates, it is believed that this

heuristic is simple and incurs a small
overhead. Basically, H needs just to keep an

array λiP of size M that keeps the actual rates

of updates at the current interval received
from Repositories for use of the estimate of the

number of updates for the next interval. So

the storage space and the computational

complexity are negligible. The Pseudo code for
OAP(θ) is as follows:

Algorithm OAP(θ):

while (true) do {

 find k such that Ik ← Min{Ii } Mi 1

 Send ListRecords request to Rk

 Extract from response UkR and NkR
//Estimate update rate for Rk for the next period

 λkR ← UkR / Ik

 λkH ← (1-g)λkP+g λkR

 // Compute new intervals Ii for all Ri

 for i←1 to M do {

M

j

H

j

H

i

M

j

R

j

i

N

I

1

1

12

 }
 λkP = λkR
 // Get next R to be harvested

}

5. Comparison between different policies

In order to evaluate the potential benefits
of the OAP(θ), we provide a comparison

between the OAP(θ) and other policies for

variant workloads. We represent the variation

in the workload by considering four types of
Repositories that exhibit different behaviors.

N. Adly / Harvesting OAI-PMH

102 Alexandria Engineering Journal, Vol. 48, No. 1, January 2009

Namely, we assume that a Repository can

have a small number of elements (Ni =1000)

and others may have a large number of
elements (Ni =10,000). Further each Repository

can have a small update rate (λi = 10% Ni)
while another Repository can experience a

large update rate (λi = 50% Ni). This generates

four types of Repositories simulating different

behaviors as shown in table 1.

It is assumed that the number of
Repositories to be harvested M=1000 and the

observation period is taken to be T=1 day.

The cost of a harvest cycle is set to 50 units
(CP = 50), while the cost of extracting and

processing a single update is set to 0.1
(CU =0.1).

5.1. OAP(θ) vs. Uniform adaptive policy

The objective of this experiment is to

compare the Optimal Adaptive Policy OAP(θ)

with a Uniform Adaptive Policy (UAP). The UAP
is set such that the Harvester pulls all the

Repositories at a uniform (fixed) update

interval IU. This is compared to OAP(θ) which

sets a different pulling interval for each
Repository according to the behavior of the
Repository relative to the workload patterns of

all other Repositories. In order to choose the

Uniform Interval IU, we assume that the

Harvester is aware of the workload on each

Repository, and hence computes IU as the

Optimal Interval to achieve the required
Freshness θ given that all Repositories are

combined into a single site, which would
result in the same Freshness as the OAP(θ).

In this experiment, we assume that the
Repositories are a mix of T1 and T4 workload;

and we vary the percentage of Repositories

that belong to T1 versus T4. That is, we

evaluate a workload where 75% of the
Repositories follow the pattern of type T1 and

25% of them follow T4. Then we change this
percentage till we reach 30% of Repositories of

Table 1

Four different types of workloads

 T1 T2 T3 T4

λi 100 500 1000 5000

Ni 1000 1000 10000 10000

Type T1 and 70% of type T4. We evaluate
the overhead incurred on the Harvester for

each policy for different Freshness thresholds

θ, as shown in fig. 3. We plot the ratio of the

cost of UAP, C'H, versus the cost of OAP(θ), CH,
(C'H/CH) for different mixes.

Results show that the gains of OAP(θ) are

higher when the mix of Repositories is inclined

towards T1, with UAP suffering from increase

in the cost ranging between 21% to 71% for
different Freshness θ. As the workload mix

moves toward T4, the cost of UAP decreases,
but is still higher than OAP(θ), showing a

degradation of 10% to 34% when the workload

is evenly distributed between T1 and T4 and
being 16% when the majority of Repositories

are of T4. It is observed that as θ increases,

the benefits of OAP(θ) are more obvious where

the degradation in UAP ranges between 71%
to 16% for θ=0.98 and 46% to 10% for θ=0.95.
This shows that the OAP(θ) benefits are more

dramatic for systems demanding high
Freshness. Also, the OAP(θ) is more adjustable

to the variation of the workload mix than UAP.

5.2. OAP(θ) vs. Uniform non-adaptive policy

In this experiment, we compare OAP(θ)

with a Harvester that will apply a Uniform

Policy as well; however, we assume that the
Harvester is not aware of the actual mix

between the Repositories he is about to

harvest. Namely, he knows that the
Repositories are a mix of T1 and T4, and that

the mix would range between 80% to 60% of

T1 versus T4. Hence he estimates that the mix

would be 70% of T1 and 30% of T4 and it
computes the uniform interval IU based on this

estimate. We compare UNAP with OAP(θ) in

case the actual mix is ranging between the

estimate ±10%. So we plot the variation in the
mix between 80% and 60% and we evaluate
the Freshness and Cost of both policies for

different Freshness thresholds θ, as shown in

figs. 4 and 5.

