Direct adaptive fuzzy control for a class of MIMO nonlinear
uncertain systems

Abdel Badie Sharkawy

Mechanical Engg. Dept., Faculty of Engg., Assiut University, Assiut 71516, Egypt
e-mail: ab.shark@aun.edu.eg

This paper proposes a new design methodology of direct adaptive fuzzy controllers for a
class of MIMO nonlinear dynamical systems with unknown nonlinearities. The unknown
nonlinearities are approximated by fuzzy system with a set of fuzzy IF-THEN rules whose
parameters are adjusted on-line according to derived adaptive control laws. The fuzzy
adaptive laws ensure stability, convergence of the controlled output, and boundedness’ of
the adaptation parameters. The goal is to control the output of a class of nonlinear systems
(encountered mainly in robotics) in order to track some given trajectories. Theoretical results
are illustrated through a simulation example. They show the effectiveness of the proposed
control scheme. ) )
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1. Introduction

Adaptive control is a model-free approach
for controlling uncertain dynamic systems.
The basic idea is to estimate the uncertainties
in the plant on-line based on the measured
signals. In principle, the system under control
can be uncertain in terms of its dynamic
structure (nonparametric uncertainty), or its
parameters (parametric uncertainty).
Generally, the basic objective of adaptive
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control is to maintain consistent performance
of the control system in the presence of these
uncertainties. Conventional adaptive control
theory, however, can only deal with the
systems with known dynamic structure, but
unknown parameters [1]. This drawback has
been the main reason for seeking other
adaptive control methodologies which can
tackle the nonparametric uncertainty.
Recently, the analytical study of adaptive
nonlinear control systems wusing universal
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function approximators has received much
attention [2-14]. Typically, these methods use
fuzzy logic systems as approximation models
for unknown system nonlinearities. Using the
approximation capability of fuzzy systems,
which is the linear function of adjustable
parameters, the design schemes of some
stable adaptive fuzzy controllers were
proposed in literature. In [3-4], the tracking
error convergence depended upon the
assumption that the approximation error
should be square-integrable. On the bases of
Sanner and Slotine [2] and Wang [4], Su and
Stephanenko [5] proposed an adaptive fuzzy
controller, which relaxes the condition that
the approximation error should be square-
integrable. The control scheme however is
suitable only for nonlinear control systems
with unity/constant control gain.

In this paper, a new direct adaptive fuzzy
control method is proposed for a class of

MIMO nonlinear plant encountered in robotics.

The proposed method “relaxes” the knowledge
of the plant upper bounds by introducing
adaptive control laws. These laws ensure the
convergence and boundedness of adaptation
parameters of the fuzzy systems. Furthermore,
it computes on-line the estimation error on
the plant structure by means of an adaptive
algorithm independent of the external
disturbances. As the compensatory sliding
term itself depends on this estimation error, it
leads to an adaptive compensation.

The paper is organized as follows: Section
2 describes the features of the adjustable
fuzzy systems used in the sequel. Section 3,
presents the control problem statement. The
error dynamics is elaborated in Section 4. In
Section 5, the adaptive control laws are
derived. Section 6 demonstrates how to design
an adaptive fuzzy controller for two link planar
robot. Simulation results are also
demonstrated and discussed. Section 7 offers
the concluding remarks.

2. Description of the implemented fuzzy
system

Fuzzy logic systems performs a mapping
from U;xU,---U, cR"™ to R where each

U, cR , i=12,--n we use the
implication and the reasoning method
suggested by Takago and Sugeno (T-S), [15].
Consequently, the fuzzy IF-THEN rules of zero

order type are expressed as:

Here,

Riifx, is Al and - x,, is A" then z;. =d®, (1)

where x =(x; -~ x,)" €eR" and z, eR are,

respectively, the input of the fuzzy logic
system and the consequent of the kth rule.

Here, the label Alll associated to input x;,
i=12,---n, is a fuzzy set in U; where the index

li takes a value in {i,---,m;} and m; is the

number of fuzzy sets characterizing the input
k (for k=12,--,M) is an
adaptable coefficient of the consequent part
for the kth fuzzy rule. The number of rules M is
defined by the Cartezian product as:
M=m ®m,---®m,,.

