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Metadata harvesting requires timely propagation of up-to-date information from thousands 
of Repositories over a wide area network. It is desirable to keep the data as fresh as possible 
while observing the overhead on the Harvester. An important dimension to be considered is 
that Repositories vary widely in their update patterns; they may experience different update 
rates at different times or unexpected changes to update patterns. In this paper, we define 
data Freshness metrics and propose an adaptive algorithm for the synchronization of the 
Harvester with the Repositories. The algorithm is based on meeting a desired level of 

Freshness while incurring the minimum overhead on the Harvester. We present a 

comparison between different policies for the synchronization within the framework devised. 
It is shown that the proposed policy outperforms the other policies, especially for 
heterogeneous update patterns. Further, we propose a tool for the administrators of the 
Harvesters that enable them to choose the level of Freshness to operate at while balancing 
the tradeoff between the penalties incurred from staleness of the data and the overall 
performance.  

 بياناتال أن تكون يجب. والشبكات الواسعة المدى المستودعات عبر آلافمن  لمعلوماتل البيانات يتطلب نشر سريع حصادإن 
 أنماط تتفاوت على نطاق واسع فيهو أن المستودعات بعدا هاما ل وينبغي النظر .حديثة مع مراعاة الحمل الواقع علي الحاصدة

. التحديث نماطمن الممكن حدوث تغييرات غير متوقعة لأث مختلفة في أوقات مختلفة أوتحدي لمعدلات قد يتعرضونفتحديث؛ ال
المقترح قائم  والخوارزملمستودعات. امع الحاصدة قابل للتكيف لتزامن  خوارزم حلحداثة البيانات ويقترمقاييس  ويقدم هذا البحث

مختلفة  خوارزميات مقارنة بينويقدم البحث . كلفة ممكنةت الحاصدة أقلعلى تحقيق مستوى محدد من حداثة البيانات مع تحميل 
وعلاوة غير متجانسة.  تحديث الأخرى، وخاصة لأنماط خوارزمياتالالمقترح يفوق  الخوارزم أداء أنالنتائج أظهرت  وقدلتزامن ل

عمل على تحقيق التوازن ذي  يي تمكنهم من اختيار مستوى الحداثة الأمثل والالحاصدات التمديري أداة ل البحث قترحعلى ذلك ، ي
 على الحاصدة.الأداء تكلفة البيانات وقدم بين 
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1. Introduction 

 

There is an exponential growth of online 
material and digital libraries that play a key 

role in managing this information by 

structuring the content so that it is discovered 

easily and effectively. Many repositories use 

the Open Archives Initiative Protocol for 
Metadata Harvesting (OAI-PMH) [1] to expose 

metadata about their resources and contents. 

OAI-PMH is based on the standard 

technologies HTTP and XML as well as the 

Dublin Core metadata scheme. It is a set of six 

verbs or services that provides an open 
interface for metadata exchange and 
harvesting. Within OAI-PMH, a Data Provider 
is a Repository that exposes its structured 

metadata; and a Harvester, operated by a 

Service Provider, makes OAI-PMH service 

requests to harvest that metadata from 
Repositories. Service Providers, then, provide 

value-added services, such as federated 
search [2, 3], on the harvested data extracted 
from the Repositories. A general configuration 

of OAI-PMH is shown in fig. 1. 
Selective harvesting allows Harvesters to 

limit harvest requests to portions of the 
metadata available from a Repository. The 

OAI-PMH supports selective harvesting and 
Harvesters are expected to exploit this 

property to limit the load placed on 
Repositories and Harvesters while maintaining 

fresh data for services offered by the Service 

Provider. Selective harvesting is supported in 

OAI-PMH through timestamps, included as 

from argument in the ListRecords requests 

and expressed in seconds’ granularity, which 

are used to harvest only those records that 
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were created, deleted or modified within a 

specified range.  

The synchronization problem addresses 
how to keep the metadata records of the 
Repositories and Harvester consistent. 

