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This paper presents a comparison between two simulation based optimization methods in 
the context of a simulation model of a continuous review (s, S) inventory control system. The 
model is used to find the optimum settings for the reorder level, and the order up to level 
quantities, that minimize the total inventory costs. The inventory costs considered are 
ordering, holding with full backordering or shortages and lost sales costs. Two simulation 
optimization based methods were used to find the optimum settings; response surface 
methodology and metaheuristics based search. The comparison was done under several 
settings of demand rate, demand size, lead time, and shortage policy. The response surface 
methodology was found to be superior under all system settings. Although this result 
cannot be generalized, it is an indicator for the superiority of the response surface method 
in optimization of such models and likewise settings. On the other hand, due to their ease of 
integration with simulation packages, metaheuristics are finding much more applications as 
compared to response surface method. 
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1. Introduction 
 

Extensive research is currently focusing on 
how to combine simulation and optimization 
in practice. Although simulation optimization 
has been an active area of research for a 
considerable time, optimization packages have 
only been recently incorporated into 
commercial simulation software. Examples of 
such optimization packages include 
ProModel’s SimRunner and AutoMod’s 
AutoStat  that use evolutionary and genetic 
algorithms, SIMUL8’s OPTIMIZ that uses 
neural networks, and OptQuest package, 
which works with Arena and Crystal Ball, and 
uses scatter search, tabu search, and neural 
networks.  

The mentioned examples illustrate how 
commercial simulation optimization packages 
are currently dominated by metaheuristic 
approaches. Thus, in simulation optimization 
practice, such methods appear to take 
precedence over other methods that have 
received more attention by the academic 
research community and may have more 
appealing convergence properties. There are 
several reasons for this. One explanation is 
that convergence properties such as 
asymptotic convergence have limited relevance 
in practice, and the metaheuristics are 
generally fast, robust, and generate multiple 
alternative solutions while focused on finding 
the optimal solution as illustrated in Olafsson 
and Kim [1]. 
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Response Surface Methodology (RSM) is 
based on approximation of the stochastic 
objective function by a low order polynomial 
on a small sub region of the solution domain. 
The coefficients of this model are obtained by 
ordinary least squares applied to a number of 
observations of the stochastic function. Based 
on the fitted model the local best point is 
derived which is used as a current estimator 
of the optimum and as a center point of a new 
region of interest Neddermeijer et al. [2]. 
Heuristic methods search the solution space 
by building and then evolving a population of 
solutions. This population is achieved by 
creating new trials solutions out of the 
combination of two or more solutions that are 
in the current population April et al. [3]. 

The problem of interest involves an (s, S) 
continuous review inventory control model. 
The objective is to find values of reordering 
level s and order up to level S that minimizes 
the total inventory costs. Firms are 
continuously revising their inventory 
management policies to meet the dynamic 
nature of the market in order to achieve better 
profitability. This is done by lowering holding 
costs through higher inventory rotation, but 
without triggering substantial stock-outs or 
backorders, caused by demand peaks and/or 
lead time delays. The current mathematical 
models for inventory control do not give 
enough coverage for such systems; also they 
do not consider many important aspects of the 
complex dynamic behavior of today’s markets. 
Such aspects like the crossing of 
replenishment orders, the sporadic orders 
superimposed on regular demand patterns, 
the higher variability in replenishment lead 
times due to global sourcing and due to 
changes in replenishment order sizes. 

The Simulation model was developed using 
Arena™ in a generic way, where the arrival 
pattern, demand size, lead time pattern, and, 
shortage policy (lost sales versus backorders) 
could be pre-specified for the studied case. 
Optimization models were built for response 
surface method using Design Expert™ and for 
heuristic methods using OptQuest™.  Both 
treats the simulation model as a black box, 
that is, the optimization results does not affect 
the simulation model. Design Expert™ uses 
Response Surface Methodology with the 

observations obtained from the simulation 
model. OptQuest™ uses the responses 
generated by the simulation model to make 
decisions regarding the selection of the next 
trial solution. 

The rest of the paper is organized as 
follows: section two contains a review for the 
basic simulation optimization methods, 
section three presents the simulation model 
validation and the experimental study, then 
optimization results, the conclusions are 
illustrated in section four, finally, the future 
work is presented. 