In this article, the product operation for
fuzzy implication and T-norm are employed.
The definition of the product operation is the
same as in [16]. Besides, the singleton fuzzifier
and weighted average defuzzification are used.
The overall output value is

X; . The coefficient a

Z(x) =5 (2)

1
M
2.9

k=1
where ) denotes the firing strength of the R,

rule, which is evaluated by using the product
inference and implication as:

n
a :H;,_Alﬁ(xi) with [; e {l,---- mit (3)
i=1

where y_Afi (x;) is the membership grade of x;

associated to fuzzy set Afi .
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If the antecedents Afi ’s of the rule base

are fixed and the a”’s form the adjustable

parameters; z(x) in (2) can be rewritten as:

z(x) =" (%9, (4)

where @ is the parameter vector given by:
o=ata?-a] (5)

and " (x) = (31,82, >0y ] Where

(i = ,i=1---M. (6)

In the sequel, the fuzzy logic system for multi-
input single output is represented by the
mathematical expression (4).

3. Problem formulation

Our goal is to build a fuzzy adaptive
control system for a certain class of MIMO
nonlinear dynamic systems encountered
mainly in robotics. This class is of the form:

u= fx)x +g(x)
y=x, (7)

where

—1)\T T _TqT T
X:[(x(p )) i, X, X ] ) x=[x1,~~~xn] )
x € R"P is the state vector and assumed to

be available from measurements, f(x)e R™"

and g(x)el’?”Xl are unknown continuous

vector functions, u=[u1,u2,--~un]T € R and
Yy € R are respectively, the input and output

of the system. In order for eq. (7) to be
controllable, we require that g(x)=0 for x in

certain controllability region, U, ¢ R" . This
class of nonlinear systems is called square

system since the number of inputs is the same
as the number of outputs [1].

Now, the control objective is to force the
output y(t) to track a given bounded reference

trajectory yd(t) under the constraint that all

signals are bounded.
Assumption Al. We assume that the function

fx)e R™™ is a positive-definite matrix
fulfilling:
|£&)| < folx| ¥x e with £, >0, (8)

where Q. < R™? is a subspace through which

the state trajectory may travel under closed-
loop control and f, is unknown.

The function g(x)eR”Xl is a nonlinear

function; it is composed of ill-known but
bounded continuous functions.

Remark 1. Notice that in robotics, the function
f(x) is the inertia matrix, which is positive

definite. The bounded

represents globally the effects of Coriolis and
centrifugal forces, the gravitational torques (or
forces), viscous and/or dynamic friction,
unstructured friction effects such as static
friction terms, disturbances and unmodeled
dynamics.

By exploiting the approximation property
of fuzzy systems defined in (4), the unknown
functions f and g are approximated by:

function g(x)

fx)=¢rx) and g(x) = ¢4(x). (9)

The wunknown functions ¢ and 4,

representing the system uncertainties are
approximated by two zero-order T-S functions
with rules of eq. (1) in the form of eq. (4) as
follows:

b (%)= §r (x,07) + 5 ()= " (xPf +67(x). (10)
B9 (%)= 8y(x,0,) + S5 (x)=w T (xPy +54(x), (1)

where «9} and 6; are some unknown optimal

parameter vectors, 0; and O, represent the

reconstruction (approximation) error for each
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fuzzy system. In general, increasing the
number of rules by increasing the number of
fuzzy sets for each variable reduces the
reconstruction error.

The optimal parameter vectors 0} and 6’; are
artificial quantities required only for analytical
purposes. Typically [9, 17], 0} and 6’; are

chosen as the values of Hf and 9g ,

respectively, minimize the reconstruction

errors; i.e.,

0y = arg I%jn{supk;f(x,ef)—qﬁf(xﬂ. (12)
r | xeU,

0y = arg r%inkllf 69 (x,04) — 4 (xﬂ : (13)

The rest of terms in (10 and 11) are defined as
follows:

¢T o000 00
T
vTe=(0 ¢ 00 00 (14)