Frequent harvesting results in the data at the 
Service Provider being up-to-date and 

consistent with the Data Provider. However, 

frequent harvesting results in a high overhead 
on both the Harvester and the Repositories, 

which renders the harvesting inefficient, 
especially if the Data Provider has not been 

updated during the harvest interval.  On the 

other hand, without frequent harvesting, 
Service Providers may become inconsistent 

with Data Providers: not only can new records 

be missed, but deletions and modifications as 
well and hence mislead the results offered to 
the user by the Service Provider. The challenge 

is how to design a harvesting algorithm that 
strikes the balance between the Freshness of 

the data and the overhead incurred. 

A large number of repositories have been 

using OAI-PMH to expose their data, which 
are of different domains; ranging from 

scholarly publishing data such as E-print 

repositories [4-6] or education material such 

as HEAL [7], multimedia resources, biomedical 

data [8], and archeological data [9]. These 
applications are likely to have a small but 

steady stream of daily or weekly updates. 

However, different applications started to arise 

that manage data of different nature. Recent 

initiatives [10] have proposed making usage 

data of scholarly information service, collected 
 

 
 

Fig. 1. General configuration of OAI-PMH. 

from web logs, available using OAI-PMH and 

focused on promoting its applications and 

creating value-added services on this data 
such as derivation of global measures of 

impact and the identification of global trends. 

Also, recently, there has been a growing 

interest in harvesting news, annotations [11], 

reviews of articles and RSS feeds. Those 

applications are likely to have a large number 
of updates and with high frequency. 

Therefore, it is expected with current 
applications that Repositories would be 

heterogeneous in nature: different Repositories 

may have different update rate and a 
Repository may have different update rate at 

different times of the day. The update pattern 
of Repositories plays a major role in 

determining the balance between frequent 

harvesting, which guarantees Freshness of 

data at the expense of high overhead and 

infrequent harvesting which could result in 

stale data. Inconsistency or stale data, 
although could be acceptable in some 

applications, would be undesirable for some 

other applications e.g. news feeds, which are 

sensitive to data Freshness. Therefore there is 

a need for an adaptive policy that adjusts the 
harvesting according to the update patterns of 
the Repositories.  

Other major potential users of OAI-PMH 

are search engines. Although, current 

commercial search engines make a limited use 

of OAI-PMH to index their data, a study [12] 
performed on 10 millions records of OAI-PMH 

repositories revealed that Google, Yahoo! and 

MSN indexed only 60%, 44% and 7% 

respectively of these records. However, as 

interest in revealing site content to web 

crawlers in a structured manner has 
increased recently, it is expected that major 

search engines will support more of OAI-PMH 

in order to index more content. This will lead 
to a larger number of Repositories registering 

and implementing OAI-PMH to be able to 

share their contents. Hence, efficient 
Harvesters are needed that will be able to pull 

data with dynamic behavior from a large 
number of Repositories.  

This growing interest in variety of 

applications suggests that the environment 

will be much more dynamic than before, with 
a larger number of Repositories to be 
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harvested and with a variety of natures of 
Repositories, with different update patterns. 

In this paper, we present an adaptive pull-

based policy for harvesting data from a set of 
Repositories that aims to reduce the overhead 

on the Harvester, and consequently on the 

Repositories, while maintaining Freshness of 

data at a certain level. In order to ensure 
Freshness of data without wasting resources, 

we provide a framework for measuring the 
Freshness of data at the Harvester as well as 

the cost, which allows devising an optimal 

algorithm for harvesting that is able to adapt 

to changes in the update patterns at 
Repositories. The algorithm presented is 

compliant with the OAI_PMH protocol with 
minimal changes required at the Repository 

and the Harvester. It relies on piggybacking 
compact representation of the Repository 

workload on ListRecords response. It is 

shown that the proposed policy results in a 
reduction in the cost on the Harvester 

compared to other policies while providing 
comparable level of Freshness. The benefits 

have shown to be maximized for 

heterogeneous update patterns. Further, we 

propose an alternative formulation of the 

overall cost which combines the penalties 
incurred from the Staleness of the data and 

the overhead on the Harvester and devise a 

tool that would help the administrator of the 
Harvester to choose an adequate level of 

Freshness that would balance the tradeoff 

between the Freshness of the data and overall 

performance.  

The structure of the paper is as follows. 

section 2 discusses previous work in 
synchronization and measuring data 
Freshness. In section 3, we present a 

framework for deriving measures for the 
Freshness of data and cost on the Harvester 

that allows us to formulate the optimization 

problem and derive its solution. Section 4 
presents the Optimal Adaptive Policy OAP(θ). 
In section 5, we provide a comparison between 
OAP(θ) and three other policies for harvesting. 