It is observed that when the actual mix is

of T1=70%, which matches the estimates of
UNAP, both policies have the same Freshness,

while UNAP has a higher overhead in the cost
ranging between 18% to 60% for different θ.

When the actual mix moves towards T1, UNAP

experiences degradation in the cost ranging

N. Adly / Harvesting OAI-PMH

 Alexandria Engineering Journal, Vol. 48, No. 1, January 2009 103

between 30% to 95% while the Freshness of

UNAP is superior to that of OAP(θ) by a range

of 0.1% to 0.001%. When the actual mix

moves towards T4, the cost of UNAP
decreases, but still is higher than OAP(θ) by a

range of 11% to 4%. This comes at the
expense of the Freshness which decreases by

a range of 0.1% to 0.001%.

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

0.75 0.7 0.65 0.6 0.55 0.5 0.45 0.4 0.35 0.3

Update Mix

C
' H

/C
H

θ=0.98

θ=0.95

θ=0.90

θ=0.85

Fig. 3. The cost of UAP vs. OAP(θ) varying the workload

mix.

0.985

0.990

0.995

1.000

1.005

1.010

1.015

1.020

0.8 0.78 0.76 0.74 0.72 0.7 0.68 0.66 0.64 0.62 0.6

Update Mix

F
' H

/F
H

θ=0.98

θ=0.95

θ=0.90

θ=0.85

Fig. 4. The freshness of UNAP vs. OAP(θ).

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

0.8 0.78 0.76 0.74 0.72 0.7 0.68 0.66 0.64 0.62 0.6

Update Mix

C
' H

/C
H

θ=0.98

θ=0.95

θ=0.90

θ=0.85

Fig. 5. The cost of UNAP vs. OAP(θ).

5.3. OAP(θ) vs. Individual optimal adaptive
 policy

In this experiment, we compare OAP(θ)

with a different Adaptive Policy IOAP. In IOAP,
the Harvester chooses the Optimal Interval for

each Ri, based on the overall Freshness

desired and the workload on this particular Ri,

independently, rather than relative to the
workload on all Repositories. This policy is

simpler, since the Harvester would not need to

recompute the optimal intervals each time he

receives an update in the workload of one of
the Repositories, as is the case in the OAP(θ).

IOAP results in same Freshness as OAP(θ) but

different costs, so we compare the cost of both
policies for different Freshness thresholds θ.

Fig. 6 shows the ratio of the cost of IOAP
C'H to the cost of OAP(θ) CH while varying θ

from 0.5 to 0.95. Results are shown for five

cases representing different workload mixes of

T1, T2, T3 and T4. In the first four cases, case
i represents a mix of a majority (70%) of

Repositories following type Ti, while 30% of the

Repositories are uniformly distributed among

the three other types. The fifth case represents
a uniform mix of the Repositories between the

different four types.

Results shown in fig. 6 show that when
the Repositories are evenly distributed

between the different types of workloads, the

IOAP incurs a higher cost ranging from 3% to
18%, with higher overhead for higher θ. When

majority of Repositories are of type T2, IOAP

behaves very badly with degradation reaching

36%. A majority mix of T1 or T3 show similar

behavior as the even mix while T4 is the least

sensitive.
The above experiments show that OAP(θ)

captures the different mixes of workload and

adjusts itself such that it provides major

improvement over other policies in the cost,
given a required threshold of Freshness.

It is expected that the performance of
OAP(θ) is dependent on the estimates of λi .
However, we can show that OAP(θ) is

insensitive to the variations of λi as long as the

actual λi deviates from the estimate of λi by a

value of ±δλi . That is in the variations of the

actual arrival rate, the amount of +δλi is equal

to –δλi. For the cost, CH, eq. (2) shows that the

second term is independent of the actual λi.

N. Adly / Harvesting OAI-PMH

104 Alexandria Engineering Journal, Vol. 48, No. 1, January 2009

The first term,

M

i

iuC
1

 is a summation of actual

λi. Since |+δλi |= |-δλi|, then the total cost
incurred by the variation of actual λi would be

equal to 0. Similarly, for the Freshness, from

eq. (3) it is clear that Ij are independent of the

actual arrival rate since the Harvester
computes Ij based on the estimates of λi, not

the actual. The term

M

j

jj I
1

 , which depends

on actual λi would lead to λi ±δλi canceling each

other.