 
2. Simulation based optimization 
 

A simulation experiment is normally used 
to study a system using a simulation model. A 
simulation experiment can be defined as a test 
or a series of tests in which meaningful 
changes are made to the input variables of a 
simulation model so that the reasons for 
changes in the output variable(s) can be 
observed and identified. When the number of 
input variables is large and the simulation 
model is complex, the simulation experiment 
may become computationally prohibitive. 
Besides the high computational cost, an even 
higher cost is incurred when sub-optimal 
input variable values are selected. The process 
of finding the best input variable values from 
among all possibilities without explicitly 
evaluating each possibility is called simulation 
optimization Carson and Maria [4]. 

One of the disadvantages of simulation is 
that it was not originally introduced as an 
optimization technique. An analyst would 
simulate a relatively small number of system 
configurations and choose the one that 
appeared to give the best performance. 
However, based on the availability of faster 
computers, most discrete-event simulation-
software vendors have now integrated 
optimization packages into their simulation 
software. It could arguably be said that 
optimization is the most significant new 
simulation technology Fu et al. [5]. The goal of 
an “optimization” package is to orchestrate the 
simulation of a sequence of system 
configurations each configuration corresponds 
to particular settings of the decision variables 
(factors) so that a system configuration is 
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eventually obtained that provides an optimal 
or near optimal solution. Furthermore, it is 
hoped that this optimal solution can be 
reached by simulating only a small percentage 
of the configurations that would be required 
by exhaustive enumeration. 

During the simulation optimization 
process, the output of the simulation model is 
used by the optimization method to provide 
feedback on the progress of the search for the 
optimal solution. This in turn guides further 
input to the simulation model. There are five 
major categories of simulation optimization 
methods: Gradient based search methods, 
stochastic optimization, response surface 
methodology, heuristic methods, and 
statistical methods. Carson and Maria [4] 
reviewed and classified the different methods 
and associated simulation optimization 
techniques; based on their classification, an 
updated version has been prepared. The 
updated version is illustrated in fig. 1. The 
simulation optimization methods considered 
in this work will be further discussed.  
 
2.1. Gradient based search methods 
 

Methods in this category estimate the 
response function gradient to assess the 
shape of the objective function and employ 
deterministic mathematical programming 
techniques for optimization purposes. One 
frequently used gradient estimation method is 
Perturbation Analysis (PA). PA is a sample-
path-based technique for estimating a 
gradient from a single simulation of a discrete-
event system. Infinitesimal Perturbation 
Analysis (IPA) is the simplest and most 
efficient version of the technique, but its 
domain of applicability is very limited. In 

infinitesimal perturbation analysis (IPA) all 
partial gradients of an objective function are 
estimated. The idea is that in a system, if an 
input variable is perturbed by an infinitesimal 
amount, the sensitivity of the output variable 
to the parameter can be estimated by tracing 
its pattern of propagation. This will be a 
function of the fraction of propagations that 
die before having a significant effect on the 
response of interest. IPA assumes that an 
infinitesimal perturbation in an input variable 
does not affect the sequence of events but only 
makes their occurrence times slide smoothly, 
so it require continuity in performance 
measure. Smoothed Perturbation Analysis 
(SPA) is a very general technique, but the 
generality often comes at the expense of 
complexity. The general idea of smoothed 
perturbation analysis is to smooth 
discontinuities in the sample performance 
measure that infinitesimal perturbation 
analysis cannot handle. SPA can trace the 
effect of discontinuity of performance 
measure. An experimental study using this 
method was developed by Fu [6], and Fu and 
Healy [7], on an (s, S) inventory system. The 
results of Fu and Healy [7] are used to validate 
the simulation model used in this paper. 
 
2.2. Heuristic methods 
 

Heuristic methods represent the latest 
development in the field of direct search 
methods that are frequently used for 
simulation optimization. Many of these 
techniques balance exploration with 
exploitation thereby resulting in efficient 
global search strategies as discussed by 
Carson and Maria [4]. 
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Fig. 1. Simulation optimization methods. 
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2.2.1. Tabu Search (TS) 
Tabu search is a meta-heuristic that 

guides a local heuristic search procedure to 
explore the solution space beyond local 
optimality. One of the main components of 
tabu search is its use of adaptive memory, 
which creates more flexible search behavior. 
Memory-based strategies are therefore the 
hallmark of tabu search approaches, founded 
on a quest for “integrating principles,” by 
which alternative forms of memory are 
appropriately combined with effective 
strategies for exploiting them. Glover and 
Laguna [8] illustrated the principles and 
applications of tabu search in many areas. 