In section 6 we introduce an alternative metric 

for the cost and devise an approach that helps 
in the selection of the level of Freshness and 

tuning the overall performance.   Finally, 

section 7 concludes the paper. 
 

2.  Related work 

 

Synchronization and Freshness problems 
arise in various contexts. In [13], several 
definitions of data Freshness and the metrics 

measuring them are introduced according to 

the applications where they are used; whether 

replications systems, federated databases, 

data warehousing, web portal, cashing 
systems, etc. They presented a taxonomy 

based upon the nature of the data, the type of 

the application and the synchronization policy 

used.  Our work is driven by synchronizing 
Harvester with Repositories within OAI-PMH 

protocol.  
Synchronization of large collection of 

objects, for example, web crawlers, has been 

addressed in [14, 15] where they have defined 

age and freshness metrics by modeling the 

average update frequency of individual 

elements of a database as well as the whole 
database. They analyzed different 

synchronization policies based on the 

frequency of synchronizing the local database, 

the frequency of synchronizing individual 

elements, the synchronization order and the 
synchronization points over time. However, 

their approach relies on discovering the 

update time of each individual web page, 

which is different from than the incremental 

harvesting model of the OAI-PMH. 

Labrinidis [16] considered freshness in the 
context of view materialization in caching 

dynamic web content. They studied selecting 

which views to materialize in order to 

maximize performance while keeping data 

freshness at acceptable level. A Quality of 
Data (QoD) metric was defined to evaluate how 

fresh the data served to the users is. They 

propose an algorithm which constantly 

monitors the QoD of served data and 

periodically adjusts the materialization plan 

by allocating more (or less)  resources when 
there is a QoD deficit (or surplus). This study 

also focuses on individual web pages. 

Driven by results showing that in web 

caching 30–50% of cache hits result in 

unnecessary validations, which incur high 
latency, Bright et al. [17] presented two 

history-based policies, that establish their 

prediction on the repetitive nature of update 

history. They are an extension to the TTL 
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(Time-To-Live) policy, where each object is 

assigned a TTL and a validation occurs for any 

cached object whose TTL has expired. The TTL 
value is usually estimated as a function of the 

time that an object was last modified. 

However, in [17] they are targeting an 

environment where updates patterns are non-

homogenous, capturing updates in a timely 

manner is critical and some degree of 
staleness is unacceptable. Hence, they 

modeled update history of an object as a cyclic 

stochastic model that can be extended with 

bursts or deviations from the cyclic history. It 

has been shown that the history based 
policies outperform TTL either for cyclic 

update pattern or acyclic history that exhibits 

bursts. It should be noted that this approach 

is different from the OAI-PMH synchronization 

because within web caching, synchronization 

is done on the object level, that is, only when 
this particular object is accessed it is 

refreshed; while in OAI-PMH the 

synchronization is applied to all objects of the 

repository.  

In [18], they studied the synchronization 
problem of the OAI-PMH. By examining the 

harvest logs of Arc [19], an OAI harvester for 

e-print services, they concluded that most 
Repositories change at a steady rate, but the 

rates vary dramatically from site to site. They 

suggested four possibilities for adaptive 
policies for synchronization. The first is based 
on the Harvester estimating the update 

frequency by learning the harvest history and 
the second is based on the Repository 

notifying the Harvester of its update frequency 

as a response to an Identify request. 

Although both policies are OAI-PMH 

compliant, the details of the algorithms were 

not discussed. Also, relying on information 

sent through the Identify request is not 

adequate since this verb is used only for newly 
registering Repositories. Further, the metrics 

introduced for studying the synchronization 

were mainly used for formalization of some 

definitions and did not allow for quantification 
of the Freshness or the overhead that could 

help in evaluating the proposed algorithms. 
The other two algorithms were based on either 
Repositories notifying the Harvester whenever 

content is changed or on a Push-based 

mechanism. Other than they have not been 

presented in details or evaluated, both 

proposals are not OAI-PMH compliant and 

would require major changes in the protocol.  
 