0 00 0--0¢T
where ¢ (x)=[¢1,¢2, Sul,
0r(11)07(L2) - 6;(1n)

. - 05(21)07(2,2) -+ 07(2,n) 7 (15)
05 (n1) 07 (n,2) -+ 05 (n,n)

where

17, i,j=12--n, (16)

9}(i,j):[a5~ a§ aﬁ/]

and
0y =[051)" O2)" -+ (Ogn)"1" (17)

where

O =laf ad - afI’, i=12-n. (18)

4. Error dynamics

Using the theory of sliding mode control,
let us introduce the sliding surfaces (filtered
tracking errors) as:

S =[s1,85s,1", (19)
with
s; = (%mi)@—“ei for 4, >0, (20)

where 4; is positive coefficient, e; —yd —x;,

with i=12---,n, and yld stands for the desired
ith output. Now the control objective is to force
the system trajectories to stick to the sliding
surfaces (19), thus achieves tracking and
nullifying errors. Reconsidering (20), we obtain

s; = Al

i i

cee (p — l)iiegp_Q) + egp_l) . (2 1)

P Ve, +(p-1)AP e, +

So that, asymptotic tracking can be achieved
when roots of the following polynomial is
Hurwitz.

hi(s)= APV + (p-1)AP s +
(p — 1)11_8(19*2) + S(pfl) , (22)

where s is the Laplace operator via the
condition 4; >0 with i=12---,n.
To simplify the presentation, the relation

(21) can be rewritten in the following compact
form:

si=ALE; , (23)
with
A=A (-2 -1, (24)
and
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E; =[e;,é;,-eP D", (25)

Consequently, the vector S of (19) takes the
following form:

S=ATE, (26)
where:

AT = diaglAT, A, Al L i » (27)
and

E=[E{ ,E},Eq){pna)- (28)

The first derivative of (23) is given by:

$;=ALE; +e® and i=12.-n, (29)

i
where

AL =10, A7) (p-1)AP2, . 05(p-1)(p-2)A7, (p-1)4].
(30)

Therefore the dynamics of S can be written
into the following compact form:

S=ATE+elP) (31)
where

AT = [AT1, AT ATy, Afnlnpin » and
e:[el,eg,"'en]T- (32)
From (7) we obtain:

yP = xP) =y P (e - g)), (33)
or

el =y - £ x)[u(t) - gtx)]. (34)

Let us substitute e?) given by (34) in the
expression (31); it follows that:

S=ATE+yP — Fx)ut) - gx)]. (35)

Now, let us define the filtered reference

Yior =ALE+y!P. (36)
So that
S =Y,or — f (X)) - g(x)]; (37)

which is equivalent to:
FEIS = F&)Yrer +glx)-ult). (38)
Using (9, 10 and 11), the filtered tracking

error dynamic (38) can be transformed into
the final form:

FES =y (xP; Ve +1 (xPy +
8 (X)Ypp + 54 (x) - u(t) . (39)

5. The control synthesis

In this Section, we develop an adaptive
control law which is able to force the plant to
follow the desired trajectory y¢. The procedure
is based on Lyapunov direct method.
Proposition 1. If the nonlinear system (7) is

conducted by the following adaptive control
law:

- - 1 -
ut)=kyS+y 0 vy, + 5fo||x||.s +ug, (40)

where

Ug ZéA‘f

Y,ef||sign (S) + 3, sign(S), (41)

the vector parameters 6, and 0 r are updated
by:

0, =1v.S. (42)

07 =yoyS.(Vrep) ", (43)
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and the parameter bounds fo, Sf and 5g are
updated such that:

fo =mlxl{s]- (44)
57 =no|[Yrer|S] - (45)
5g =S, (46)

where y1,75,7,72 > 0.
Therefore, under assumption (Al):
1. E, x and u are bounded.

2. E—> 0 as t >x and éf—>¢9}; ég—>6?; as

t—>o0.

