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Many studies, involving Earth's science, made by the geodesists and geometers revealed the
great importance of the two remarkably influential geodetic curves, which are known as
geodesic and loxodrome. The most recent observations assembled by the artificial satellites
paid a great attention to the ellipticity of the Earth’s equator. The spheroid model was
always manipulated as a simulate representation in favor of the triaxial model of the earth.
Because the triaxial ellipsoidal surface has a changing curvature along the curve of constant
latitude, the mathematical manipulation becomes complex and the computation are labor
intensive. Also because the conformal map is flat or spherical in any sense, the formulae of
spherical or plane trigonometry are applied. Unfortunately, the mathematics in the
development of geodesic on the ellipsoid and its image on the map are fairly complex,
requiring advanced mathematics. Constructive geometry of the earth's surface is still, for a
long time, devoted to the spherical model. The present paper offers the geometric model by
which the constructive transformation of some ellipsoidal curves can be facilitated. The
conformal transformation from/onto the ellipsoidal and a spherical surface is utilized to set
up the equations of loxodrome on the ellipsoidal surface and the inverse of the geodesic
curve from the ellipsoid to the conformal sphere. The procedure is illustrated and its merits
are introduced by means of some practical geodetic problems.
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1. Introduction

Conformal mapping of the triaxial ellipsoid
onto a conformal sphere is our advice for
expressing clear identifications for ellipsoidal
geodesic and loxodrome, which are definitely
concerning with the geometers and geodesists.
A surface’s curve is geometrically called
geodesic if, at each point of it, the osculating
plane of the curve contains the normal line to
the surface [1]. Mathematically, it is the arc of
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least curvature through two points on the
surfaces. Evidently, the shortest distance on
the surface between two adjacent points is
along the geodesic through them [1]. By
definition of a geodesic, the partial differential
equation of it can be derived but the exact
closed form solution is devoted only to the
surfaces of revolution [2]. Because of the
complexity of the elliptic integral, the solution
of partial differential equation of geodesics on
the triaxial ellipsoid is always dominated to an

299



S.A. Shebl, A.M. Farag / Projection of spherical and ellipsoidal geodetic elements

approximate technique [3]. The curve, which
intersects the meridians of the surface at a
constant angle, is called loxodrome. Because
the most actual surface of the earth is not
revolute [4], the actual -constructive
representation of the curvilinear differential
equations of the earth's curves is still rare. In
the present paper, the well-known properties
of the transformation involved in the
conformal mapping between the triaxial
ellipsoidal surface and conformal sphere are
exploited to approximate the true geodesic and
to derive the closed form curvilinear equation
of the loxodrome on the earth.

2. Procedure and formulation

The main objective of the present paper is
to use a conformal sphere to represent
loxodrome through point p; and to
approximate geodesic joining of two points, p:
and po, on the triaxial ellipsoidal surface. The
directions of these curves are applied to
investigate some geodetic problems. Many
authors used the double projection technique
to determine the geodetic positions on such a
conformal mapping [5]. Agajelu [6] used the
projection of the biaxial ellipsoidal earth on a
conformal sphere as a first step to get the map
of Mercator projection to the earth. Shebl [4]
has obtained a new conformal mapping of the
triaxial ellipsoidal earth via a double
projection method based on conformal sphere
and transverse Mercator projection. The
geodesics and loxodromes are already known
on the sphere. A conformal projection
from/onto the ellipsoid and sphere is utilized
to achieve the earth surface curves, and to
map these curves from one model of the earth
to the other.

2.1. Conformal projection

A conformal projection of the triaxial
ellipsoid onto a sphere [4] is exploited herein
to facilitate achieving the geodesics and
loxodromes on the first surface. This can be
accomplished by representing the proposed
curves on the conformal sphere and inverting
them back to the corresponding ellipsoid. The
triaxial ellipsoid semi-axes lengths are a, b, c;
(@yb)c) and the radius of sphere is R. Let point

p(A4,w)on the triaxial ellipsoid is suggested to

be transformed conformally into point p’(¢,¢)

on the corresponding sphere. It has to be
noticed that A, are the geographic
coordinates (angles of longitude and co-
latitude) of point p on the triaxial ellipsoid
while ¢, are their corresponding angles of
longitude and co-latitude on the sphere as
shown in fig.1.

One can prove that the transformation
under the following conditions is conformal
[4]:

1. The radius (R) of the conformal sphere is
considered identical to the semi-major axis (q)
of the ellipsoidal earth, i.e. (R=q).