3.  Framework 

 

To study the synchronization problem, we 

present a framework that allows us to study 

and measure the metrics that affect the 
performance. One important measure is the 
quality of the data or, Freshness. The other 

metric which we take into consideration is the 
overheard, or the Cost, incurred on the 

Harvester.  

 
3.1. Freshness measure 

 

When an element is updated at a 
Repository R, this element becomes stale with 

respect to the Harvester. The element remains 

stale until a harvest occurs where the value of 
the element at the Harvester is updated. 

Obviously, it is required that the data 
elements harvested be as fresh as possible, 
that is more up-to-date. Let {R1, R2,…RM} be M 

Repositories to be harvested and Ri = {e1, 

e2,…eNi} be Repository i with Ni elements.  

An element in a Repository is considered 

fresh at time t if it is up-to-date at time t w.r.t. 

to the Harvester i.e. if its value at Repository is 

equivalent to its value at Harvester at time t. 

Otherwise the element is considered stale.  
Definition 1: Freshness of element ej at time t: 

 





otherwise   0

 time at date -to -up is  if    1
,

te j
teF j  

The Freshness of Ri, F(Ri,t), is defined as 

the fraction of the Ri that is up-to-date. F(Ri,t) 

is a rational number between 0 and 1, with a 
value of one, if all elements of Ri are up-to-

date and would be zero if all elements are 
stale. Given that Ri contains Ni elements, 

F(Ri,t) is the average of the freshness values of 

all elements that compose Ri .  
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Note that Freshness is hard to measure 

exactly in practice, since we need to 
instantaneously compare the data elements of 
the Repository to the Harvester. But it is 
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possible to estimate Freshness given some 

information about how the elements of the 
Repository change. In order to measure 

Freshness, we observe the synchronization 

stream and the update stream for a certain 
observation period T. Assume that the average 

update rate of Ri is  λi and that the Harvester 
performs Pi pulls for each Ri at regular 

intervals Ii=T/Pi. Fig. 2 shows the evolution of 

updates with the horizontal axis representing 

the time and the vertical axis representing the 

number of stale items.  
The synchronization stream during the 

observation period T is viewed as a sequence 

of harvests requests made at time Ii , 2Ii , 3Ii , 
…. Then the number of stale items at Ri at 

time t: 
Si = λi * t  t = 0,1,2,…Ii 

Assume we synchronize at t=0 and t= Ii, then, 

from fig. 2 the average number of stale items: 

2
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The Freshness of Harvester H is defined as 

the average Freshness of all the Repositories it 

harvests. 
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Fig. 2. Evolution of updates at a Repository Ri. 

3.2. Cost measure 

 

Another important measure that affects 
the performance is the overhead incurred on 
the Harvester. The Cost on the Harvester 
depends on the update rate λi and the pull 

rate Pi for each Repository it harvests. For 

each harvest, the Harvester extracts new 

records from Ri, which incurs a 

communication cost as well as a processing 

cost. This cost is paid even if there are no new 
records to harvest.  Also, the Harvester 

extracts, processes and applies every new 

update to his local copy of the database. Let  
CU = Cost incurred from extracting and 

processing a single update. 
Cp = Cost of initiation, negotiation and 

communication of a pull. Then, 
CH|Pi = Cost of Harvester for pulling Ri 

CH |Pi= T λi * CU + Pi * CP 
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3.3. Optimal harvest intervals 

 

This section will study how often a 
Harvester should pull each Repository, when it 

knows how often they change, in order to 
minimize the Cost while maintaining a certain 
level of Freshness. We formulate the problem 

as an optimization problem with the objective 
to determine the optimal harvest interval I.   

 
Problem:  Given λi, Ni, FH = θ, find Ii which 

minimize the cost CH 
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We can solve the above constrained 

optimization problem using the method of 
Time 
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Lagrange multipliers [20], where the 

constraint function is 
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Define the Lagrangian Λ as 
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Solving for points I where 
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From the partial derivatives with respect to I, 

we can deduce  
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Substituting into the partial derivate with 
respect to the Lagrange multiplier μ  
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4. Optimal adaptive policy algorithm 

 

Current harvesting algorithms are based 

on a fixed uniform harvest interval that is 
applied to all Repositories. Such algorithms 

will not work well in an environment where 

updates patterns change dynamically. The 
heterogeneous nature of Repositories 

workloads mandates that the harvesting 

algorithm, be adaptive in order to evolve under 
changing workload pattern.  