Proof. The following Lyapunov function is
considered:

1o 1 >r5 ST
V=-STfx)S+—010, + —trace(0F0,)+
2 2)/1 g-g 27/2 FYr

1 =0 1 ~.o0 1 =~
= (fo) +5—(67)" +—(54), (47)
om 0T Tamy T Ty Y

with

Op =07 -0 ,0, =0, -0, (48)

fo:fo—f, gf :gf_gf’ and
5, =5, -

S

g (49)

where & s and Sg are nominal values for J
and ¢, . Differentiating the Lyapunov function

with respect to time we obtain:

V=187 fa)s+ ST F)S - — 816, -
2 71
1 ~p X 1 ~ =2 1 ~ =2 1 ~ =
= trace(@F0,) - — Ff —— 8.6, ——8.5, .
¥2 TR g ol gy T gy T
(50)

Substituting in (50) f (X)S by its expression
(39), V becomes

V= %STf(X)S+ST[wT0}Yref 0, + 5V +

1 ~p2 1 ~m X 1 ~ =2
Sg—ult))-—0, 0, ——trace (0 6;) - — f, f -
71 V) m

1 ~ = 1 ~ =2
65757 ——6,6,. (51)
2 7 ny 70

Now, we introduce in (51) the adaptive control
law wu(t) given by (40); we obtain:

V=

]_ . * *

ESTf(x)S+ST1//T¢9fYref +STy 0, +ST6;Y,er +
T T 1 .73 T T}

S 59 -S de —ES f"X"S -S 778 HfYref —

STy "0, = ST 6 [[V,ef|sign (S)-STgsign (S)-
1 21

~ L 1 ~p L 1 ~ ~ X
—0r6, ——trace (0L 6;)-— f, f ——5:5¢ —
n 7 1 PR gt gy

1 ~ =
— . (52)
Up) 79

Introducing the parameter adaptive laws (42)
and (43) in expression (52) leads to:

V=
T 1 .1 1 .12 1 ~ 2
~kqSS-2S fx)S -8 folx[-S=—fofo +
m
ST (6 Yrep +04) = ST (64| Vier |+ 84)-5ign (5)-

1 = 1 ~ 2 T TG
—5f5f——5g§g+s 74 HfYref —
M2 M2

trace [0y rS(Y,ef) 1+ STy 0, -0 w S (53)

As STV/Tngref = trace [éfT'{/fS(Yref)T] , Vs
reduced to:

. 1 . 1 ~ 1 ~ X
V = —k,STs - EST Fx)S - B STF IS == fofy +
T

ST (6 Yo +65) = ST (S |Yrer | + 84)-sign (5) -

1 ~ = 1 ~ =

=56, —-—6.5,. (54)
2 s Up) 79

The following inequality is always fulfilled:
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V< kySTS+ %ST folxls - %ST Folls -
1 ~ X — ~
Z Sfofo+ 5f "Yref ""S" - 5f "Yref ""S" -
1 ~ = — ~ 1 ~ =
— 0705 + 54| = g[S -— 40 . (55)
2 2
This is equivalent to:
; To,lar I
V<-kyS'S+=8" fo|x|.S-— fofo+
2 T

Sf

1 ~ = ~ 1 ~ =
Yeer S = — 665 + 64 [S| = — 640, - (56)
Up) 2
Using the adaptive laws (44 — 46) of the
parameter bounds fo, Sf and 5g, we obtain:

V<-ky;STS<0 vS=#0 . (57)

Therefore, the function V in (47) is the
Lyapunov function for the closed-loop system

(40, 41 - 46). So (S,05,0,,f,,67,6, ) are
bounded and S—0 as t -0. As S— 0 then
from (25 and 28)

E=le;é...el" e é,...el™T 50 and

as yd and its derivative are bounded, we have
x,xelL,.