6. Alternative cost metric

In this section, we introduce a different
perspective of viewing the Freshness and the

Cost CH, the Combined Cost CCH. The

Combined Cost represents the combination of

the loss resulting from the Staleness of data

and the communication and processing
overhead on the Harvester. That is, CCH = α *

Staleness + CH , where α is a normalization

factor.
Fig. 7 plots the Combined Cost CCH

against different values of Freshness for

various workload mixes for α=10,000. The

results show that choosing a small value for
Freshness, although would result in lower CH,

it leads to a high CCH due to the loss incurred

from the staleness of the data. While a very
high value of Freshness, although reduces the

staleness of the data, it incurs a very high cost
CH and hence would result in a high CCH. The

curves suggests to the managers of the
Harvester, the Freshness which would result

in the optimum Combined Cost.

0.900

0.950

1.000

1.050

1.100

1.150

1.200

1.250

1.300

1.350

1.400

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

θ

C
' H

/C
H

0.7:0.1:0.1:0.1

0.1:0.7:0.1:0.1

0.1:0.1:0.7:0.1

0.1:0.1:0.1:0.7

0.25:0.25:0.25:0.25

Fig. 6. The Cost of IOAP vs. OAP(θ) varying θ.

1,500

2,500

3,500

4,500

5,500

6,500

7,500

0.75 0.775 0.8 0.825 0.85 0.875 0.9 0.925 0.95 0.975

Freshness

C
o

m
b

in
e

d
 C

o
s

t

0.7:0.1:0.1:0.1

0.1:0.7:0.1:0.1

0.1:0.1:0.7:0.1

0.1:0.1:0.1:0.7

0.25:0.25:0.25:0.25

Fig. 7. Varying the Freshness for different workload

mixes, with α=10,000.

Actually, the value of α can be viewed as a

representation of the priority of the Freshness

relative to the Cost CH, with higher values of α,

leading to higher values of Freshness. To

generalize, we introduce the factor αi for every

Repository Ri, denoting how important the

Freshness for Ri is. Therefore, we can

formulate the problem as to minimize the
Combined Cost CCH and the Minimum
Combined Cost Min_CCH will be:

M

i

iu

M

i

iiM

j

j

p
H TC

N

TC
CCMin

11

1

2
_

Fig. 8 plots Min_CCH along with the

corresponding actual cost CH and the

Freshness at the Harvester while varying the

factor α for a workload mix where 70% of the

Repositories belonging to Type T4 and the

remaining 30% distributed evenly between

Types T1, T2 and T3. It is shown that as α

increases the optimal Combined Cost results
in an increase in the Freshness at the expense
of a corresponding increase in the cost CH.

Therefore, the factor α acts as a regulator in

the system, determining at runtime the
adequate level of Freshness that would realize

the balance between an acceptable level of
Staleness of the data and an acceptable

overhead that we are ready to pay. This tool
enables the administrators at the Harvester to

tune the desired level of Freshness against the

Cost.

N. Adly / Harvesting OAI-PMH

 Alexandria Engineering Journal, Vol. 48, No. 1, January 2009 105

Further, the factor αi allows us to

introduce different priority of Freshness for

different Repositories. Fig. 9 plots the Min_CCH

with the corresponding Freshness and CH

while varying α for the same workload mix.
However, for 50% of the Repositories of T4,

their α is set to double the value of the other

Repositories. That is, it is desired to double
the priority of Freshness for those selected

Repositories. As shown in fig. 9, and

comparing it with fig. 8, the curves results in
different optimum values of CCH, with lower

global Freshness ranging from 6% to 1%,
resulting from prioritizing the Freshness of the

selected Repositories, and with a slight

increase in the CH ranging from 1% to 5%.

Fig. 8. The Min_CCH with the corresponding Freshness
and CH, while varying α.

3,000

4,000

5,000

6,000

7,000

8,000

9,000

1000 3000 5000 7000 9000 11000 13000 15000 17000 19000

α

 C
o

s
t

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Min_CC

CH

Freshness

Fig. 9. The Min_CCH with the corresponding freshness

and CH, while varying α, with different αi for different Ri.

The suggested Combined Cost and the

solution derived offers a tool that could be

used by the managers of the Harvester in

order to choose the adequate level of
Freshness to operate with that would result in

the desired balance between the staleness of
the data and the incurred cost.

7. Conclusions

In this paper, we introduced an adaptive
policy for harvesting OAI-PMH Repositories

that experience different workload patterns. A

framework is provided within which the
Harvester can decide on the pulling frequency

based on a desired level of Freshness while

incurring a minimum overhead. It has been

shown that the adaptive policy reduces the
overhead on the Harvester, and hence on the

Repositories, compared to other adaptive or

uniform pull-based policies, while offering
comparable level of Freshness. This is

especially obvious when the Repositories are

heterogeneous and experience different update

patterns. Further, we presented an
instrument, based on a combined cost metric,

that allows choosing an adequate level of
Freshness to operate at while tuning the

overall performance.

