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Rough sets, a tool for data mining, deal with the vagueness and granularity in information
systems. This paper introduces new approach for tolerance space that given by Jarvinen [3]
via a topological view .Our technique can be considered as a generalization for tolerance

space.
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1. Introduction

There is much useful information hidden
in the accumulated voluminous data, but it is
very hard to obtain it. Thus, there is an urgent
need for a new generation of computational
theories and tools to assist humans in
extracting information from the rapidly
growing volumes of digital data. Those
theories and tools are the subject of the
emerging field of Knowledge Discovery in
Databases (KDD).To this end, reaches have
proposed many methods other than classical
logic such as fuzzy set theory [1,2,5,12], rough
set theory [4,8-10,14,15,17], computing with
words [13,16], computational theory for
linguistic dynamic systems [7, 11], etc.

As a technique to deal with the granularity
in information systems, rough set theory was
proposed by Pawlak [8] that based on
equivalence relations .But in some situations,
equivalence relations are not suitable for
copying with the granularity. Thus classical
rough set method is extended to similarity
(tolerance) relation based rough sets. Jarvinen
[3] was introduced tolerance space as a
generalization of Pawlak space by using
tolerance relation .In our approach we
introduce topological view for modifying and
generalizing tolerance space. Moreover, we
introduce new granularity for tolerance space.
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2. Background
Definition 2.1 [3]

The binary relation R on a set U is said to
be "tolerance relation" if it is reflexive and
symmetric. The set of all tolerance relations on
U is denoted by Tol(U) and the set a/R =
{beU:aRb} is called "the R-neighborhood"
ofa, VaeU.

(If R € Tol(U) is a transitive, then R is an
equivalence relation and thus the R-
neighborhood of R is equivalence classes).

Definition 2.2 [3]

Let U be a set of objects and, R € Tol (U)
"the lower R-approximation" (resp. the upper
R-approximation" of X c U is given by

Xk = {xeU: x /R

XR=eU :x/RN X = ¢)}).

The set Br (X) = XR — Xr is called "R-
boundary” of X. The set Xg (resp. XF) consists
of elements which are surely (resp. possibly)
belongs to X with respect to knowledge
provided by R.

cx} (resp.

Proposition 2.1 [3]

If ReTollU)and X, Y < U. Then:
(i) Ur=UR=Uand gr =g = ¢.
(ii) Xrc XC XR
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(iii)  (XR)e = (X9Rand (XF)c= (XI)r

(iv) If, X< Y, then Xr cYrand XRc YR
) Br (X) = Br (X9.

(vi) (XUY)R =xRUYR and(X.NY)k

=Xx.NYx.

(i) XrU Yr < (X UY)r and

(X NY)R C XR YR

(vil)  ((X®gR= XRand (Xg)R)r = X .

Definition 2.3 [3]

Let U #¢ be a finite set, ReTolU)and X
c U. Then X is called "R-definable" set if Xr =

XR, Otherwise X is called rough set, we denote
by Def. (R) to the set of all R-definable sets.
It is obvious that the set X c U. is R-definable

if R-boundary Bk (X) is empty.
Definition 2.4 [6]

Consider U= ¢ is a finite set, the subclass
< P{U) is called "a supratopology" on U if
U er) and 7 is closed under arbitrary union.
(U,7r) is called
"supratopological space” and the members of ¢
are called "supra open" sets.

Moreover, the pair

3. Lower and upper space

In this section we spotlight and introduce
a topological view in tolerance space.
Moreover, many results are investigated.

Definition 3.1

Let U# ¢ be a finite set andreTo(u). The

class "lower space" Sk (resp.upper space SF) is
given by Sp={XcU:X=Xg} (resp.

SR XcU:X=Xx*}

Proposition 3.1

Let U= ¢ be a finite set and (R e To(U), then

the class Sk (resp. SF) forms a quasi-discrete
topology on U.

Proof: We will prove the proposition in case Sr
and similarly S®:

Clearly Ur=Uand ¢ =¢.Thus U, ¢ S;.

Let A, B € Sg, then A =A; and B = Br. Thus
(ANB)r =Ar NBr=ANB..

Which implies A1 B € Sg.

Let A €Sg,iel,, then A =(A)r,i€l.. Thus

UAi:U(Ai)Rc[UAiJ ,iel. But [UAi) cUA -
i i i i R i

R
Thus (UAiJ eSk-
i /R

Which means that Sris a topology on U.
Now, we will prove that S, is quasi-discrete

that is X € Sg if and only if X e Sy.