In this section we propose an Optimal 
Adaptive Policy algorithm, OAP(θ), a 

harvesting algorithm that is executed at the 
Harvester, where θ is a threshold specified by 

the Harvester. OAP(θ) strives to maintain the 

overall Freshness above the specified 
threshold θ and also keeps the cost at the 

Harvester as low as possible.  

OAP(θ) is inherently adaptive. The 

algorithm relies on the Harvester collecting 

statistics from the Repositories concerning 

their workloads and computes the optimal 
intervals at which it pulls each Repository to 

achieve the level of Freshness desired θ while 

minimizing the cost incurred. Namely, the 
Harvester H estimates λi and Ni for each Ri and 

computes the optimal intervals from eq. (3). 
One main concern while devising OAP(θ) is to 

be compliant with the OAI-PMH protocol with 

minimum or no changes introduced to the 

protocol.  
The main OAI-PMH verb used by OAP(θ) is 

the ListRecords verb, which is used to 

harvest records from a Repository based on a 

timestamp, where the from argument specifies 

the lower bound for the timestamp-based 

selective harvesting. OAI-PMH controls the 

return of large number of records through 

partitioning the records into batches and the 

use of a resumptionToken with each batch. 

This partitioning is accomplished as follows: a 

Repository replies to a ListRecords request 

with an incomplete list and a 

resumptionToken; in order to retrieve the 

next portion of the complete list, the next 
request from the Harvester must use the value 

of that resumptionToken element as the value 

of the resumptionToken argument of the 

request. Finally, the response containing the 

incomplete list that completes the list must 

include an empty resumptionToken element. 

The complete list then consists of the 
concatenation of the incomplete lists from the 

sequence of requests.  

OAP(θ) will be using the resumptionToken 

as the mean to pass on the information 
needed from the Repository to the Harvester. It 
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makes use of the fact that the 

resumptionToken is already incorporated into 

the protocol and has associated attributes 

that are useful to the implementation of 
OAP(θ), without the need to change the 

operation of a verb or to introduce a new verb 

or to change the XML schema. Namely, 

completeListSize, an attribute associated 

with the resumptionToken, is an integer 

indicating the cardinality of the complete list 

to be sent; which basically represent the 
number of updates sent from the Repository 

during this harvest cycle. OAP(θ) introduces a 

new attribute to the resumptionToken, which 

is totElements, indicating the total number 

of elements at the Repository at the time. 

These two values are passed with every 

response to a ListRecords request from the 

Repository to the Harvester. Therefore, OAP(θ) 

suggests a minor change in the 

implementation of the ListRecords verb at 

the Repository side. More precisely, it suggests 

that the Repository includes a 

resumptionToken in every response to 

ListRecords, even if the need for partitioning 

does not arise. The resumptionToken will be 

empty if the whole set of updates are to be 
sent in one partition, and will have an 

identifier if the set of updates is partitioned. It 

should be noted that making 

resumptionToken mandatory for the 

Repository does not present an overhead since 

these attributes are sent with the whole list 

and not on the record level. Further, the 

values of the attributes totElements and 

completeListSize sent are already known to 

the Repository and do not need to be 

computed.  
Harvester H estimates the update rate of 

Ri, λi from the number of updates it receives 

from Ri in the current harvest. Let the number 

of updates H receives from Ri at Pull j is UiR 

and the total number of elements at Ri 
received is NiR. The value of UiR and NiR 

represent the value of the completeListSize 

and totElements attributes of the 

resumptionToken transmitted from Ri along 

with the response to the ListRecords 

request. H can use the recursive prediction 
error method [21] to estimate the update rate 

in the near future. Namely, λiH= (1-g)λiP+g λiR, 

where 

 λiH = new estimate of update rate of Ri for 

the next period 

 λiP = old estimate for update rate in the 

last interval 

 λiR = update rate for the current 
interval=UiR/Ii, where Ii is the interval at which 

these updates occurred. 

