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A cellular neural network with programmable parameters is proposed to recognize and 
classify the image patterns. It generates not only the ramp function but also its derivative. 
The neuron input signal is a current which is a sum of currents coming from a wideband 
CMOS transconductance synapses. The output driving current capability is sufficiently high 
for driving large capacitive loads. Activation of the two outputs can be conveniently 
controlled by means of mask programmable threshold voltage of Super MOSFET (SMOS) 
which has VT as low as 100mV. The proposed circuit was implemented in a 0.34 μ m CMOS 

VLSI process and simulated by both Mat lab software and HSPICE to confirm the validity of 
the function. Comparing with the published [9-10] experimental results validate the 
proposed methodology. 

ها بخلية من الدوائر التكاملية متناهية الصغر وفى البحث يقدم هذا البحث شرحاً للخلية العصبية الاصطناعية والتى يقترح محاكات
  محكاه للدوائر وتحديد لخواصها ومن المحاكاه تمكن من تحديد الخواص التى رأى أنها فى حدود المقبول.
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1. Introduction 

 

The Cellular Neural Networks (CNN) [1-10] 

are locally connected networks which can be 

implemented thanks to the advances in CMOS 
processes. The massive computational power, 

the low power consumption and the high level 

of intelligence of these networks make them 

ideally suited for real-time image processing, 

pattern recognition and other smart 

applications [11-15]. On the other hand, it is 
still a big challenge, where a lot of problems 

must be solved to achieve this goal. First, 

proper low power electronics must be worked 

out to realize basic operations required in the 

neural networks, second signals transmitted 
between neurons must be voltages, in order to 

avoid power losses in conductive paths. Since 

summation of currents is much easier to 

implement than summation of voltages, 

synapses should operate in a 

transconductance and neurons in an ohmic 
region. Moreover, information about the 

synapse weight should be stored within a 

chip, and analog memories seem to be 

adaquate for this purpose [16-18]. Various 

models of CMOS neurons have been developed 

and published [19-26]. The drawbacks 
attributed to analog VLSI, in general, are the 

limited available dynamic range and the 

channel length modulation effect through the 

early voltage.  

In this paper we primarily focus on the 

major building blocks needed for a CMOS 

cellular neuron. Differential voltage current 
controlled source for making synaptic weights 

and a Super MOSFET, where the effect of the 

channel length modulation parameter is 

drastically reduced. Because of each neuron 

output needs to be sent to the other neurons, 

the output current needs to be repeated many 
times, this is accomplished by the 

bidirectional current mirrors. The block 

diagram of the proposed cellular neuron is 

shown in fig. 1, where the input is differential 

pair and the neuron has two outputs, the 
ramp r(t) and its derivative [27-30].  

  

 
 

Fig. 1. Block diagram of the proposed CMOS neuron. 
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This paper is divided up into several 

sections. Section II presents the Circuit 

analysis, Circuit design is presented in section 
III, simulation results are discussed in section 

IV, section V presents a comparison with the 

published experimental results, and finally 

conclusion is presented in section VI.  

  

2. Circuit analysis 
 

The main function of the neuron may be 

summarized as follows: signals 

(action_potentials) appear at the unit’s inputs 

(synapses). The effect of each signal may be 
approximated by multiplying the signal by 

some number or weight to indicate the 

strength of the synapse. The weighted signals 

are then summed to produce an overall 

activation. If this activation exceeds a certain 

threshold the unit produces the output 
response. 

Fig. 2 represents the circuit diagram of a 

cellular neuron, whose output may be fed to 

the input of another neurons [18].  

Straight forward analysis leads to the 
model of the neuron where the main function 

is to combine the input signals from other 

neurons, by summing weights. Bias current is 

usually added to shift values along the input 

axis. The activation function limits the 

amplitude of the output. 
 

Then: 
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Fig. 2. Circuit diagram of the Cellular neuron. 

