

Alexandria Engineering Journal

Alexandria Engineering Journal, Vol. 48 (2009), No. 1, 83-94 83
© Faculty of Engineering Alexandria University, Egypt.

Decentralized transaction management in
web services environment

Nagwa M. El-Makky

Computer and Systems Engg. Dept., Faculty of Engg., Alexandria University, Alexandria, Egypt
nagwamakky@alex.edu.eg

An increasing number of business transactions are being constructed by combining the
execution of multiple Web Services (WS). For efficient processing, these web services-based
business transactions are allowed to run with relaxed isolation in web service environments.
However, some business transactions do require global transactional guarantees, i.e.,
isolation and atomicity. This paper proposes an optimistic decentralized protocol for

transaction management in web service environments that ensures global transactional
guarantees for business transactions. The proposed protocol is inspired by the “local
atomicity properties” approach for object-oriented databases. Global correctness is achieved
through ensuring local atomicity properties of the schedules of web service providers. The
proposed protocol avoids exchanging transaction dependencies information among
transactions which saves communication cost and preserves security. A key feature of the
proposed protocol is that it is compliant with a representative WS transaction standard,

namely, the Web Services Transaction (WS-TX) specifications, for easy integration into
existing WS transaction systems. The paper concludes with a comparative analysis showing
that the proposed protocol ensures global correctness with a lower message complexity than
its counterparts.

ازداد التوسع مؤخرا فى تكوين وحدات معاممتت اعممامع مان قريام ت مياع العدياد مان خادممت النابكت الع كبوتيات ك ولزيامد ك ام
تو اد و لكان خمصيت مزع وحدات معممتت اعممامع ثن ام الت يا كالخدمت فى بيئمت خدممت النبكت الع كبوتيت يسمح غملبم بمرتخم

بعض وحدات معممتت اعمممع التى تحتمج بمل عع الى خمصيت العزع وغيرهم من ضمم مت صحت ودقت البيم امتك يتتاره ها ا البحا
يضامن صاحت ودقات البيم امت م اى بروتوكوع مت مئع لا مركاز لادار وحادات المعاممتت فاى بيئامت خادممت النابكت الع كبوتيات بمام

حيا -المتترحت من قبع ل ظم النايئيت -مستوى بيئت الخدممت. وقد است هم البروتوكوع قريتت الخواص المح يت لدقت وصحت البيم مت
تتحتم دقت وصحت البيم امت م اى مساتوى بيئات خادممت النابكت الع كبوتيات مان قريام تحتيام خاواص مح يات فاى كاع مام ح ل خادممتك

ت ااا البروتوكااوع المتتااره ارساامع مع وماامت امتممدياات بااين وحاادات المعااممتت مماام يااوفر تك اات الاتصااملات ويحاامفظ م ااى ثماان وي
وماان الصاا مت الهمماات ل بروتوكااوع المتتااره توافتاار مااع ثحااد البروتوكااولات التيمساايت لت ساايم وحاادات المعااممتت فااى بيئاامت البيم اامت.

خادممت التمئمات م اى وحادات المعاممتتفاى ظام البروتوكاوع المتتارهممم يسهع تكمماع (WS-TX)خدممت النبكت الع كبوتيت وهو
صااحت ودقاات البيم اامت م ااى مسااتوى بيئاات يحتاام الناابكت الع كبوتياات ك وي تهااى البحاا بتح يااع متاامرن يوضااح ثن البروتوكااوع المتتااره

 النبكت الع كبوتيت بتك ت اتصملات ثقع من ظمئره. خدممت

Keywords: Web service environments, Transaction management, Local atomicity properties

1. Introduction

An increasing number of business

applications are being constructed by

combining the execution of multiple web
services. Such WS-based integrated

applications should guarantee consistent data

manipulation and outcome of business

processes. However, these applications often

involve long-running computations, loosely-
coupled systems, and components that do not

share data, location, or administration, and it

is difficult to incorporate traditional

transaction management techniques within

such architectures. For example, traditional

protocols like the strict two-Phase Locking

(2PL) protocol are impractical in web service

environments. A web service provider would

not accept to lock its local resources for a long
time by web service consumers. Also,

approaches relying on a centralized

transaction manager, as in multi-database

systems, are not appropriate since such an

assumption is unrealistic in web service
environments.

This paper proposes a decentralized

optimistic protocol for transaction

management in web service environments that

N.M. El-Makky / Decentralized transaction management in web services environment

84 Alexandria Engineering Journal, Vol. 48, No. 1, January 2009

addresses both the recoverability and

serializability problems. Under the proposed

protocol, global correctness is achieved with
no need for locking or testing a serialization

graph for a cycle. There is no need for

incurring communication cost to send local

conflicts and partial serialization graphs

between transactions. Avoiding

communication between transactions also
preserves confidentiality of information. No

transaction compensation and subsequently

no cascading compensation are required since

all effects of a transaction are maintained in

an intentions list until the commit of the
transaction. This ensures recoverability. A key

feature of the proposed protocol is that it is

designed to be compliant with a representative

WS transaction standard, namely, the Web

Services Transaction (WS-TX) specifications

[1-3] for easy integration into existing WS
transaction systems.