Let X €Sy, then X = Xr. (1)
By (1), we get

Xr={xeU:x/RcX}={xeX:x/RcX}.
(2)

Now, let a € X¢, then there are two different
cases:

Case 1

If a/lRNX=#¢, then 3beX and bea/R

such that a e X¢. Which imply that 3be X
and aRb such that aeX. But R is a
symmetric relation, then, aRb = bRa .

Thus a/RNX #¢ implies that 3be X and bRa
such that a¢ X .

That is 3be X and aeb/R such that ag¢ X

which is a contradiction to assumption (1).
Thus the following case is true.
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Case 2

Ifa/Rc X¢, then X°=(X%)r and thus
X¢/eSg.
By the same way, one can prove that if Xec
eSp = X eSi..
Thus Sris a quasi-discrete topology.

Example 3.1

Consider U=¢ 1is a finite set and
R e TolU) such that
a/R={a,c},b/R={b},c/R={a,c,d} and

d/R={c,d}. Then

SR = {U> ¢> {b}7 {a; c, d}} = SR'

Clearly R is reflexive and symmetric but it is
not transitive.

Moreover, Sr and SR are
topologies.

quasi-discrete

Lemma 3.1

Let U#¢ be a finite set and ReTolU).
Then the topologies SR and SR are equivalent.

Proof

Let X €Sy , then X¢ e Spsuch that X=Xr (1)

But Xg=((X9R), then X =') ((X,)*)° < X°©

= (X o x°¢ e SR,
Since SRis quasi-discrete, then X e S¥ . Thus
SR = SR.

Corollary 3.1

Let U=¢ be a finite set and ReTO(U).
Then the subset X c U is an exact set if and
only if X= Xg or X = XR.

Proof: By Lemma 3.1., the proof is obvious.
4. Supra-tolerance space

In this section, we introduce topological
method to modify and accurate Jarvinen [3]

method (space) by using the notation of
supratopology.

Definition 4.1

Let U=#¢ be a finite set and ReTO/U).
Then the pair AU, R) is called "tolerance
approximation space" in briefly "TAS", and the
subset. X c U is called "tolerance composed
set" if it is a finite union of R-neighborhood of

its elements, i.e., Vxe X,X= U x/R.
xeX

The family of all tolerance composed sets in A:
is given by the class

com A, ={XgU:X: U x/R}..

xeX
It is clear that com A: is closed under
union and it is not closed under finite in-
tersection as the following example illustrated.

Example 4.1

Consider U= {a,b,c,d} and such that
a/R = {a,b,c¢}, b/R {a,b}, ¢/R = {a,c,d} and d/R
= (¢,d). Then
com (At) = {(J: ¢ ’ {a; b}? {C;d}: {a,b,c}, {a,c,d}}.
Clearly, {a,b,c}, {a,c,d} € com A: but {a,b,c
{a,c,d}= {a,c} & com A:.

Corollary 4.1

Let At = (U, R) be a TAS, then the class
com (A) forms a supra-topology on U.
Moreover, the class com (Ayc forms an infra-
topology on U.

Proof: Obvious.

Definition 4.2

Let At = (U, R), X cU be a TAS. Then the
space Ts = (U, com ((A4) is called "Supra-TAS",
and the approximations of X are given by:

(i) The supra-lower approximation is defined
by:

S—(X)p =U{Gecom (A): G < X.

(i) The supra-upper approximation is defined
by:

S—(X)® =N{H ecom (4): G < X.

(ii) The supra-boundary of X is defined by:
S=Bg (X)" = (S~ X)% NS - (X)g).
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Proposition 4.1

Let Ts = (U, com ((A#)) be a Supra-TAS and
X, Y ¢ U Then

(i) S-(U)g=S-U)¥=Uand S—(hr=S - (HR
= ¢_

(i) S-(X)r =X cS-(X)8

(i) ( (S—(X)g)® =S —(X)® (S-HX)R)= (S- (X)r
(ivyIf X cV, then S<(X)z < S(V)R and S-
(XY Rc S-(Y) R.

Proof: Obvious.
Proposition 4.2

Let Ts = (U, com ((A¢) be a Supra-TAS and
X, Y cU. Then

) S-(X)rgNS-(Y), 25-(XNY)g.
(i) S—-(X)* NS-(Y)" 285-(XNY)".
(iii) S—(X)* US-(Y)" cS-(XUY)".
(iv) S-(X)r US-(Y)y =S-(XUY),.

Proof:

(i) Since XNY < X and XNY cY. Then
S—-(XNY)prc=S-(X)gand

S-(XNY)r =S-(Y)g

which implies that

cS-(X)rNS_(¥)-

Similarly, (ii), (iii) and (iv) by similar way.

In the above proposition the inclusion
signs in (i) and (iii) can not be replace by equal
sign in general as the following example
illustrated.