 g = gain factor,  0<g<1 suggested [21] to be 
set to 0.25 

Although more sophisticated methods 
could be used by the Harvester for estimating 

the number of updates, it is believed that this 

heuristic is simple and incurs a small 
overhead. Basically, H needs just to keep an 

array λiP of size M that keeps the actual rates 

of updates at the current interval received 
from Repositories for use of the estimate of the 

number of updates for the next interval. So 

the storage space and the computational 

complexity are negligible. The Pseudo code for 
OAP(θ) is as follows: 

 
Algorithm OAP(θ): 

while (true) do { 

    find k such that  Ik ← Min{Ii }  Mi 1     

    Send ListRecords request to Rk 

    Extract from response UkR and NkR 
//Estimate update rate for Rk for the next period  

    λkR ← UkR / Ik 

   λkH ← (1-g)λkP+g λkR 

   // Compute new intervals Ii for all Ri 

   for i←1 to M do { 
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   } 
   λkP = λkR 
  // Get next R to be harvested 

} 

 

5. Comparison between different policies 

 

In order to evaluate the potential benefits 
of the OAP(θ), we provide a comparison 

between the OAP(θ) and other policies for 

variant workloads. We represent the variation 

in the workload by considering four types of 
Repositories that exhibit different behaviors. 
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Namely, we assume that a Repository can 

have a small number of elements (Ni =1000) 

and others may have a large number of 
elements (Ni =10,000). Further each Repository 

can have a small update rate (λi = 10% Ni) 
while another Repository can experience a 

large update rate (λi = 50% Ni). This generates 

four types of Repositories simulating different 

behaviors as shown in table 1.  

It is assumed that the number of 
Repositories to be harvested M=1000 and the 

observation period is taken to be T=1 day.  

The cost of a harvest cycle is set to 50 units 
(CP = 50), while the cost of extracting and 

processing a single update is set to 0.1         
(CU =0.1). 

 
5.1. OAP(θ) vs. Uniform adaptive policy  

 
The objective of this experiment is to 

compare the Optimal Adaptive Policy OAP(θ) 

with a Uniform Adaptive Policy (UAP). The UAP 
is set such that the Harvester pulls all the 

Repositories at a uniform (fixed) update 

interval IU. This is compared to OAP(θ) which 

sets a different pulling interval for each 
Repository according to the behavior of the 
Repository relative to the workload patterns of 

all other Repositories. In order to choose the 

Uniform Interval IU, we assume that the 

Harvester is aware of the workload on each 

Repository, and hence computes IU as the 

Optimal Interval to achieve the required 
Freshness θ given that all Repositories are 

combined into a single site, which would 
result in the same Freshness as the OAP(θ).  

In this experiment, we assume that the 
Repositories are a mix of T1 and T4 workload; 

and we vary the percentage of Repositories 

that belong to T1 versus T4.  That is, we 

evaluate a workload where 75% of the 
Repositories follow the pattern of type T1 and 

25% of them follow T4. Then we change this 
percentage till we reach 30% of Repositories of 

 
Table 1 

Four different types of workloads 
 

  T1 T2 T3 T4 

λi 100 500 1000 5000 

Ni 1000 1000 10000 10000 

 

Type T1 and 70% of type T4. We evaluate 
the overhead incurred on the Harvester for 

each policy for different Freshness thresholds 

θ, as shown in fig. 3. We plot the ratio of the 

cost of UAP, C'H, versus the cost of OAP(θ), CH,  
(C'H/CH) for different mixes. 

Results show that the gains of OAP(θ) are 

higher when the mix of Repositories is inclined 

towards T1, with UAP suffering from increase 

in the cost ranging between 21% to 71% for 
different Freshness θ. As the workload mix 

moves toward T4, the cost of UAP decreases, 
but is still higher than OAP(θ), showing a 

degradation of 10% to 34% when the workload 

is evenly distributed between T1 and T4 and 
being 16% when the majority of Repositories 

are of T4.  It is observed that as θ increases, 

the benefits of OAP(θ)  are more obvious where 

the degradation in UAP ranges between 71% 
to 16% for θ=0.98 and 46% to 10% for θ=0.95. 
This shows that the OAP(θ)  benefits are more 

dramatic for systems demanding high 
Freshness. Also, the OAP(θ) is more adjustable 

to the variation of the workload mix than UAP. 