The proposed protocol is inspired by the

"local atomicity properties" approach proposed

in [4, 5] for transaction management in object-

oriented databases. Using the proposed
protocol, a scheduler for each web service

provider serializes its local transactions

depending on its local information. However,

by satisfying the same local atomicity property

by all schedulers, the global schedule of the

system is proved to be correct. The idea is new
in the sense that it combines known concepts

and techniques for a new purpose.

The rest of the paper is divided into seven

sections. In section 2, the related work is

reviewed. The idea of the proposed protocol is
presented in section 3. Since the proposed

protocol is designed to be compliant with the

Web Services Transaction (WS-TX) specifica-

tions [1-3], these specifications are briefly

reviewed in section 4. The proposed protocol is

described in detail in section 5. The global
correctness of the proposed protocol is proved

in section 6. A comparative analysis of the

proposed protocol and its counterparts is

included in section 7. Finally, section 8

concludes the paper.

2. Related work

 There have been industrial proposals for

protocols to extend the web services with

transaction processing capabilities, e.g., Busi-
ness Transactions Protocol (BTP) [6],(WS-TX)

specifications [1-3], and WS-Composite

Application Framework (WS-CAF) [7]. For

efficient processing, these protocols relax the

isolation property for long-lived business

transactions. This means that some activities
in a business transaction can commit their

results before the whole transaction commits

and the results of some activities can be seen

before the whole transaction completes.

However, atomic execution of the transaction,
in case that it fails before getting to the

complete phase, can be ensured by cancelling

the running operations and compensating the

completed ones.

Nevertheless, some business transactions

do require global transactional guarantees,
i.e., isolation and atomicity. Relaxing isolation

can introduce serious inconsistency problems

for some business applications. Consider a

situation where a participant aborts its

transaction after releasing a resource and
assume that other participants have already

read this resource and completed their own

transactions based on this reading. Such a

situation implies that different participants

hold different states of the same resource,

resulting in possibly serious inconsistency
problems. In fact, all the known anomalies of

"dirty reads", "unrepeatable reads" and

"phantoms" can happen in such

environments. Examples of such anomalies in

web service environments can be found in [8.
and 9]. Considering that WS transactions will

get more and more prevalent, such situations

may occur quite frequently, being a major

blocking factor for the WS transaction usage.

There are some academic proposals that

address the problems of relaxing isolation for
web services-based business transactions, e.g.

[8-10 and 11]. The work in [8] addresses only

the recoverability problem by managing the

completion of dependent transactions. The

proposals in [9 and 10] address both the
recoverability and serializability problems

using serialization graph testing protocols.

The proposals in [8 and 9] are made as

extensions to a previous version of the Web

Services Transaction protocols [1-3], whereas

N.M. El-Makky / Decentralized transaction management in web services environment

 Alexandria Engineering Journal, Vol. 48, No. 1, January 2009 85

[10] proposes a new protocol that can be

applied in peer-to-peer environments. The

work in [11] extends [9] with a non-blocking
scheduling scheme to support time

constraints of transactions in WS

environments.

While these academic proposals are

important, they depend on direct (or indirect)

communication between transactions to
achieve global transactional guarantees. The

proposals in [8 and 10] allow sharing

transaction dependencies information between

the transactions, which does not preserve

security. Also, all the above proposals require
testing a decentralized graph for a cycle,

which adds the cost of propagating conflicts

along the edges of local graphs between

transactions to the cost of cycle checking and

resolution. Moreover, all proposals use

transaction compensation. Compensation of
some already successfully executed services is

sometimes too expensive and often leads to

cascading compensation which may result in

long and costly replacements of concrete web

services, making web service transactions too
long.

3. Idea of the proposed protocol

The proposed protocol is inspired by the

“local atomicity properties” approach for
object-oriented databases in [4, 5]. A local

atomicity property is defined in [4, 5] as a

property that guarantees, if every object in the

system obeys this property, that every

schedule in the system behaviour is atomic.
This is achieved using only local information

with no need for inter-object synchronization.

The work in [4, 5] identified three optimal local

atomicity properties such that no strictly

weaker local constraint on objects suffices to

ensure global serializability for transactions.
These three properties are dynamic atomicity,

static atomicity and hybrid atomicity. Static

and hybrid atomicity properties require clock

synchronization which can be a problem in

web service environments. So, we will use the
dynamic atomicity property for the proposed

protocol.

The definition of dynamic atomicity states

that an object schedule is dynamic atomic if

the set of committed transactions in the

schedule is serializable in every total order

consistent with the precedence relation at the

object [4, 5]. The precedence relation is
defined as follows: a transaction T1 is said to

precede a transaction T2 at an object if at least

one operation of T2 is invoked on the object

after T1 commits. If all object schedules satisfy

the dynamic atomicity property, then the

global schedule is serializable. This aspect is
relevant in the context of object-oriented

systems, since serializability can now be

localized to objects. Another advantage of

using dynamic atomicity is that, as long as the

objects involved in a transaction guarantee
dynamic atomicity, it is irrelevant what

specific concurrency control algorithm is used

by each object to achieve this behaviour.