2. The angles {,4 of longitudes of both the
conformal sphere and the considered ellipsoid
are in linear dependent relation, for simplicity
we use:

C=2. (1)

3. The angles ¢, v of co-latitudes of both the

conformal sphere and the considered ellipsoid
define each other such that:

_ F(2L’+D?) 1+ K _ F(2K’L*+D%)
cot? = tan¥) 2 ~Tocosy L
2 2 1- Kcosy
(2)
where:
b2
F =sin? A+ —cos? A,
2
a
2 2 1
K= [l—c—zsin2 A —C—Qcos2 VIRR
b a (3)

b2
D =(1-—)sinAcos 4,
2
a
1

L=[F?+D??

Egs. (1, 2) are the transformation equations
for the conformal mapping from the ellipsoid
surface E; ,, to the conformal sphere S .
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Ellipsoid

Conformal Sphere

Fig. 1. Conformal Mapping.

2.2. Inverse projection of spherical geodesics

Geodesic passing through two points
p;(ﬂ,i,(pi),i=1,2, is an arc of a great circle
[7,8] passing through the two points and it
can be expressed as:

AcosA+BsinA+Ccotp=0, 4)
where

A =sin/, cotp, —sin i, cote, ,
B =cos, cotp; —cos A, cotg,, . )]

Conformal mapping is obtained according to
the relation between w,,p; given in eq. (2).

Therefore, the conformality between the
ellipsoidal positions p; (4, )and  p,(4,,¥5)
pi (4, @) and

p: (42, @9)on a conformal sphere is satisfied if

and their correspondence

the ellipsoidal and spherical co-latitudes

yiande, are transformed to each other
according to eq. (2).

Substituting egs. (4 into 5), one can get:

(Jysind; —J;sind,)cos A
+(J;cos A, —J, cos A )sin A+ Jsin(d, —4;)=0"
(6)

where;

1 @ @
J =cotp = —{cot-—tan—
v =5 lcoty 2!

F(2I*+D?)

1 w- F(2K?L*+D?)
= {tanT)  2E
2 2

1+Kcosy/)— 2K

1-Kcosy

F(2L*+D?) F(2K?I*+D?)
vy o AoKeosy gy

- (cot
1+ Kcosy

(7)

And then,
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Ji = COt(Di
_ F(213+D)

Vi ) oL}

F(2K}L{+D7)
1

= —{(tan—
2 L 2

1+K;cosy; "~ 4k
1-K,; cosy;

_F(L}+D}) _ F(KL+D})
Viy  e2nf 1-K, cosy; KL,
1+ K; cosy; ’

i=12,

(8)

- (cot

where:
b2
F; = sin? A + =~ cos? Ais
2
a
2 2 1
K, = [1-< sin? A; ~ £ cos? 412,
b? a?
b2
D; =(1-—5)sin4; cos 4;, and

a
1

L; =[F? + D)2 i=12.

Rearranging eq. (6) and applying some

trigonometric relations we get:
Jysin(d - Ay)-Jysin(d - 4;)+Jsin(4, —4,)=0.
9)
Eq. (9) is applied here to define the mapping of
the spherical geodesic onto the triaxial
ellipsoid. The transformed geodesic is
important to offer a reasonable prediction for

the exact representation of geodesic on the
ellipsoid [9].

2.3. Azimuth of the transformed geodesic

The ellipsoidal image g represents the
transformation of the spherical geodesic g
p1 (A, ¢) and
p: (A42,95) . The ellipsoidal meridians passing
through the two (A4, ¢)and

P24y, ) are and m,
respectively. The curve g makes the angles

through the two points

points

denoted by m,
a;and a, respectively with the meridians
m, and m,. One of the most useful notations
and formulations of the theory of conformal

mapping is that the transformation preserves
angles between any two intersecting curves on
the two surfaces, which are transformed onto
each other. Therefore these angles can be
calculated on the sphere and converted onto
the triaxial ellipsoid as follows:

Let the two meridians m; and m, through
pf(/ll,(pl)and p: (42,95) on the sphere, be
corresponding to m; and m, on the ellipsoid.
If point N is the spherical north pole, then
solving the spherical triangle NPI*PQ* shown in
fig. 2, yields:

cosV = cos @, cos ¢; + sing; sin g, cos(iy — 1)
cos @, = cosVcos @, +sinVsing, cosa, ,

cos gy =cosVcosg; +sinVsing; cosa;

(10)
and
sina; _sina, sin(4, —4;) (11)
sing, - sing; ~ sinv

Where V is the spherical angle between the
two points p; (4, ;) and p, (A5,9,).