The method can be viewed as an iterative 
technique which explores a set of problem 
solutions by repeatedly making moves from 
one solution to another solution located in the 
neighborhood. These moves are performed 
with the aim of efficiently reaching a solution 
that qualifies as "good" (optimal or near-
optimal) by the evaluation of some objective 
function to be minimized. The tabu search 
approach seeks to counter the danger of 
entrapment at a local sub-optimum, by 
incorporating a memory structure that forbids 
or penalizes certain moves that would return 
to a recently visited solution. The notion of 
using memory to forbid certain moves can be 
formalized in general by saying that the 
solution neighborhood depends on the time 
stream, hence on the iteration number. A 
comprehensive review of TS can be found in 
Glover et al. [9]. 
 
2.2.2. Scatter Search (SS) 

Scatter search (from the standpoint of 
meta-heuristic classification) may be viewed 
as an evolutionary algorithm that constructs 
solutions by combining others. It derives its 
foundations from strategies originally 
proposed for combining decision rules and 
constraints. The goal of this methodology is to 
enable the implementation of solution 
procedures that can derive new solutions from 
combined elements. The way scatter search 
combines solutions and updates the set of 
reference solutions used for combination sets 
this methodology apart from other population 
based approaches. 

As Fu et al. [5] illustrated, the combination 
strategy has been devised with the belief that 
this information could be exploited more 
effectively when integrated than when treated 
in isolation (i.e., when existing selection rules 
are selected one at a time). In general, the 
decision rules created from such combination 
strategies produced better empirical outcomes 
than standard applications of local decision 
rules. They also proved superior to a 
“probabilistic learning approach” that used 
stochastic selection of rules at different 
junctures, but without the integration effect 
provided by generating combined rules. In 
integer and nonlinear programming, 
associated procedures for combining 
constraints were developed, which likewise 
employed a mechanism for creating weighted 
combinations. In this case, nonnegative 
weights were introduced to create new 
constraint inequalities, called surrogate 
constraints. The main function of surrogate 
constraints was to provide ways to evaluate 
choices that could be used to create and 
modify trial solutions, an illustrative review of 
SS can be found in. 

 
2.2.3. Neural networks 

Neural Networks is an information 
processing paradigm that is inspired by the 
way biological nervous systems process 
information. It is composed of a large number 
of highly interconnected processing elements 
(neurons) working in harmony to solve specific 
problems. Neural Networks, like people, learn 
by example. Neural Networks is configured for 
a specific application, such as pattern 
recognition or data classification, through a 
learning process. Learning in biological 
systems involves adjustments to the synaptic 
connections that exist between the neurons. 
Neural networks, with their remarkable ability 
to derive meaning from complicated or 
imprecise data, can be used to extract 
patterns and detect trends that are too 
complex to be noticed by either humans or 
other computer techniques. Metaheuristic 
optimizers typically use meta models as filters 
for screening out solutions that are predicted 
to be inferior compared to the current best 
known solution. Raymond-smith et al. [10] 
demonstrate the different types of heuristic 
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based search methods an elaborate on their 
applications and the differences between 
them. 

In this paper a comparison is held between 
a metaheuristics based simulation 
optimization method using OptQuest and a 
Response Surface based method using 
DesignExpert. As illustrated in April et al. [3], 
OptQuest uses neural networks to build a 
meta model and then applies predefined rules 
to filter out potentially bad solutions. 

 
2.2.4. The OptQuest® optimization algorithm 

The Solution of the optimization problem 
can be represented by a variable xi,  
(for i = 1, ..., n) Laguna [11]. The objective 
function value f(x) is obtained by running a 
simulation model that uses x as the input 
factors, a set of linear constraints (equality or 
inequality) are imposed on x. The algorithm 
starts by generating an initial population of 
reference points. The initial population may 
include points suggested by the user, and it 
always includes the following midpoint: 
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Where ui and li are the upper and lower 
bounds on xi, respectively. Additional points 
are generated with the goal of creating a 
diverse population. A population is considered 
diverse if its elements are “significantly” 
different from one another. A distance 
measure to determine how “close” a potential 
new point is from the points already in the 
population is used, in order to decide whether 
the point is included or discarded. Every 
reference point x is subjected to a feasibility 
test before it is evaluated (i.e., before the 
simulation model is run to determine the 
value of f(x)). The feasibility test consists of 
checking (one by one) whether the linear 
constraints imposed by the user are satisfied. 
An infeasible point x is made feasible by 
formulating and solving a linear programming 
(LP) problem. The LP (or mixed-integer 
program, when x contains integer variables) 
has the goal of finding a feasible x* that 
minimizes the absolute deviation between x 
and x*.  