The proposed protocol recognizes the

similarity between the model of a business

transaction that spans multiple web services
and the model used in [4, 5] for object-

oriented transaction processing systems,

where a transaction is a computation

involving operations on multiple objects. Each

web service provider provides one or more
operations as web services that can be

invoked within transactions using the service

interface of that provider. The sequence of web

services invoked by a transaction on a web

service provider in a web service environment

is analogous to the sequence of operations
invoked by a transaction on a particular object

in an object-oriented database. In the work of

[4, 5], global serializability of the system is

achieved by satisfying atomicity properties

that are local to individual objects. By
analogy, if each of the web service providers

can satisfy the same local atomicity property,

then it would be possible to have a

decentralized transaction management

protocol for web service environments. Global

serializability will be achieved with no need for
a global transaction manager or for sending

transaction dependencies information among

the transactions.

 The proposed protocol introduces a local

scheduler component in each web service
provider to ensure that local schedules satisfy

the same local atomicity property. The

dynamic atomicity property is chosen as the

local atomicity property to be satisfied by all

web service providers. By analogy to the model

N.M. El-Makky / Decentralized transaction management in web services environment

86 Alexandria Engineering Journal, Vol. 48, No. 1, January 2009

in [4, 5], it follows that as long as the service

providers involved in a transaction guarantee

dynamic atomicity, it is irrelevant what
specific concurrency control algorithm

(pessimistic or optimistic) is used to achieve

this behaviour. Satisfying a dynamic atomicity

property by a service provider depends only on

the characteristics of its supported web

services, namely the conflict between these
web services. Detecting conflicts at each

service invocation, using a pessimistic

algorithm, e.g. locking, will be costly for a web

service environment. So the proposed protocol

uses an optimistic algorithm at each service
provider. Web services are checked for

conflicts only at transaction commit time. This

can be done in a simple validation step by the

local scheduler at each web service provider.

Global correctness requires an atomic

termination for each transaction on all
accessed objects [4, 5]. To achieve a similar

behaviour, the proposed protocol applies an

atomic commit protocol that is already

supported by the WS- Business Activity model

[2].
Therefore, by making each web service

provider obey a dynamic atomicity property,

and by using an atomic commit protocol, the

proposed protocol ensures that every global

schedule in the system’s behaviour is correct.

A formal proof of the global correctness of the
proposed protocol is given in section 6.

Since the proposed protocol is designed to

be compliant with the. WS-TX specifications

[1-3], these specifications are briefly reviewed

in the following section.

4. Web Services Transaction (WS-TX)

 specifications

The WS-TX specifications [1-3] define an

extensible framework that is aimed at
coordinating transactions running across

multiple web services. Two key concepts are

defined: 1) the Coordinator, which is an entity

that resides on the client side and is

responsible for reaching a globally agreed
upon outcome of the transaction from the

client’s point of view, 2) the Participant, which

is an entity that resides on the web service

provider side and is responsible for

communicating with the coordinator according

to the protocol on behalf of the web service.

The coordinator consists of the services
given below (which are all provided as web

services).

 Activation service: operations that enable
an application to create a coordination

instance or context.

 Registration service: operations that
enable an application and participants to

register for coordination protocols.

 Protocol service: a set of coordination
protocols. The coordination protocols that can

be defined in this framework can

accommodate a wide variety of activities,

including protocols for simple short-lived

operations, e.g., WS-Atomic Transaction [1]

and protocols for complex long-lived business
activities, e.g., WS- Business Activity [2].

The specifications in [2] define two specific

agreement coordination protocols for the

Business Activity transaction model: Business

Agreement with Coordinator Completion and
Business Agreement with Participant

Completion. Developers can use these

protocols when building applications that

require consistent agreement on the outcome

of long-running distributed activities. In the

former protocol, the participants rely on the
coordinator to inform them when they have

received all requests to perform work within

the business activity, whereas in the latter

one, the participants themselves know when

they have completed all requests and should
inform the coordinator about that.

Due to the extensibility of WS-

Coordination [3], it is possible to define a

coordination protocol type that, in addition to

specifying the agreement protocol between a

coordinator and a participant, also specifies
the behaviour of the coordination logic. For

example, it may specify that the coordinator

will act in an all-or-nothing manner to

determine its outcome based on the outcomes

communicated by its participants, or that it
will use a specific majority rule when

determining its final outcome based on the

outcomes of its participants. Business

activities support the following coordination

types: Atomic Outcome and Mixed Outcome.

An Atomic Outcome coordination type must
direct all participants to close or all

N.M. El-Makky / Decentralized transaction management in web services environment

 Alexandria Engineering Journal, Vol. 48, No. 1, January 2009 87

participants to compensate. A coordinator for

a Mixed Outcome coordination type may direct

each individual participant to close or
compensate.

This section reviewed the Web Services

Transaction specifications. The next section

will describe the proposed protocol in detail.