 
5.2. OAP(θ) vs. Uniform non-adaptive policy 

 
In this experiment, we compare OAP(θ) 

with a Harvester that will apply a Uniform 

Policy as well; however, we assume that the 
Harvester is not aware of the actual mix 

between the Repositories he is about to 

harvest. Namely, he knows that the 
Repositories are a mix of T1 and T4, and that 

the mix would range between 80% to 60% of 

T1 versus T4. Hence he estimates that the mix 

would be 70% of T1 and 30% of T4 and it 
computes the uniform interval IU based on this 

estimate. We compare UNAP with OAP(θ) in 

case the actual mix is ranging between the 

estimate ±10%. So we plot the variation in the 
mix between 80% and 60% and we evaluate 
the Freshness and Cost of both policies for 

different Freshness thresholds θ, as shown in 

figs. 4 and 5.  

It is observed that when the actual mix is 

of  T1=70%, which matches the estimates of 
UNAP, both policies have the same Freshness, 

while UNAP has a higher overhead in the cost 
ranging between 18% to 60% for different θ. 

When the actual mix moves towards T1, UNAP 

experiences degradation in the cost ranging 
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between 30% to 95% while the Freshness of 

UNAP is superior to that of OAP(θ) by a range 

of 0.1% to 0.001%. When the actual mix 

moves towards T4, the cost of UNAP 
decreases, but still is higher than OAP(θ) by a 

range of 11% to 4%. This comes at the 
expense of the Freshness which decreases by 

a range of 0.1% to 0.001%. 
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Fig. 3. The cost of UAP vs. OAP(θ) varying the workload 

mix. 
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Fig. 4. The freshness of UNAP vs. OAP(θ). 
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Fig. 5. The cost of UNAP vs. OAP(θ). 

5.3. OAP(θ) vs. Individual optimal adaptive 
  policy 

 
In this experiment, we compare OAP(θ) 

with a different Adaptive Policy IOAP. In IOAP, 
the Harvester chooses the Optimal Interval for 

each Ri, based on the overall Freshness 

desired and the workload on this particular Ri, 

independently, rather than relative to the 
workload on all Repositories. This policy is 

simpler, since the Harvester would not need to 

recompute the optimal intervals each time he 

receives an update in the workload of one of 
the Repositories, as is the case in the OAP(θ). 

IOAP results in same Freshness as OAP(θ) but 

different costs, so we compare the cost of both 
policies for different Freshness thresholds θ. 

Fig. 6 shows the ratio of the cost of IOAP 
C'H to the cost of OAP(θ) CH while varying θ 

from 0.5 to 0.95. Results are shown for five 

cases representing different workload mixes of 

T1, T2, T3 and T4. In the first four cases, case 
i represents a mix of a majority (70%) of 

Repositories following type Ti, while 30% of the 

Repositories are uniformly distributed among 

the three other types. The fifth case represents 
a uniform mix of the Repositories between the 

different four types.  

Results shown in fig. 6 show that when 
the Repositories are evenly distributed 

between the different types of workloads, the 

IOAP incurs a higher cost ranging from 3% to 
18%, with higher overhead for higher θ. When 

majority of Repositories are of type T2, IOAP 

behaves very badly with degradation reaching 

36%. A majority mix of T1 or T3 show similar 

behavior as the even mix while T4 is the least 

sensitive. 
The above experiments show that OAP(θ) 

captures the different mixes of workload and 

adjusts itself such that it provides major 

improvement over other policies in the cost, 
given a required threshold of Freshness.  

It is expected that the performance of 
OAP(θ)  is dependent on the estimates of λi . 
However, we can show that OAP(θ) is 

insensitive to the variations of λi as long as the 

actual λi deviates from the estimate of λi by a 

value of ±δλi . That is in the variations of the 

actual arrival rate, the amount of +δλi is equal 

to –δλi. For the cost, CH, eq. (2) shows that the 

second term is independent of the actual λi. 
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The first term, 


M

i

iuC
1

 is a summation of actual 

λi. Since |+δλi |= |-δλi|, then the total cost 
incurred by the variation of actual λi would be 

equal to 0. Similarly, for the Freshness, from 

eq. (3) it is clear that Ij are independent of the 

actual arrival rate since the Harvester 
computes Ij based on the estimates of λi, not 

the actual. The term


M

j

jj I
1

 , which depends 

on actual λi would lead to λi ±δλi canceling each 

other. 