The population size is automatically 
adjusted by the system considering the time 
that is required to complete one evaluation of 
f(x) and the time limit the user has allowed the 
system to search. Once the population is 
generated, the procedure iterates in search of 
improved outcomes. At each iteration two 
reference points are selected to create four 
offspring. Let the parent-reference points be x1 
and x2, then the offspring x3 to x6 are found as 
follows: 
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Where d = (x1 - x2)/3. The selection of x1 and x2 
is biased by the values f(x1) and f(x2) as well as 
the tabu search memory functions. The 
iteration ends by replacing the worst parent 
with the best offspring, and giving the 
surviving parent a tabu-active status for given 
number of iterations. In subsequent 
iterations, the use of two parents is forbidden. 
The restarting strategy: When searching for a 
global optimum, the population may contain 
many reference points with similar 
characteristics. That is, in the process of 
generating offspring from a mixture of high-
quality reference points and ordinary reference 
points that are member of the current 
population, the diversity of the population 
may tend to decrease. A strategy that 
remedies this situation considers the creation 
of new population.  
Adaptive memory and the age strategy: Some 
of the points in the initial population may 
have poor objective function values. Therefore, 
they may never be chosen to play the role of a 
parent and would remain in the population 
until restarting. To additionally diversify the 
search, the “attractiveness” of these unused 
points is increased over time. The idea is to 
use search history to make reference points 
not used as parents “attractive,” by modifying 
their objective function values according to 
their age. 
The neural network accelerator: Neural 
Networks is an information processing 
paradigm that is inspired by the way biological 
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nervous systems process information. It is 
composed of a large number of highly 
interconnected processing elements (neurons) 
working in harmony to solve specific 
problems. This strategy is designed to increase 
the power of the system’s search engine. The 
concept is to “screen out” values x that are 
likely to result in a very poor value of f(x). 
 
2.3. Response Surface Methodology (RSM) 
 

Response Surface Methodology (RSM) 
searches for the input combination that 
optimizes the simulation output (by evaluating 
it at several input variable values) and 
optimizing the resulting regression function. 
The process starts with a first order regression 
function and the steepest ascent/descent 
search method. After reaching the vicinity of 
the optimum, higher degree regression 
functions are employed Angun et al. [12]. The 
establishment of a clear and consistent RSM 
optimization algorithm is of significant 
importance for its use as a tool in scientific 
applications, e.g. for estimation of model 
parameters, where results should be 
reproducible and derived via a clear method. A 
complete and clear definition of all steps and 
choices in a RSM algorithm is also necessary 
for automated optimization where all choices 
concerning the algorithm have to be made at 
the outset of an application. Automated 
optimization is less time-consuming, since 
there is no need to interfere in this 
optimization process. This is an advantage in 
large-scale time-consuming applications. 
However, there is no consensus about such a 
standard RSM algorithm.  

The RSM procedure comprises two phases. 
In the first phase, the objective function is 
locally approximated by first-order 
polynomials; in the second phase, the 
objective function is approximated by a 
second-order polynomial. In both phases a 
region of interest has to be defined, this region 
is a sub-region from the domain. When the 
first-order model is found to be adequate a 
steepest descent procedure is applied to find a 
new region of interest. Otherwise the RSM 
moves to the second phase. When a second-
order model is approximated and found to be 
adequate a stationary point needs to be found 

and classified and an appropriate action 
should be taken. 