5. Proposed protocol

5.1. System model

Assume a web service environment,

consisting of a set of web service providers
and a set of service consumers (clients). Each

service provider offers one or more operations

as web services. A transaction can consist of

multiple invocations on a collection of web

services that may reside on several web

service providers. The proposed protocol is
designed for the transactions following the

Business Activity model [2] of the WS-TX

specifications [1-3]. A client who wants to

create a new WS -transaction has to request

and receive a coordination context from its
coordinator using the Activation service. The

client notifies all the participants of the WS

transaction by forwarding the coordination

context to them. Then, all the participants and

the client (WS- transaction initiator) register

their own coordination protocols, which are
specified in the Business Activity

specifications, to the coordinator using the

Registration service. The coordinator manages

the transaction by exchanging messages with

the transaction initiator and the participants
via the protocol service. To use the service

provided by the proposed protocol, the

participants and initiator have to select the

Atomic Outcome coordination type and the

Business Agreement with Coordinator

Completion protocol.
 As mentioned in section 3, the proposed

protocol introduces a local scheduler

component. The local scheduler is an entity

that resides on the web service provider side

and interacts with transactions' participants
at the service provider to satisfy the local

atomicity properties. The details of these

interactions are given in the next subsection.

Fig. 1 adapts the infrastructure of the

standard WS- coordination [3] by including

the proposed local scheduler component.

Formally, a transaction T will be modelled
by the pair (OT, <T), where OT is a set of web

services to be invoked by T and <T is a partial

order defined over OT. A local schedule SA at a

web service provider A is a pair (OSA, <SA),

where OSA is the set of web service invocations

on A and <SA is the order of these invocations.
A global schedule S is a pair (OS, <S), where OS

is a set of all web service invocations in the

web service environment and <S is the order of

these invocations.

For schedules' correctness, the local
schedulers rely on a conflict- preserving

serializability criterion. There are many

conflict serializability-based correctness

criteria that basically differ in how they define

a conflict. For increasing concurrency, the

proposed protocol uses the forward
commutativity correctness criterion that can

make use of the semantics of operations and

their termination conditions [12]. It can be

easily adapted to the case of semantically rich

web services. In what follows, the notion of
conflict is defined based on the commutativity

behaviour of web service invocations.

A
ct

iv
at

io
n

 S
e

rv
ic

e

R
e

gi
st

ra
ti

o
n

 S
e

rv
ic

e

P
ro

to
co

l P
lu

gi
n

P
ro

to
co

l D
e

fi
n

it
io

n
 W

SD
L

P
ro

to
co

l D
e

fi
n

it
io

n
 W

SD
L

Local Scheduler

Client

Service

Service

Service

Participant

Participant

Participant

Activation

Message

Coordination

Protocol

Messages

Control

Message

 Client-side Service provider- side

Fig.1. The adapted infrastructure of the
standard WS-coordination .

N.M. El-Makky / Decentralized transaction management in web services environment

88 Alexandria Engineering Journal, Vol. 48, No. 1, January 2009

Definition 1: Let ws1 and ws2 be two web

service invocations on a service provider.

Then," ws1 forward-commutes-with ws2" if for
any pair of sequences α, β of web service

invocations on the service provider, the results
(return values) are the same in < α, ws1, ws2, β

> and < α, ws2, ws1, β> Otherwise, ws1

conflicts with ws2 (i.e., "does – not-forward –

commute – with" it), which makes the pair

(ws1, ws2) belong to the conflict relation CR of

the service provider. The conflict relation of a
web service provider is a subset of the cross

product: {ws1, ws2, …, wsN} × {ws1, ws2, ….,

wsN}, where N is the number of web services

supported by this service provider.

The local conflict relation of a service
provider can be represented by an N*N conflict

matrix which is built at design time and

contains information about which web

services of that provider pair-wise conflict. It is

provided as input to the local scheduler to be

used for validating transactions.

5.2. Protocol details

The design goals of the proposed protocol

were to ensure decentralization, low message
complexity, security and compliance with

standard specifications for web services

transactions. These are common and core

requirements in web services environments.

Decentralization is achieved by enforcing

globally serializable schedules using local
atomicity properties of web service providers

without relying on a global transaction

manager. With local atomicity properties,

there is no need for inter-scheduler

synchronization or transaction
communications which lowers message

complexity. Also, transactions dependency

information is not required to be exchanged

between transactions or transactions'

coordinators. Instead, such information is to

be stored at distributed web service providers,
where each service provider manages only its

local transactions dependencies. This

preserves security since transactions

dependencies can be interpreted as mission-

critical information (e.g., confidential contracts
between organizations). Regarding the fourth

goal, the proposed protocol is designed as an

extension to the standard WS- Business

Activity Protocol [2]. This is possible because

the WS-TX specification is intended as a

portfolio of extended transaction models each
suited for a specific problem domain. The

proposed protocol does not require changes to

the standard WS- Business Activity protocol.

This allows easy integration into existing WS

transaction systems. In what follows, details of

the proposed protocol are presented.
The proposed protocol utilizes a dynamic

atomicity property, to work in a decentralized

optimistic fashion. Each local scheduler at a

web service provider can schedule its local

transactions by any deferred –update
optimistic algorithm that uses a conflict

relation based on “does-not-forward-commute-

with”. As will be proved in section 6, all such

deferred-update optimistic algorithms are

dynamic atomic. Using deferred - update,

requires the local scheduler to store a set of
intentions lists that record the tentative

changes of each active transaction invoking

web service(s) at the corresponding service

provider. When a transaction commits, its

intentions list is applied to the permanent
state of the service provider. A transaction

aborts by discarding its intentions list. The

Business Activity model [2] already allows

participants in a coordinated business activity

to perform "tentative" operations as a normal

part of the activity. This feature is utilized by
the proposed protocol to support intentions

lists.