 

6. Alternative cost metric 

 

In this section, we introduce a different 
perspective of viewing the Freshness and the 

Cost CH, the Combined Cost CCH. The 

Combined Cost represents the combination of 

the loss resulting from the Staleness of data 

and the communication and processing 
overhead on the Harvester. That is, CCH = α * 

Staleness + CH ,  where α is a normalization 

factor.  
Fig. 7 plots the Combined Cost CCH 

against different values of Freshness for 

various workload mixes for α=10,000. The 

results show that choosing a small value for 
Freshness, although would result in lower CH, 

it leads to a high CCH due to the loss incurred 

from the staleness of the data. While a very 
high value of Freshness, although reduces the 

staleness of the data, it incurs a very high cost 
CH and hence would result in a high CCH. The 

curves suggests to the managers of the 
Harvester, the Freshness which would result 

in the optimum Combined Cost. 
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Fig. 6. The Cost of IOAP vs. OAP(θ) varying θ. 
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Fig. 7. Varying the Freshness for different workload 

mixes, with α=10,000. 

 
Actually, the value of α can be viewed as a 

representation of the priority of the Freshness 

relative to the Cost CH, with higher values of α, 

leading to higher values of Freshness. To 

generalize, we introduce the factor αi for every 

Repository Ri, denoting how important the 

Freshness for Ri is. Therefore, we can 

formulate the problem as to minimize the 
Combined Cost CCH and the Minimum 
Combined Cost Min_CCH will be: 
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Fig. 8 plots Min_CCH along with the 

corresponding actual cost CH and the 

Freshness at the Harvester while varying the 

factor α for a workload mix where 70% of the 

Repositories belonging to Type T4 and the 

remaining 30% distributed evenly between 

Types T1, T2 and T3. It is shown that as α 

increases the optimal Combined Cost results 
in an increase in the Freshness at the expense 
of a corresponding increase in the cost CH. 

Therefore, the factor α  acts as a regulator in 

the system, determining at runtime the 
adequate level of Freshness that would realize 

the balance between an acceptable level of 
Staleness of the data and an acceptable 

overhead that we are ready to pay. This tool 
enables the administrators at the Harvester to 

tune the desired level of Freshness against the 

Cost.  
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Further, the factor αi allows us to 

introduce different priority of Freshness for 

different Repositories. Fig. 9 plots the Min_CCH 

with the corresponding Freshness and CH 

while varying α for the same workload mix. 
However, for 50% of the Repositories of T4, 

their α is set to double the value of the other 

Repositories. That is, it is desired to double 
the priority of Freshness for those selected 

Repositories. As shown in fig. 9, and 

comparing it with fig. 8, the curves results in 
different optimum values of CCH, with lower 

global Freshness ranging from 6% to 1%, 
resulting from prioritizing the Freshness of the 

selected Repositories, and with a slight 

increase in the CH ranging from 1% to 5%. 

 

 
 

Fig. 8. The Min_CCH  with the corresponding Freshness 
and CH, while varying α.  
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Fig. 9. The Min_CCH  with the corresponding freshness 

and CH, while varying α, with different αi for different Ri. 

The suggested Combined Cost and the 

solution derived offers a tool that could be 

used by the managers of the Harvester in 

order to choose the adequate level of 
Freshness to operate with that would result in 

the desired balance between the staleness of 
the data and the incurred cost.  

 

7. Conclusions 

 

In this paper, we introduced an adaptive 
policy for harvesting OAI-PMH Repositories 

that experience different workload patterns.  A 

framework is provided within which the 
Harvester can decide on the pulling frequency 

based on a desired level of Freshness while 

incurring a minimum overhead. It has been 

shown that the adaptive policy reduces the 
overhead on the Harvester, and hence on the 

Repositories, compared to other adaptive or 

uniform pull-based policies, while offering 
comparable level of Freshness. This is 

especially obvious when the Repositories are 

heterogeneous and experience different update 

patterns. Further, we presented an 
instrument, based on a combined cost metric, 

that allows choosing an adequate level of 
Freshness to operate at while tuning the 

overall performance.  
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