In design for first order approximation 
there are many designs to choose from, like 
fractional or full factorial, and two-level or 
three-level designs. In non-automated 
optimization the user tries to fit a first-order 
approximation with different designs, apply 
coding of the parameters to find better 
regression estimates or recalculate the 
objective value at the design points. For an 
automated RSM procedure the objective 
function is evaluated once in the 2k points of a 
two-level full factorial design, where k is the 
number of factors, and five times in the center 
point of the current region of interest. This 
design is orthogonal and does not require as 
many points as a three-level full factorial 
design. Two-level fractional factorial designs 
consist of too few points to approximate 
objective functions with two or three 
parameters well enough. Furthermore, full 
factorial designs can quite easily be 
augmented to derive a second-order design. A 
comprehensive presentation and explanation 
of RSM can be found in Myers and 
Montgomery [13]. 

In design for second order model in the 
region of interest, the regression coefficients of 
this model are again determined by regression 
analysis, applied to observations performed in 
an experimental design. A popular second-
order design is the Central Composite Design 
(CCD). The CCD arises when the full (or 
fractional) factorial design is augmented by 
the first-order design with 2k axial points. This 
design is made spherical by choosing the new 
points such that all points are equidistant to 
the center point of the current region of 
interest. This design is chosen for two 
reasons. First of all this design can almost be 
rotated and the loss in rotation is trivial. 
Furthermore, in a rotatable design, the 
distance of the new points to the center point 
would be large as compared to the distance of 
the existing points to the center point.  

Neddermeijer et al. [2], presented a 
framework for an automated response surface 
algorithm, the framework is illustrated in                    
fig. 2.  

It is assumed that a screening phase, in 
which factors that are considered unimportant 
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are eliminated from the optimization problem, 
as well as possible transformations of the 
factors and the response, have already taken 
place. At the start of the algorithm, an initial 
starting point and initial step sizes should be 
given. Choosing the initial step sizes at the 
start of the algorithm should be done. The 
framework includes the following steps: 
1. Approximate the simulation response 
function in the current region of interest by a 
first-order model 
2. Strategic moves: Test the first-order model 

for adequacy 
Usually, a test for lack of fit and a test for 
significance of regression are performed. The 
test for lack of fit is a joint test for interaction 
between factors as well as for curvature. If the 
first order model is fitting, and some of the 
regression coefficients are not equal to zero, 
then a line search is performed. If one of the 
tests fails then this model is not adequate and 
a second order model needs to be fitted. 
3. Perform a line search in the steepest 
descent/ascent direction 
4. Solve the inadequacy of the first-order 
model 

This can be done by reducing the size of 
the region of interest or increase the 
simulation size used in evaluating a design 
point. 
5. Approximate the objective function in the 
current region of interest by a second-order 
model 
6. Strategic moves: Test the second-order 
model for adequacy 

This module checks if a second-order 
model describes the behavior of the objective 
function in the current region of interest. 
Similar to the first-order model a lack of fit 
test can be used. Now, the null hypothesis of 
this test is that the true regression model is 
quadratic.  
7. Solve the inadequacy of the second-order 
model 

This can be done in the same way 
mentioned before. 
8. Perform canonical analysis 

If the second-order model is found to be 
adequate, then canonical analysis is 
performed to determine the location and the 
nature of the stationary point of the second-
order model. 

9. Perform ridge analysis 
It is not advisable to extrapolate the 

second-order polynomial beyond the current 
region of interest. Therefore, if the stationary 
point is a minimum which lies outside the 
current region of interest, the stationary point 
is not accepted as the center of the next region 
of interest. If the stationary point is a 
maximum or a saddle point, then the 
stationary point is rejected as well. In these 
cases, ridge analysis is performed, which 
means a search for a new stationary point 
such that the second order model has a 
minimum at this stationary point. 
10. Accept the stationary point 
11. Determine a steepest descent direction 
from the second-order model 

The gradient of the second-order model at 
the center point of the current region and the 
results of the canonical analysis can be used 
to determine a direction of steepest descent. 
Next, a line search can be performed using 
this direction, resulting in a new center of a 
region of interest. In this region the simulation 
response surface will be approximated by a 
first-order model. 

In the RSM literature, it is often proposed 
to end the algorithm after fitting only one 
second order polynomial. This strategy 
assumes that a minimum inside the current 
region is found, and therefore excludes the 
cases in which either a minimum outside the 
current region is found or a maximum or a 
saddle point is found. It is recommended 
ending the optimization exercise if: (i) the 
estimated optimal simulation response value 
does not improve sufficiently anymore, (ii) if 
the region of interest becomes too small, or, in 
case there are budget constraints, (iii) if a 
fixed maximum number of evaluations have 
been performed. Next, a confidence interval 
about the response at the estimator for the 
optimum and the location of this estimator 
can be determined. 