After each web service invocation, the

corresponding participant informs the local

scheduler about this action to perform the
required bookkeeping. When the participant

receives the complete message from its

coordinator, it asks the local scheduler for

validation. Enabling the service providers’

schedulers to locally validate transactions

requires equipping each scheduler with its
local conflict relation (matrix). Validation

ensures that the committing transaction has

not been invalidated by the recent commit of

another transaction. The used validation

algorithm is an adaptation to the algorithm in
[13] for the case of web service environments.

It works in the following way. The scheduler

of each web service provider keeps track of

Last (wsk), the most recent commit timestamp

for a transaction that invocated the web

N.M. El-Makky / Decentralized transaction management in web services environment

 Alexandria Engineering Journal, Vol. 48, No. 1, January 2009 89

service wsk at this service provider. For each

active transaction T and each web service wsi,

each scheduler also keeps track of First (T,
wsi), the logical time when T first invoked the

web service wsi. Validation is governed by the

conflict relation CR kept by the local scheduler

of the service provider. A scheduler will

validate a transaction T if and only if Last

(wsk) < First (T, wsi) for all wsi in the intentions
list of T and all wsk such that (wsi, wsk)

belongs to CR.

A "completed" message or a "cannot

complete" message is sent to the coordinator

in case of successful validation or invalidation,
respectively. A transaction can commit if and

only if all its participants are successfully

validated (completed) at the involved web

service providers. This can be ensured by the

Atomic Outcome protocol supported by the

WS-Business Activity specification [2]. In case
of successful validation, a "close" message is

sent by the coordinator to all participants,

otherwise a "compensate" message is sent.

Algorithm 1 gives a pseudo code for the main

part of the protocol that runs on each web
service provider. It is concerned with the

response to messages received from

transactions' coordinators. The protocol that

runs on each service provider reacts on

received messages as described below.

 In case of a service invocation, the
required bookkeeping is done by the local
scheduler, the service is executed and the

tentative changes are kept in the invoking

transaction's intentions list. It is to be noted

that the proposed protocol is optimistic, so

there is no check of web service conflicts at

that time.

 In case of a "complete" message from the
coordinator of transaction T, the participant

requests validation from the local scheduler of

the service provider. According to the response

it receives from the scheduler, it responds to

the coordinator either by a "completed" or a
"cannot complete" message. Algorithm 2

describes the local validation process for a

transaction T.

 The other cases represent messages from
the coordinator to complete the atomic

commitment protocol supported by the WS-

Business Activity model [2]. It is to be noted
that the received messages are the same

standard messages of the Business Agreement

with Coordinator Completion protocol

specified in [2]. Fig. 2 shows the abstract state
diagram of this protocol with possible web

service states and messages generated either

by a transaction coordinator or a participant.

Algorithm 1 Service Provider Protocol

while true do

 wait for next message m ;

 case message m of

 invocation of web service wsi by transaction T:

 record First (T, wsi);

 execute web service wsi ;

 keep the tentative changes in intentions list of T;

 cancel :

 discard T’s intentions list ;

 send message Cancelled;

 complete :

 validate T// see algorithm 2;

 close :

 update Last(wsi) for each wsi in T’s intentions list ;

 apply T’s intentions list;

 send message Closed;

 compensate :

 discard T’s intentions list ;

 send message Compensated;

 exited:

 discard T’s intentions list ;

 failed :

 discard T’s intentions list ;

 not completed :

 discard T’s intentions list ;

Algorithm 2 Validating a Transaction T

Mark T as "validated";

for each wsi in intentions list of T do

 for each wsk such that (wsi, wsk) is in CR do

 if (Last(wsk) > First(T, wsi)) then

 mark T as "invalidated" and exit;

if T is marked as "invalidated" then

 send message “CannotComplete” ;

 else

 send message "Completed";

 wait for the next message from coordinator;

N.M. El-Makky / Decentralized transaction management in web services environment

90 Alexandria Engineering Journal, Vol. 48, No. 1, January 2009

 ▬► Coordinator generated ----►Participant generated

Fig. 2. Abstract state diagram of the business agreement

with coordinator completion protocol (adapted from [2]).

6. Correctness proof

This section proves that the proposed

protocol guarantees globally correct schedules

for a web service environment. First, the

global srializability of schedules is proved, and
then the schedules are proved to be

recoverable.

The following proves that if all schedulers

at the web service providers satisfy a dynamic

atomicity property and an atomic commit

protocol is used, then the global schedule is
serializable. Then, it will be proved that if all

schedulers use deferred-update optimistic

algorithms with a conflict relation based on

"does-not-forward- commute- with", then all of

them satisfy the dynamic atomicity property.
It is to be noted that the definitions and

theorems given below are inspired by the work

in [4, 5].