The boundedness of the control law u(t) is
directly deduced from the boundedness of

(x’x7éf’ég7f0’$f’8g)'
To show that §f,§g,f0,5~f,gg—>0 as
t = o let us define:

1 O o 1 00 ~
Vp=— —
=5, [, Ogclr+ 5 - [, trace @7 81+

1 00~ 1 0 1 0
— dr+——| (Of)dr+——| (6 .
o o Uodr 5 = [ ) [ Ggs
(58)
which can be written as:
_ 00 _l 00 T
Vv, = J.OVdr 5 jo ST fx)S dr . (59)

As f(x) is positive-definite,
inequality is fulfilled:

the following

STf(xS > oS> with o = H f‘l“w . (60)
Therefore, we can write
v, < j;{}dr_% [ s e (61)

Note that the expressions (58), and (48)-(49)
mean that V is bounded and none is
increasing with time; hence it has a finite limit:

limv(s>§faég,5f>5g)sz <, (62)
t—ox
and
I:Vdr eL,. (63)

Moreover, the inequality (57) leads to:

o0 1 0
[ lIsl?ar < —k—jo Vdr . (64)
d

[ Isl*ar =< ki(v ~V,)eL,. (65)
d

The conditions (63 and 65) entail that V, e L
which means that 9f,6?g,fo,5f,5g €L,
Because ¢r,4,,Y, s and SelL, , it follows

from (45-46) that §; and J, L, which,
together with 5 r and 64 € Ly, implies, using

Barbalat lemma [1], that 5 r and 5~g — 0 as

t—>o0.

Remark 2. In practice, because the control law
contains sign(S) , a discontinuous term,
applying (41) will cause a chattering problem.
The coming results are obtained after
replacing the sign(S) by a saturation function
of the form:
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sign(S/ x) if S<k

. ; (66)
S/x ifS>«

sat(S/K):{

where x is a positive constant. So that the
sliding control term in (41) becomes:

Ug ng

Yref"sat (S/K)+Sgsat(S/x). (67)

6. Numerical tests

In this Section, we present a computer
simulation to examine the validity of the
proposed control algorithm using the two link
planar manipulator shown in fig. 1, carrying a
load.

6.1. The design of direct adaptive control
system for the two link robot:

Consider the two-link robot moving in a
vertical plane, whose inverse dynamics are
given by:

u = mgzg (xl + ).62 ) + m21112 (2x1 + j&z )COS Xo +
(my + my)I %y —mylly%3 sinx, —
2mylily X1 X4 sinx, + mylygcos(x; + x5) +
(my + my)gcos x;, (68)

U.2 = mQlegkl COS XQ + m21112x12 Sin.XQ +

mylyg cos(xy + x5) + m2122 (%1 + Xg), (69)

Fig. 1. Two link manipulator model.

which is equivalent to plant model (7) where
the joint position vector x and the state vector

x denote, respectively, x=[x; x2]T and

.. T
X =[x X3 X1 Xo]" .

For simplicity, the control signals are
viewed as two independent subsystems, one

for each joint. Therefore, the dynamic plant
can be rewritten as:

w = fix1)% + gi(x;) with x; =[x, %17, (70)
Uy = f2(Xp)¥o + golxa) With xp =[xy 451" . (71)

The functions fi(x;) , folXo) ,
go(X,) are modeled as zero-order T-S fuzzy
system. Each input variable is described by
two fuzzy sets.

e With respect to function f; and g;, the

g1(x;) and

rule base incorporates 4 rules of the form:
R,{l :IF x; is A and x, is AéQ then F! = a,fl . (72)
R :1F x, is Al' and %, is A then G =a?, (73)

for [;, I, €{,2} and k={1...4} . The overall
output is given by:

filx,05) = E—— =y 6, (74)
2.
k=1
4
D akgi
G1(x, 04 ) ==L =y1 by, , (75)
Dk
k=1
with:
ak = pA{ (%)) LAS (7). (76)
0, =laf'...al|". (77)
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0, =la ...ad]". (78)

e Similarly, the rule base of f, and

g, incorporates 4 rules of the form:

R,{2 :IF x5, is Afl and x, is AéQ then FZ = a,?. (79)

RY” :1F x, is Af' and x, is A} then G? =a}”, (80)

for I;, I, €{1,2} and k={1...4} . The overall
output is given by:

4
D i R
falx,0p) = XL —— =y 7 0, , (81)
>k
k=1
4
D ai.gk
Go(x,0y ) =22 —— =yl 0, , (82)
ai
k=1
with:
ai = uAf (x3)-1AS (%5). (83)
0y, =lal*...al?]". (84)
0,, =l ...ad1". (85)

6.2. Results and discussions

The control law (40) is constituted by an
adaptive fuzzy model term y/TéfYref +yTa,, the

metric term de+% f0||x||.S and the sliding

compensatory term ug . It is imperative to look

at the control coefficients such that the
adaptive fuzzy model term is preponderant.
After few trails, satisfactory results have been
obtained for the control -coefficients and

bounds initial values ( f,,d f,5g ), which are

set up as indicated in table 1.