In this paper an attempt is done to 
compare the application of Metaheuristics and 
RSM methods of simulation based 
optimization to find the optimum values of the 
parameters s and S that will minimize the 
long-run average total inventory costs. These 
costs are associated with ordering, holding, 
and shortages. 
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Fig. 2. Framework for RSM Algorithm. 

3. Simulation optimization case study 
 
3.1. The simulation model and model validation 
 

A simulation model for a continuous 
review (s, S) inventory control system of a 
single item has been developed. An (s, S) 
ordering policy specifies that an order is 
placed when the level of inventory on hand 
plus that on order (the inventory position) falls 
below the reorder level (s), and that the 
amount of the order is the difference between 
the order up to level (S) and the inventory 
position, as illustrated in fig. 3. 

The logic chart of the simulation model, is 
illustrated in fig. 4, the flowchart terminology 
is listed in table 1.  At every demand 
transaction, the time counter i is incremented 
by the value of the time between arrivals 
distribution I, then the stock level is checked 
to calculate the shortage or to update the 
stock and add the holding cost. After this, the 
stock level is checked again but this time by 
the inventory position Y to know if there is 
need to order a new replenishment Q or not. If 
a new replenishment order is placed, the lead 
time LT is calculated and the time of receipt is 
recorded.  

In order to validate the developed 
simulation model, two approaches were used, 
first, a hand simulation was performed using 
deterministic values, then, the performance of 
the developed model was compared with the 
results obtained from an experimental study 
for a periodic review (s, S) inventory control 
system developed by Fu and Healy [7], where 
perturbation analysis (PA) was used for 
optimization. As Fu model is a periodic review 
model, the review period in the developed 
simulation model was set as one transaction, 
i.e. the inventory status is reviewed at each 
time period. The experiment was performed 
with a run length of 50,000 periods, 20 
replications and 95% confidence levels Fu and 
Healy [7] assumed the expected demand 
quantity to be exponentially distributed with 
an average of 200 units per period and, the 
optimum values obtained by the gradient 
based algorithm for the reordering point and 
ordering quantity were 341 and 200 units 
respectively. The recorded average inventory 
cost was $740.9  per period,  and the obtained  
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Fig. 4. The simulation model logic chart. 

Table 1 

Flowchart symboles 
 

i Simulation time 

counter 

Q Replenishment order 

quantity 

s Reorder level RT Receipt time  

S Order up to level I Cumulative area under 

stock curve 

D Demand size 

distribution 

OC Ordering cost 

L Lead time  HC Holding cost 

d Demand instances SC Shortage cost  

Y Inventory position   

 
average inventory cost per period is $740.97. 
As there is no significant difference between 
the two means the simulation model was 
considered valid. 

 
3.2. The Experimental study 
 

Different cases were studied and the 
optimum solution for each case was derived 
using the methods under consideration. The 
total inventory cost was calculated for 
different values of demand rate, demand size, 
lead time, and shortage policy. The 
distributions of the demand size, time between 
demand transactions, lead time, and the 
reorder and order up to level values were 
chosen assuming an average consumer 
product like household appliances for 
example. The cost structure is as follows: the 
inventory carrying charge is $0.0005 per 
dollar per day, the cost of placing an order 
from the supplier is $1 per order, a lost sale 
results in a loss of goodwill estimated to cost 
$100, finally, the cost for maintaining a 
backorder is $50. The results and optimum 
solutions of the different cases are 
summarized in table 2. The response surface 
plot and contour plot for two of the examined 
cases are shown in fig. 5. The response 
surface plot is a 3D graphical representation 
of the fitted model. The contour plot 
represents lines of equal response values. 
Case no. 3 and case no. 8 have the same input 
parameters values. The shortage policy for 
both of them is different. In case no. 3, 
approximately 50% decrease in cost is 
obtained, In case no. 8, the cost has decreased 
by 15%. 