By analogy to the work in [4, 5], global

serializability can be proved if there is a global

serialization order that is consistent with all
local serialization orders produced by the web

service providers. So, it is required to let all

local schedules agree on some ordering of the

transactions. The following defines the

precedence relation for a web service
environment. This relation can be used to

define a partial order among transactions,

which all local schedules can agree upon, and

can also be used as the basis of the dynamic

atomicity property.

Definition 2: The precedence relation for a

web service environment is defined as follows:

a transaction T1 is said to precede a
transaction T2 at some web service provider

site if the participant of T2 at that site invokes

some web service after the service provider

has received the commit message from T1’s

coordinator. It is clear that if T1 precedes T2 at

some service provider site, then T1 must be
before T2 in the global commit order. However

the converse is not true. If T1 and T2 do not

conflict, T1 might be before T2 in the global

commit order, but not related by the

precedence relation to T2 (all invocations of
web services by both transactions might have

been done before either commits). Because a

transaction cannot invoke any additional web

services after it commits, it can never be true

that both T1 precedes T2 and T2 precedes T1 at

one service provider; hence the precedence
relation is a partial order at each service

provider.

It is to be noted that regardless of the

scheduler type, transactions that have

conflicting web services at some service
provider are related by the precedence relation

at that provider site (since if T1 conflicts with

T2 in a pessimistic system, then T1 must wait

for T2 to commit, while in an optimistic

system, T1 cannot successfully validate unless

T2 has committed prior to the time at which T1
has invoked a conflicting web service).

Furthermore, the serialization order imposed

by the conflict is the same as the precedence

relation order at that server provider site.

Definition 3: A scheduler is dynamic
atomic if it serializes in every total order

consistent with the precedence relation [4-5].

Theorem 1: If all the schedulers of the web

service providers independently satisfy the

dynamic atomicity property and an atomic

commit protocol is used, then the global
schedule is serializable.

Proof: Assume that each scheduler at a

web service provider site satisfies the dynamic

atomicity property, i.e., it serializes in every

total order consistent with the precedence
relation at this site. It is only required to show

that the union of the precedence relations at

all sites is a partial order. Hence there must

be at least one total order, O, that is

consistent with the precedence relation at

N.M. El-Makky / Decentralized transaction management in web services environment

 Alexandria Engineering Journal, Vol. 48, No. 1, January 2009 91

each site. The global schedule is equivalent to

the serial schedule based on O. To show that

the union of the precedence relations at all
sites is a partial order, it will be shown that

assuming an atomic commit protocol, it

cannot be the case that T2 precedes T1 at some

site A, and T1 precedes T2 at some other

site B.

Let the participant of a transaction T on a
web service provider A be called TA. If T2

precedes T1 at site A, it follows from the

ordering of events in the commit protocol that

"T2's commit event at its coordinator"

happened- before" at least one web service
invoked by the participant T1A" and that "all

web services invoked by T1A "happened-before"

T1’s commit event at its coordinator". If it were

also true that T1 precedes T2 at site B, the

opposite conclusion can be drawn as well.

Since "happened- before" is a partial order,
there is a contradiction, and it can be

concluded that the union of the precedence

relations at all sites is a partial order. Hence,

there is at least one total order consistent with

this partial order. All such total orders must
be consistent with the ordering of participants

imposed by the conflict relation at each site.

Hence, any such total order can be used as

the basis of a serial schedule, equivalent to

the global serializable schedule.

From the above, it follows that if the
schedulers at each web service provider all

independently satisfy the dynamic atomicity

property and an atomic commit protocol is

used, then the global schedule is serializable.

Theorem 2: all deferred –update optimistic
schedulers that use a conflict relation based

on "does-not-forward-commute-with" are

dynamic atomic.

Proof: Suppose T1A and T2A are

participants (of two transactions T1 and T2) at

web service provider A. Assume that the
scheduler of A uses a deferred- update

optimistic algorithm, with a conflict relation

based on "does-not-forward-commute-with", to

produce the interleaved local schedule SA.

Suppose that T1A and T2A invoked web services
ws1 and ws2, respectively; that ws1 follows ws2

in SA; and that ws1 "does-not-forward-

commute-with" ws2. Then, T1A must follow T2A

in any serial schedule equivalent to SA. Either

T1A and T2A are concurrently active or they are

not. If they are not concurrently active, then

T1A will not be validated unless the commit

message for T2A has arrived at A before T1A has
invoked ws1. Hence, T2 precedes T1 at site A. If

T1A and T2A are concurrently active, then T1A

will be invalidated and restarted, and it is only

the web services of the restarted version that

are being related by the precedence relation.

Thus, if conflicting web service invocations
constrain T1A to follow T2A in any serial

schedule equivalent to SA, T1A is also

constrained to follow T2A in any serial

schedule consistent with the precedence

relation. Thus, the precedence relation
imposes on the ordering of participants, in a

serial schedule equivalent to SA, all the

constraints that are imposed by conflicts

between web service invocations of the

participants at A. Hence, any serial schedule

consistent with the precedence relation orders
conflicting web service invocations in the same

way as they are ordered in schedule SA.