From eqgs. (10, 11) one can find:

tan a; =
sin ¢ sin g, sin(4, - 4) ,
COS @, — COS @{COS Py COS @y + sin ¢ sin g, cos(dy — A1)}
(12)

and

tan ay =
sin ¢ sin ¢, sin(4, - 4)
COS @ — COS »{COS Py COS @y + sin ¢ sin g, cos(dy — 4;)}
(13)

According to the definition of J, eq. (7), and
the principals of trigonometry one can obtain:

J.
sing; N and cosg; =——; i=12.
1+J? J1+J?
(14)

302 Alexandria Engineering Journal, Vol. 47, No. 3, May 2008



S.A. Shebl, A.M. Farag / Projection of spherical and ellipsoidal geodetic elements

Fig. 2. Azimuth based on spherical trigonometry.

Substituting from eqs. (12- 14), the angles at
which the image g intersects the meridians
can be defined explicitly in the ellipsoidal
parameters such that:

Ja+J2)sin(i, - 4)

tana; = 3 , (19)
Jo(L+J2)~ 4 [T, +cos(iy — 4y)]
and
1+J3)sin(4, - 4
ana, - \2/( 3)sin(Z, - 4) .
J1(1+J3) = Jp[J1J; +cos(dy — 4]
Although the common conformal

transformation preserves angles, it does not
the geodesics. From the practical point of
view, the eccentricity of the earth’s equator is
too small " 2><(10)’5 ", [10]_Therefore, it is more
realistic to apply the mapped spherical
geodesic for developing the approximate

features of the real geodesic on the ellipsoidal
earth. Even though, the term of distortion has

J(L+J?2)sin(39.817° - 4))

many definitions, one associates a small
correction for the spherical geodesic. The
respective corrections in angle and distance
are very small and perhaps even negligible.

2.4. Azimuth of a prayer’s direction

Determination of the line along which the
prayers are directed to Al-Kebla at Meka, is
one of the most important applications. The
prayer is generally directed to Al-Kebla along a
geodesic. The ellipsoidal converted spherical
geodesic is used herein to develop a probable
approximate direction to the Muslims prayers.

Particularly, at any position p,(4;,y;)on

the ellipsoidal earth, the azimuth anglee;
between north direction and the inverted
geodesic g directed to a fixed point like Al-
Kaaba [11]
P4 =39.817°E, vy, ={90-21.437}°N) can
be expressed as a function of the local
point p; (4,,y;) such that:

tang,

©0.3900119610 (1+J2)—J,[0.3900119610 J, +cos(39.817° — 4,)]

, (17)
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in which J,is defined by eq. (6) according to
(4,¥1,a,b and c). The

parameters of the triaxial ellipsoidal earth are
considered [12], such as:

the  parameters

1
93800

a=6378173 Km, b=(1- Ja and

J(L+cot? ) sin(39.817° — 4,)

1

c=(-———
297.78

)a . (18)

If the earth is modeled as a sphere, in which
c=b=a and y; = ¢, and J; =coty;, eq. (16)
becomes:

tana; =

3. Mutual conformality between the
spherical and ellipsoidal loxodromes

Referring to Lane [1], the curvilinear
equation of the curves (called Loxodromes)
crossing the meridians of sphere at constant
angle ¢ is:

Acosd = ln(tan§)+c. (20)

Where cis a constant defining the location of a
loxodrome on the surface and it can be
obtained according to a given point on the
required loxodrome. Eliminating ¢ from egs.

(2 and 20) yields the transformed loxodrome
on the triaxial ellipsoid such that:

Acosod =
F(2I?+D?)

F(2K?I?+D?)
ln{(tang) 2

1+ Kcosy 4K }+c'
1-Kcosy

(21)

Because the conformal inverse preserves angle
0, the transformed loxodrome represented by
eq. (21) is the actual loxodrome on the triaxial
ellipsoidal earth.

Utilizing of the properties of the conformal
transformation from the triaxial ellipsoid onto
a plane, via Mercator’s chart [1] of the
conformal sphere up on the plane, one can
find out that: "The sum of the internal angles
of a triangle whose sides are three loxodromic
curves on the ellipsoid is two right angles".

0.3926408543 (1 + cot? 1) —10.3926408543 coty; +¢c0s(39.817° — 4, )]|coty, '

4. Conclusions

The present paper offers a direct analytical
method to represent the exact loxodrome and
to approximate the geodesic on the triaxial
ellipsoidal surface. The conformal mapping
technique is exploited for reconverting the
curves, which are already represented on a
sphere, onto the corresponding triaxial
ellipsoid. The present method comforts the
laborious elliptical integral, which may be
incorporated in the other methods. Because
the conformal mapping preserves angles, the
direction of the approximate geodesic with
respect to the meridians of the ellipsoid is
directly achieved on the conformal sphere.
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