A time step of 0.0005 second has been
incorporated in the simulation tests. The
desired trajectories for x; and x, were set as:

yf'(t)=-bisinp ), y5(t)=bysin@yt), with
by =0.6 rad, b, =0.8 rad , @, =0.57 rad [ s
and @, =7 rad /s. The input torque of joint

one is saturated to +300 N.m..

The simulations are conducted, first, when
the robot starts from rest with initial position
errors t7/6; (test 1: see figs. 2-6); second,

where a mass of 10 kg is added to the tip of
link 2 after one second, (test 2: see fig. 7);
third, where masses of the links are randomly
changed with time, (test 3: see figs. 8, 9); and
fourth, when random noise with amplitude
5 N.m is added to the gravity torque, (test 4:
see figs. 10, 11).

The obtained results show that the
tracking regime is effectively established with
acceptable tracking error and the control
inputs (u;,uy) appear feasible. Fig. 6 shows

that the sliding torque component evolves
during motion within maximum value of
+15 N.m . Consequently, the adaptive fuzzy
model term remains preponderant in the
control law as it can be anticipated from a
comparison with fig. 5. Moreover, the inputs
remain continuous. However, in test 2, fig. 7,
the control increases somewhat relative to test
1 and presents an acceptable discontinuity at
t =1 sec when the 10 kg mass is added to the
tip of link 2. These results reveal that the
proposed direct adaptive fuzzy control law is
highly robust in the face of internal
uncertainty and external disturbances.

Table 1
Control coefficients and initial bounds

Joint Kd A V4 n fo 6f 59

1 1500 5 1500 40 5 15 10

2 100 5 500 40 5 15 10
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20 Tracking errors in degrees

Time in sec

Fig. 2. The tracking errors (test 1).

Angle in degrees

Time in sec

Fig. 3. Actual (solid) and desired (dashed)
trajectories (test 1).

Joint 1

Xy X5 in rad/sec

X19X5 inrad

Fig. 4. The phase plots (test 1).

The input torque in N.m

300

200

Time in sec

Fig. 5. The input torque (test 1).

The sliding torque component in N.m

0 05 1 15 2
Time in sec

Fig. 6. The sliding torque component (Ug ), (test 1).

The input torque in N.m

300

200

100

Time in sec

Fig. 7. The input torque when a pay load of 10 kg is added
at the tip of link 2 at ¢ =1 sec (test 2).
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Mass of link 2, kg

0 05 1 15 2

Time in sec

Fig. 8. Variations of masses of link one and two during
motion (test 3).

The input torque in N.m

300

200

100

Time in sec

Fig. 9. The input torque under random masses of link one
and two (test 3).

The input disturbance in N.m

0 0.5 1 15 2
Time in sec

Fig. 10. The input disturbance (test 4).

The input torque in N.m
300 : : :

200

100

0 05 1 15 2
Time in sec

Fig. 11. The input torque under random disturbance
added to the gravity terms (test 4).

7. Conclusions

In this paper, a new direct adaptive fuzzy
controller is proposed which:

(a) is capable of incorporating fuzzy (IF-THEN)
rules describing the system directly into the
controller,

(b) updates on-line the control parameters so
that unknown nonlinearity, uncertainties and
external disturbances can be overcome.

(c) guarantees the global stability and
robustness of the resulting closed-loop
systems in the sense that all the signals are
uniformly bounded.

The number of membership functions
which approximates the nonlinearities can be
extremely small and the results are less
conservative than the methods presented in
previous works.

The obtained simulation results clearly
reveal that this direct adaptive fuzzy controller
maintains the tracking errors in acceptable
interval with feasible control inputs in the
presence of hard parameter variations and
external disturbances.
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