Furthermore, the used deferred-update

optimistic algorithm employs “does-not-

forward-commute-with” as a conflict relation.
This relation is based on commutativity of web

service invocations, so that if two web service

invocations do not conflict, they can be placed

in either order in an equivalent serial

schedule. Hence, SA is equivalent to any serial

schedule of participants at site A that
preserves the order of conflicting web service

invocations. It is therefore equivalent to any

serial schedule of participants at site A that is

consistent with the union of the precedence

relations.
It was proved before that (1) the union of

the precedence relations at each site is a

partial order and hence there is at least one

total order consistent with it and (2) all such

total orders must be consistent with the

ordering of participants imposed by the
conflict relation at each site. Hence, any such

total order can be used as the basis of a serial

schedule equivalent to the global schedule.

It follows that all deferred- update

optimistic schedulers that use a conflict
relation based on “does-not-forward-commute-

with” are dynamic atomic. Therefore, as long

as all schedulers of web service providers use

deferred- update optimistic algorithms with a

conflict relation based on "does-not-forward-

N.M. El-Makky / Decentralized transaction management in web services environment

92 Alexandria Engineering Journal, Vol. 48, No. 1, January 2009

commute-with", and the atomic commit

protocol supported by the WS-Business

Activity model [2] is used, one can be assured
that all produced schedules are globally

serializable.

Finally, since deferred- update is used, it

follows, by definition [14], that the produced

schedules are cascadelss (i.e., avoid cascading

rollback). Cascadeless schedules are a stricter
subset of recoverable schedules, which means

that the produced schedules are not only

globally serializable but also recoverable.

7. Comparative analysis

As mentioned in section 1, the

inconsistency problems resulting from

relaxing isolation for business transactions in

web service environments were addressed in

[8, 9 and 10]. The proposed protocol will be
compared to the proposals in [9 and 10], since

they address both the recoverability and

serializability problems, while the proposal in

[8] addresses only the recoverability problem.

The proposed protocol will be compared to
the other solutions in terms of message

complexity. Message complexity is selected as

the performance metric for cost measuring

because communication overhead is a

dominant factor that affects the overall system

performance in a web service environment, as
compared with processing speed and storage

space. Message complexity will be measured

by the number of messages used by the

protocol. This is reasonable if individual

messages are short. This is the case for the
proposed protocol. In particular, this measure

is harsh to the proposed protocol since the

other solutions have longer messages as will

be seen in the following paragraphs.

Using the protocol in [10], dependencies

between transactions are managed by the
transactions themselves. Therefore, with each

web service invocation the corresponding

service provider sends the invoking

transaction a complete list of conflicts that

have occurred with this invocation. Also, when
a transaction wants to commit, it informs all

service providers on which it has invoked

services. Each service provider sends the

transaction a list of its post-ordered

transactions.

 Therefore, it is required to exchange 3P

messages (where P is the number of distinct

web service providers the transaction invoked
services on), between the transaction and the

service providers to deliver transaction

dependency information.

For validating transactions, this protocol

uses a graph cycle checking protocol relying

on communicating dependency information
between transactions. The used protocol is a

variant of the path- pushing approach for

distributed deadlock detection [15]. The

message complexity of the later approach is

known to be 2n2, where n is the number of
active transactions in the environment. There
is also a message complexity of O(nnD2) for

cycle resolution when a cycle is detected,

where nD is the size of graph cycle [16].

The solution in [9] is similar to that

proposed in [10]. The main difference is that it
does not allow direct communication between

transactions or transaction coordinators (in

order to preserve security). Instead, it replaces

each single direct communication between two

transaction coordinators C1 and C2 by two

indirect messages: one message from C1 to the
common service provider, and another

message from the common service provider to

C2. Therefore, compared to the work in [10], it

requires two times the number of exchanged

messages between transactions to reach a
globally correct solution.

Compared to the previous protocols, the

proposed protocol does not rely on delivering

dependency or validation information between

transactions (or transaction coordinators).

Local atomicity properties allow independent
validation of each transaction using local

information at each service provider.

Therefore, the proposed protocol has a

message complexity of 3P messages (where P

again is the number of distinct web service
providers the transaction invoked services on).

This is the message cost for applying the

atomic commit protocol supported by the WS-

Business Activity model [2]. It is clear that the

proposed protocol reduces the number of

messages required to ensure global
correctness.

The protocols in [9 and 10] are optimistic

(like the proposed protocol), but they use

variants of the distributed serialization graph

N.M. El-Makky / Decentralized transaction management in web services environment

 Alexandria Engineering Journal, Vol. 48, No. 1, January 2009 93

testing protocol. Therefore, they may achieve a

higher degree of concurrency than the

proposed protocol. However, this is achieved
at a higher cost for transferring dependency

information to maintain the serialization

graph and for detecting and resolving cycles in

it. Knowing that a transaction should not

validate until it has been checked that it is not

involved in a serialization graph cycle; global
cycle detection must take place at least at the

same rate as transactions are validated. In

typical applications, the cost to do this may be

prohibitive. Moreover, the serialization graph

will not necessarily be always up-to-date since
the cost of its synchronous maintenance is

prohibitive as acknowledged in [10]. This

implies that correctness is not guaranteed all

the time.