 

where Iin is the input current to the neuron 

number n, Rn is the resistance represented by 

CMOS at the input of the synapse weight gmn , 

Ibias is the bias current, Vn is the state variable 

action potential for activation, Gn is the 

conductance of the two MOS transistors that 
are connected in parallel and essentially 

function as a resistor and Cn is the smoothing 

capacitor which is Linear –Time Invariant (LTI) 

, for the nth neuron of a set N.[24-29]. 

 
2.1. A current mode sigmoidal function 

synapses circuit 

 

Two of the key components in a cellular 

neuron are the weights and the nonlinear 

activation function. A weight can be realized 
by a tranceconductace operating in it is linear 

mode, while a sigmoidal non linear activation 

function can be obtained by operating a 

tranceconductace amplifier in its full 

nonlinear range. Fig. 3. Shows the current 
mode sigmoidal circuit.  

Simplified circuit analysis shows the linear 

dependence of the output current on the 

square-root of the bias current [22].  

 

biasinout KIVI  .       (2) 

 
Where Iout is the output current and Vin is the 

difference between the two inputs Vin1 and 
Vin2, Ibias is the bias current and K is a 

constant. The transconductance G of the 

amplifier was the slope of the output current 

against the input voltage curve: 

 

bias
in

out IK
V

I
G  .       (3) 

 

It is noticed that the dependence of bandwidth 
and tranceconductance on the bias current 

indicates the possibility of control on the 

performance through varying the bias current.  

 
2.2. A programable current mode sigmoidal 

model 

 

Transistors SN and SP are super MOS [24] 

and are connected in parallel and essentially 

function as a resistor as shown in fig. 3. 
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Fig. 3. Acurrent – mode sigmoidal circuit. 

 

Therefore, we have the transconductance 

obtained as: 
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where k is the transconductance parameter, 

VTP and VTN are the threshold voltage of SP and 

SN respectively. We note that: 
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Then the output current will be: 
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To get the relation between threshold 

voltage of the super MOS and the channel 
width (W3) of the transistor MN3 shown in        

fig. 4, we assume that all transistors are 

working in saturation region. Then for MN3 
the drain current will be: 
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where L is the channel length and W is the 

channel width, then  

  

 
 

Fig. 4. N-type Super MOS (SN). 
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As VT = 0.75 V then we have: 
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where K1 and K2 are constants. 

 

 

From eqs. (4, 6 and 9) one can obtain: 
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where W3 is the cannel width of MOSFET MN3 

, K\ and K\\ are the constants of the Super 

MOS –SN, that show the feasibility of mask 

programming for the threshold voltage which 

can reach as low as 100 mV. This is obtained 
by varying only the channel width (w3) of one 

transistor in the SMOS architecture. 

 

3. Circuit design 

 

In order to avoid power losses in 
conductive paths, synapses should operate in 

a transconductance and neurons in an ohmic 

mode. More over, information about the 

synapse weight should be stored within analog 
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memories. An improved version of the neuron 

circuit is proposed. The improvement relies on 

adding a second output at which the voltage is 
linearly dependent on the neuron input 

current. In this way, we obtain a neuron with 

two outputs, i.e. a step-function output and a 

linear one. Fig. 5 presents the proposed 

Cellular neuron circuit [30-34] 

The trnsconductance synapses is a device 
that generates at its output a current that is a 

function of the difference between two input 

voltages, as shown in fig. 3. The two 

transistors MP5 and MP6 are used as a 

current source, its drain voltage is large 
enough that the drain current Ibias is saturated 
at a value set by the gate voltage Vc1. The 

three current mirrors MN1, MN5 and MN2, 

MN4 besides MP3, MP4 are used to generate 

an output current that is proportional to the 

difference between the two differential drain 
currents. The current drawn out of MP1 is 

reflected as an equal current of MP4 and the 

current drawn out of MP2 is reflected as equal 

current out of MN4. Transistors SN and SP are 

Super MOS and are connected in parallel and 

essentially function as a resistor [22].  
As shown in fig. 4. Super MOS behaves 

like a cascade MOS transistor having source, 

gate and drain terminal., but with nearly zero 

channel modulation factor (λ) and intrinsic 

gain "gmro" of more than 90dB. The super 
MOS however has an extremely high output 

impedance due to implementation of the gain 

boosting technique. Also, the effect of the 

channel length modulation parameter (λ) on 

the output current of MOSFE is drastically 

reduced in SMOS which means that the SMOS 
may be used in a perfect matched current 

mirror [24]. 