It can be observed that the RSM based 
approach generally provides a better optimum 
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solution than that found using the heuristics 
based approach. The Heuristic based 
approach have the advantage of ease of 
computations. This is because the 
optimization model directly interacts with the 
simulation model. On the other hand RSM is 
based on design of experiments, so the system 
performance can be assessed statistically. 
Several observations can be obtained from the 
response plot, regarding the effect of changing 
decision parameters on the response. Also, the 
developed model can be used for point 
prediction, i.e. the value of the response can 
be predicted at points which were not 
examined by the simulation model. For 
example, in the contour plots of case no. 8 
illustrated in fig. 5-b, if the decision maker is 
examining the impact of changing the value of 
the order up to level (S) for a specific reorder 
level (s). If the value of s=8 units increasing 
the value of S from 27 to 30, 33, 37, or 42, is 
expected to result in a total cost of 19848, 
16250, 13011, 9773, and 7365 respectively. 

Also, from the point of view of total cost, if 
the decision maker selects S=37, it makes no  

difference if he uses s = 3 or 8. Of course, in 
such a case other intangible factors can lead 
to a suitable choice. The same goes for the 
cases of S=30 and S=27. The RSM plots 
represent a sub-region of domain where the 
optimum found was better than the solution 
found using heuristic methods. A decision 
should be made to move from the current sub-
region to another where better improvement 
can be made. The RSM is based on 
approximations of the objective function by a 
low order polynomial on a small sub-region of 
domain. The strategic moves between sub-
regions require time and effort from the side of 
the user. On the other hand, metaheuristics 
can work automatically on the whole domain, 
that’s why most of the commercial simulation 
software packages use heuristic methods as 
its optimization engine.  The metaheuristic 
approach to simulation optimization is based 
on viewing the simulation model as a black 
box function evaluator April et. al. [16]. 
Although, on a sub-region search, better 
solutions can be obtained by using RSM than 
the solutions obtained by using heuristic 
methods. 

 

Table 2 

Simulation optimization test cases 

 

Case 

no. 

Time between 

demand 

transactions 

Transaction 

size 
Lead time 

Shortage 

policy 

Heuristic methods RSM 

Total 

cost/year 
s S 

Total 

cost/year 
s S 

1 EXPO(0.5) POIS(1) LOGN(2, 2) Backordering 4,602.74 4 45 3,885.28 2 45 

2 EXPO(0.5) POIS(2) LOGN(7, 2.1) Backordering 69,068.60 9 45 63,344.60 2 45 

3 EXPO(1) POIS(2) LOGN(4, 2.8) Backordering 8,032.06 9 45 3,854.91 6 43 

4 EXPO(2) POIS(1) LOGN(2, 2) Backordering 395.33 3 45 342.49 4 45 

5 EXPO(2) POIS(4) LOGN(2, 2) Backordering 6,482.47 2 45 5,436.96 4 43 

6 EXPO(0.5) POIS(1) LOGN(2, 2) Lost sales 4,501.37 3 45 4,264.92 6 45 

7 EXPO(0.5) POIS(2) LOGN(7, 2.1) Lost sales 105,051.00 2 44 103,801.00 3 45 

8 EXPO(1) POIS(2) LOGN(4, 2.8) Lost sales 7,764.97 7 44 6,560.72 6 44 

9 EXPO(2) POIS(1) LOGN(2, 2) Lost sales 348.35 3 45 380.57 4 45 

10 EXPO(2) POIS(4) LOGN(2, 2) Lost sales 9,560.65 4 45 6,108.12 8 45 
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Fig. 5. Response surface and contour plots for (a) case 3 and (b) case 8. 

 

4. Conclusion and future work 
 

In this paper the major categories of 
simulation based optimization were reviewed. 
A comparison between heuristic based 
methods and response surface methodology 
was illustrated. The comparison was done on 
a simulation based continuous review (s, S) 
inventory control model and the objective was 
to minimize the total inventory relevant cost. 

The results showed that the response 
surface method was superior in the tested 
cases. Although this is cannot be generalized, 
it can be argued that RSM can generally 
perform better for the same nature of 

problems and in the same settings. Another 
benefit of RSM is that it provides response 
prediction facility. On the other hand, 
heuristic based methods have the advantage 
of ease and speed of computations.  

Analysis of the results illustrates how the 
total inventory costs can drastically change 
due to changes in the transaction size and 
delivery lead time. RSM can be further used to 
investigate the effect of each factor and the 
interaction effect on total inventory costs. This 
can be used to set some recommendations to 
the decision maker on appropriate settings for 
the different system parameters in such cases. 
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