8. Conclusions

This paper proposes a decentralized

transaction management protocol for web

service environments. The protocol is inspired

by the "local atomicity properties" approach of
transaction management in object-oriented

databases. Global correctness can be achieved

using local information at each web service

provider. This avoids exchanging

dependencies information between

transactions (or transaction coordinators)
which saves communication cost and

preserves security. For easy integration into

existing WS transaction systems, the proposed

protocol is designed as an extension to a

representative WS transaction standard,
namely, the WS-TX specifications [1-3]. The

proposed extension to the web service provider

is simple to achieve and there is no need to

change the standard messages of the original

Web Services Transaction protocols.

The paper gives a formal proof for the
global correctness of the proposed protocol.

Message complexity of the protocol, in terms

of number of messages, is presented together

with message complexity of related protocols.

A comparative analysis shows that the
proposed protocol reduces the number of

messages required to ensure global

correctness. As a future work, it is planned to

perform a detailed performance evaluation

study of the proposed protocol compared to its

counterparts for web service environments.

References

[1] Web Services Atomic Transaction (WS-

Atomic Transaction) Version 1.2,

Committee Specification 01,

http://docs.oasis-open.org/ws-tx/wstx-
wsat-1.2-spec.pdf (last access date: 2008-

10-17) (2008).

[2] Web Services Business Activity (WS-

Business Activity) version 1.2, Committee

Specification 01, http://docs.oasis-
open.org/ws-tx/wstx-wsba-1.2-spec-cs-

01.pdf (last access date: 2008-10-17)

(2008).

[3] Web Services Coordination (WS-

Coordination), Version 1.2, Committee

Specification 01, http://docs.oasis-
open.org/ws-tx/wstx-wscoor-1.2-spec-cs-

01.pdf (last access date: 2008-10-17)

(2008).

[4] W.E. Weihl. Local Atomicity Properties:

Modular Concurrency Control for
Abstract Data Types. ACM Transaction on

Programming Language Systems, Vol. 11

(2) (1989).

[5] M. Herlihy and W.E. Weihl. Hybrid

Concurrency Control for Abstract Data

Types", In Journal of Computer and
System Sciences, Vol. 43, pp. 25-61

(1991).

[6] OASIS Business Transaction Protocol.

http://xml.coverpages.org/BTPv11-

200411.pdf (last access date: 2008-10-
17).

[7] OASIS Web Services Composite

Application Framework (WS-CAF), OASIS

Standard, http://www.oasis-

open.org/committees/tc_home.php?wg_a

bbrev=ws-caf. (last access date: 2008-10-
17) (2005).

[8] S. Choi, H. Jang, H. Kim, J. Kim, S. Kim,

J. Song and Y. Lee, "Maintaining

Consistency Under Isolation Relaxation of

Web Services Transactions", In Proc. of
WISE 2005 and Springer-Verlag Berline

Heidelberg (2005).

[9] M. Alrifai, P. Dolog and W. Nejdl,

Transactions Concurrency Control in Web

Service Environment", In Proc. of the

http://docs.oasis-open.org/ws-tx/wstx-wsat-1.1-spec-os.pdf
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.1-spec-os.pdf
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.1-spec-os.pdf
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.1-spec-os.pdf
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.1-spec-os.pdf
http://docs.oasis-open.org/ws-tx/wscoor/2006/06
http://docs.oasis-open.org/ws-tx/wscoor/2006/06
http://docs.oasis-open.org/ws-tx/wscoor/2006/06
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=business-transaction
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=business-transaction
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=business-transaction
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-caf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-caf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-caf

N.M. El-Makky / Decentralized transaction management in web services environment

94 Alexandria Engineering Journal, Vol. 48, No. 1, January 2009

fourth European Conference on Web

Services (ECOWS'06), IEEE Press (2006).

[10] K. Haller, H. Schuldt, and C. Turker,
"Decentralized Coordination of

Transactional Processes in Peer to Peer

Environments", In Proc. of the 14th ACM

International Conference on Information

and Knowledge Management (CIKM

2005), pp. 36-43, Bremen, Germany
(2005).

[11] M. Alrifai, W-T. Balke, P. Dolog and W.

Nejdl, "Non-Blocking Scheduling for Web

Service Transactions", In Proc. of the Fifth

European Conference on Web Services
(ECOWS'07), IEEE Press (2007).

[12] R. Vigralek, H. Hasse-Ye, Y. Breitbart and

H-J. Schek, "Unifying Concurrency

Control and Recovery of Transactions

with Semantically Rich Operations",

Theoretical Computer Science, Vol. 190,

(2) (1998).

[13] M. Herlihy, "Apologizing Versus Asking
Permission: Optimistic Concurrency

Control for Abstract Data Types", ACM

Transaction on Database Systems, Vol.

15 (1) (1990).

[14] A. Silberschatz, H. Korth and S.

Sudarshan, Database System Concepts,
Fifth Edition, McGraw-Hill (2006).

[15] R. Obermarck, "Distributed Deadlock

Detection Algorithm", ACM Transaction

on Database Systems, Vol. 7 (2) (1982).

[16] S. Lee and J.L. Kim, "Performance
Analysis of Distributed Deadlock

Detection Algorithms", IEEE Transaction

on Knowledge and Data Engineering, Vol.

13 (4) (2001).

Received November 12, 2008

Accepted December 24, 2008