  

 
 

Fig. 5. The proposed Cellular neuron circuit. 

Referring to fig. 5, at the step output, each 

transistors SN1 and SP1 can operate either in 

saturation or in Ohmic region, depending on 
the control voltage Vc2 and the input current 

coming from synapses. Where Vc2 is gate to 

source voltage, that controls the operation of 

SN1. The active state of the neuron occurred if 

the input current is higher than the drain 

current, the output voltage Vout1 is then 
approximately equal VDD. On the other hand, if 

the input current is less than the drain 

current, SP1 is in saturation and SN1 is 

forced to operate in the Ohmic region, which is 

an inactive state of the neuron and Vout is 

close to zero. 
The second ramp output could be realized 

as follows: the transistor SN2 works in the 

Ohmic region and leads SP2 transistor. An 

operation in this region takes place when 

drain to source voltage VDS, gate to source 
voltage VGS and the threshold voltage VT of 

SP2 fullfill the following relation: 

 

)( PTGSDS VVV  .          (11) 

 
As (VGS –VTP) is higher, the more linear is the 

transistor channel resistance. As a result, the 

ramp (out) voltage is approximately 

proportionally to the drain current. A channel 

resistance, required to operate with low 

currents is obtained for a long and narrow 
channel of SP2 [35-42] 

 

4. Simulation results 

 

Results presented in this section concern a 

0.18 µm CMOS process. The neuron 
properties as well as its cooperation with 

synapses were simulated. Other properties of 

the transcondutance synapses and the super 

MOSFET have been descried in [22-24]. 

Layout of the simulated circuits was made 
using Mentor Graphics and simulations 

performed by means of HSPICE and PSPICE.. 

Parasitic elements resulting from the layout 

have been taken into account in electrical 

schems of the circuits examined. Threshold 

voltages of the SMOS N-type and P-type 
transistors were equal to 100mV, -100mV. In 

fig. 6, the synapses output current as a 

function of the difference voltage is shown. 
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Fig. 7, shows the transfer characteristics 

concerning the step output of the neuron. DC 

properties at the output of the neuron was 
investigated. Fig. 8 shows Simulated Time 

response of the neuron step output. 

Comparing with the published Measured 

[9-10]. The neuron with linear output have 

been investigated. Speed and stability of the 
neuron operation, for the case of VT = 200mV, 

is illustrated in fig. 9. The activation function 

which is similar to the sigmoid can be 

obtained as shown in fig. 10. 

 

 
 

 
 

Fig. 6. Simulated synapses output current against the 
difference input voltage. 

 

 
 

Fig. 7. Simulated transfer characteristic of the step output 
neuron. 

 

.  
Fig. 8. Simulated Time response of the neuron step 

output. 

 

 
 

Fig. 9. The measured [9-10] and Simulated linear output 
voltage of the neuron versus its input current.  

 

 
 

Fig. 10. Measured [9-10] and simulated Activation 
function of the cellular neuron circuit.  

 
6. Conclusion 

 

Analog VLSI cellular neuron with 

programmable parameters has 

transconductance synapses and two output 
neuron was presented and analyzed. All the 

circuits are confirmed by HSPICE simulation 

using 0.18μm CMOS technology. The 

proposed circuit has many advantages over 

the simple transconductance. The obtained 

bandwidth reaches 400 MHz which is suitable 
for wide band operation cellular neuron. The 

output driving current capability is sufficiently 

high for driving large capacitive loads. The 

super MOS whose threshold voltage is mask 
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programmable through changing the 

dimensions of a single MOS. In general, 

programmable and modular artificial neural 
networks can be built using the proposed 

circuits.  
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