S—(XNY)g

Example 4.2

Let U ={a, b, ¢, dl and R e TO|U). such
that a/R={a, b, ¢, b/R=1{a, b} and c¢/R = {a,
¢, dj, and d/R = {c, d}, then
com (A) ={U, ¢, {a, b}, {c, d}, {a, b, ¢, {a, ¢, d}}
And com (A9c ={U, ¢,{b}, {d}, {c, d}, {a, b}}.
Consider X={a, b, d} and Y= {c,d} . Then
S-(X)r={a, bfand S- (X)R=U, S- (V)=={c, d}
and S- (Y)R=and S- (V)R = {c, d}.

Thus XUyY=U and XY ={d},
and then S—(XNY)pr =¢ and

S—-(xuv)f=u.
But S—(X)g NS—(Y)g = {@ b} # S—(XNY)s
And S—(X)RUS-()'U# S—-(XNY)F .

Definition 4.3

Let Ts = (U, com ((A9) be a Supra-TAS and
XcU. Then X is called "supra-exact" set,
written "s-exact", if X and Xc¢ are tolerance
composed sets. Otherwise, X is called "supra-
rough" set, written "s-rough".

Proposition 4.3

Let At = (U, R) be a TAS associated with a
Supra-TAS Ts = (U, com (Ay)). Then X is an
exact set in TAS if it is a s-exact set in Supra-
TAS.

Proof:

Let X is an exact set in TAS, then
X=Xr=XR. Thus (X9=(XR®)c = (X9)r which implies
thatVxe X,x/Rc Xand Vye X°,y/Rc X°.
Since R is a reflexive relation, then we can

write X= U x/Rand Xc= U y/R .
xeX yeXC

Thus X, Xc € com (A)which means that Xis a
supra-exact set in supra-TAS.

Definition 4.4
Let A: = (U, R) be a TAS associated with a
Supra-TAS and X cU. Then "the accuracy of

approximation" of Xin A: = (U, R) (resp. in Ts =

(U, com (Ay)) is defined by the number
X
7:(X) = I|X_§|[ where |XF1¢O

[resp prs) =12 gig Where |S - (X)¥] #0)

The relation between the approximations in A:
= (U, R) and in Ts = (U, com A¢) is given by the
following lemma.

Lemma 4.1
Let A: = (U, R) be a TAS associated with a
Supra-TAS and X cU.. Then

(i) Xr<S-—-(X)g. (i) S-(X)r < (X)*.
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Proof:
(i) LetxeXp, then x/RcX such that

x € x /R (since R is reflexive). Since S- (X)r is
the largest composed set contained in X, then

xX/RcS-(X)p=>xeS—-(X)p
XpcS—(X)g--

(i) By taking the complement of (i), then
S(X)R < X*,

and whence

Lemma 4.2
According to Lemma 4.1, it is clear that:
() S-Br (X) < Br(X)-

(i) n7s(X) <n(X).

Remark 4.1

According to Propositions 4.3, Lemma 4.1
and Lemma 4.2, it is obvious to notice that,
how Supra-TAS represents the natural
generalization  (modification) for  TAS.
Moreover, the boundary region in Supra-TAS
is smaller than the boundary in TAS. It is
clear that the approximations of the set are
modified.

The accuracy of the approximation is
also modified. Thus, we can say that Supra-
TAS is the basic tool to dealing with
roughness and vagueness in the rough set
theory building by tolerances via topological
view Fig 1.

The following example shows that the
converse of Proposition 4.3 Lemma 4.1 and
Lemma 4.2 is not true in general.

Fig. 1. (lllustrated in remark 4.1).

Example 4.3

Let U= {a, b, ¢, df and ReTOlU) such
that a/R = {a,b,c¢}, b/R = {a,b}, ¢/R = {a,c, d},
and d/R = {c,d}, Then
Com (At) = {L]? ¢’ {a’b}’ {C’d}’ {a’b’c}’ {a’c’d}}
and com (A)° = {U, ¢, {b}, {d}, {a,b}, {c,d}}
Consider {a,b} and {c,d} are s-exact in supra-
TAS but it is not exact in TAS.
Moreover, there no exact sets in TAS either U
and ¢. Also, XR = {d} and XR = {a,c,d}.
But S- (X)r= S—- (X)R = {c,d}, that is Xr < S-
(X)rand S- (X)R < XR.
Also S— Br (X) < Br (X) and 7;5(X) < 1,(X).

5. Conclusions

In this paper we remarked that the
topological approach can be considered as a
generalization to tolerance space. We
generalize the standard rough set approxima-
tions. Two pairs of lower and upper
approximation operators are suggested and
studied. Their properties are examined. Our
approach opens the way for more topological
applications in tolerance space and other
applications from real-life problems.
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