References

[1] C. Lagoze, H. Van de Sompel, M. Nelson

and S. Warner, "The Open Archives

Initiative Protocol for Metadata

Harvesting, Version 2.0.

http://www.openarchives.org/OAI/open
archivesprotocol.html

[2] K. Maly, M. Zubair and L. Xuemei, "A

High Performance Implementation of an

OAI-Based Federation Service", In

Proceedings of the 11th International
Conference on Parallel and Distributed

Systems (ICPADS’05) (2005).

[3] K. Maly, M. Zubair, V. Chilukamarri and

P. Kothari, "GRID Based Federated

Digital Library", In ACM Proc of the 2nd

Conf. on Computing Frontiers, Ischia,
Italy, May (2005).

[4] arXiv. http://arxiv.org

[5] D-lib Magazine. http://www.dlib.org/

[6] D. Contessa and J. Moreira de Oliveira,

An OAI Data Provider for JEMS, In

Proceedings of the 2006 ACM

3,000

4,000

5,000

6,000

7,000

8,000

9,000

1000 3000 5000 7000 9000 11000 13000 15000 17000 19000
?

 Cost

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Min_CC
CH
Freshness

N. Adly / Harvesting OAI-PMH

106 Alexandria Engineering Journal, Vol. 48, No. 1, January 2009

Symposium on Document Engineering,

Netherlands (2006).

[7] S. Mclntyre, S. Dennis, S. Uijtdehaage
and C. Candler, "A Digital Library for

Health Sciences Educators: The Health

Education Assets Library (HEAL)," in

Proc. of 4th ACM/IEEE Joint Conference

on Digital Libraries, June (2004).

[8] Y. Fu and J. Mostafa, "Integration of
Biomedical Text and Sequence OAI

Repositories, in Proc.", of 4th ACM/IEEE

Joint Conference on Digital Libraries,

June (2004).

[9] N. Vemuri, R. Shen, S. Tupe, W. Fan and
E. Fox, "ETANA-ADD: An Interactive Tool

for Integrating Archeological DL

Collections, in Proc", of 6th ACM/IEEE

Joint Conf. on Digital Libraries, North

Carolina, June (2006).

[10] J. Bollen and H. Herbert Van de Sompel,
An Architecture for the Aggregation and

Analysis of Scholarly Usage Data, in

Proc. of 6th ACM/IEEE Joint Conference

on Digital Libraries, North Carolina, pp.

298-307, June (2006).
[11] J. Hunter, I. Khan and A. Gerber,

"HarvANA – Harvesting Community Tags

to Enrich Collection Metadata", in Proc.

of 8th ACM/IEEE Joint Conference on

Digital Libraries, Pittsburg, Pennsylvania

(2008).
[12] F. McCown, M. Nelson, M. Zubair and X.

Liu, "Search Engine Coverage of the OAI-

PMH Corpus", IEEE Internet Computing,

April (2006).

[13] M. Bouzeghoub and V. Peralta, "A
Framework for Analysis of Data

Freshness", In Proceedings of the

international Workshop on Information

Quality in Information Systems ACM

IQIS, Paris (2004).

[14] J. Cho and H. Garcia Molina,
"Synchronizing a Database to Improve

Freshness", In Proc. of the 2000 ACM

SIGMOD Intl. Conf. on Management of

Data, Dallas, TX, May (2000).

[15] J. Cho and H. Garcia Molina,

"Estimating Frequency of Change, ACM
Transactions on Internet Technology", 3,

pp 256-290 (2003).

[16] A. Labrinidis and N. Roussopoulos,

Exploring the Tradeoff between

Performance and Data Freshness in
Database-driven Web Servers, The VLDB

Journal, 13, 3, pp 240-255 (2004).

[17] L. Bright, A. Gal and L. Raschid,

"Adaptive Pull-Based Policies for Wide

Area Data Delivery", ACM Transactions

on Database Systems, Vol 31, No. 2, pp
631-671, June (2006).

[18] X. Liu, K. Maly, M. Zubair and M.

Neslon, "Repository Synchronization in

the OAI Framework", in Proc. of 3rd

ACM/IEEE Joint Conference on Digital
Libraries, June (2003).

[19] X. Liu, K. Maly, M. Zubair and M.

Nelson, Arc – An OAI Service Provider for

Cross-Archive Searching, in Proc. of 1st

ACM/IEEE Joint Conf. on Digital

Libraries, June (2001).
[20] G.B. Thomas, Jr. Calculus and analytic

geometry, Addison-Wesley, 4th edition

(1969).

[21] V. Jacobson, "Congestion Avoidance and

Control", in Proc. of ACM SIGCOMM,
Stanford, CA, pp. 314-329 (1988).

Received October 20, 2008

Accepted December 16, 2008

