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Many studies, involving Earth's science, made by the geodesists and geometers revealed the 
great importance of the two remarkably influential geodetic curves, which are known as 
geodesic and loxodrome. The most recent observations assembled by the artificial satellites 
paid a great attention to the ellipticity of the Earth’s equator. The spheroid model was 
always manipulated as a simulate representation in favor of the triaxial model of the earth. 
Because the triaxial ellipsoidal surface has a changing curvature along the curve of constant 
latitude, the mathematical manipulation becomes complex and the computation are labor 

intensive. Also because the conformal map is flat or spherical in any sense, the formulae of 
spherical or plane trigonometry are applied. Unfortunately, the mathematics in the 
development of geodesic on the ellipsoid and its image on the map are fairly complex, 
requiring advanced mathematics. Constructive geometry of the earth's surface is still, for a 
long time, devoted to the spherical model. The present paper offers the geometric model by 

which the constructive transformation of some ellipsoidal curves can be facilitated. The 
conformal transformation from/onto the ellipsoidal and a spherical surface is utilized to set 
up the equations of loxodrome on the ellipsoidal surface and the inverse of the geodesic 
curve from the ellipsoid to the conformal sphere. The procedure is illustrated and its merits 
are introduced by means of some practical geodetic problems. 

يوديسععيللونةععللل ةةععللي   يععة ل وععوولفضجيوديسععطلوي   يععة ل وععووليرجععالفضل عع لظععرلالأهععةرلفكبييععللفضحنيععرالض ي   يععة لفضج
فض وحسودروملفضرلت طلفضدرفسة لفضعديدال،لفضيتع قللنع وملفكرض،لوفضترلأجريع لنوفسعوللم يعةللفضجيويتريعةلوفضجيوديسعيةدلوضقعدلني ع ل

فللقوال ةقصلوضيسلدفئعرادلونعةضر مليعنلفكرةةدلفض ديثللضسوحلفكرضللوفضترلأجري لنةست دفملفكقيةرلفضة ةميلل،لأنل ولفلاستو
ذضععطلظععةنلفض يععوذرلفضععدورف رلأفضحععروللأول(ععندلفضحععرولدلمععةداليععةليسععت دملضتيثيعع لسععوحلفكرض،لوذضععطلضتج عع لفضتعقيععدف لفضرية ععيلل
فض ةتجععللمععنلفسععت دفملفضسععوحلفض ةقةععرلفضثرثععللفضي ععةورلوفضيتسععن لظيهععةلأسةسععةلتليععرلفضتقععوسليععنل قوععللفضععرلأ ععرللم ععرلوععو ل ععول

ضعععرضدلوضعع لسلفضسععن لأي ععة،لأ ية ععةلتسععت دمللفضعرقععة لولفضيعععةدلا لفضييث ععللض ي   يععة لم ععرلسععوحلفكرضلنةمتنععةر لحععروللفولف
 ةقةععرلدورف ععردلالالأنلفمتنععةرلسععوحلفكرضلسععو ةولحرويععةولأول(ععندلحرويععةولقععدليععادللفضععرل يععةدلفضي   يععة لفضيسععت تجلليععاليثيرتهععةل

قعدلأحعدلم يعةللفضجيودسعيةلأنلفضسعوحلفضثرثعرلفضي عةورلبعولأقعر لفضسعوولألضتيثيع لفكرضلدلفضيوجودالم عرلسعوحلفكرضلفض قيقعلدلو
ويقععدملبععذفلفضن ععللفضت  يعع لفضجيععويترللللاسععت نةولفضعرقععة لفضرية ععيللضي   يععة لفض وحسععودروملم ععرلسععوحلفكرضلفض ةقةععرلفضثرثععرل
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 فضيسةئ لفضجيوديسيللفضعي يلد

 
Keywords: Conformal projection, Triaxial ellipsoid, Conformal sphere, Geodesic, Differential 

geometry  

 

1. Introduction 

 

Conformal mapping of the triaxial ellipsoid 

onto a conformal sphere is our advice for 
expressing clear identifications for ellipsoidal 

geodesic and loxodrome, which are definitely 

concerning with the geometers and geodesists. 

A surface’s curve is geometrically called 

geodesic if, at each point of it, the osculating 

plane of the curve contains the normal line to 
the surface [1]. Mathematically, it is the arc of 

least curvature through two points on the 

surfaces. Evidently, the shortest distance on 

the surface between two adjacent points is 

along the geodesic through them [1]. By 
definition of a geodesic, the partial differential 

equation of it can be derived but the exact 

closed form solution is devoted only to the 

surfaces of revolution [2]. Because of the 

complexity of the elliptic integral, the solution 

of partial differential equation of geodesics on 
the triaxial ellipsoid is always dominated to an 
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approximate technique [3]. The curve, which 

intersects the meridians of the surface at a 

constant angle, is called loxodrome. Because 
the most actual surface of the earth is not 

revolute [4], the actual constructive 

representation of the curvilinear differential 

equations of the earth's curves is still rare. In 

the present paper, the well-known properties 

of the transformation involved in the 
conformal mapping between the triaxial 

ellipsoidal surface and conformal sphere are 

exploited to approximate the true geodesic and 

to derive the closed form curvilinear equation 

of the loxodrome on the earth.  
 

2. Procedure and formulation 

 

The main objective of the present paper is 

to use a conformal sphere to represent 
loxodrome through point p1 and to 
approximate geodesic joining of two points, p1 

and p2, on the triaxial ellipsoidal surface. The 

directions of these curves are applied to 

investigate some geodetic problems. Many 

authors used the double projection technique 

to determine the geodetic positions on such a 

conformal mapping [5]. Agajelu [6] used the 
projection of the biaxial ellipsoidal earth on a 

conformal sphere as a first step to get the map 

of Mercator projection to the earth. Shebl [4] 

has obtained a new conformal mapping of the 

triaxial ellipsoidal earth via a double 
projection method based on conformal sphere 

and transverse Mercator projection. The 

geodesics and loxodromes are already known 

on the sphere. A conformal projection 

from/onto the ellipsoid and sphere is utilized 

to achieve the earth surface curves, and to 
map these curves from one model of the earth 

to the other. 

 
2.1. Conformal projection 

 
A conformal projection of the triaxial 

ellipsoid onto a sphere [4] is exploited herein 

to facilitate achieving the geodesics and 

loxodromes on the first surface. This can be 

accomplished by representing the proposed 

curves on the conformal sphere and inverting 
them back to the corresponding ellipsoid. The 
triaxial ellipsoid semi-axes lengths are a, b, c; 

(abc) and the radius of sphere is R. Let point 

),( p on the triaxial ellipsoid is suggested to 

be transformed conformally into point ),(* p  

on the corresponding sphere. It has to be 

noticed that , are the geographic 

coordinates (angles of longitude and co-
latitude) of point p on the triaxial ellipsoid 

while , are their corresponding angles of 
longitude and co-latitude on the sphere as 

shown in fig.1. 

One can prove that the transformation 

under the following conditions is conformal 

[4]:  
1. The radius (R) of the conformal sphere is 

considered identical to the semi-major axis  (a) 

of the ellipsoidal earth, i.e. (R=a). 

2. The angles , of longitudes of both the 
conformal sphere and the considered ellipsoid 

are in linear dependent relation, for simplicity 

we use: 

 

  .           (1) 

 
3. The angles    ,  of co-latitudes of both the 

conformal sphere and the considered ellipsoid 

define each other such that: 
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Eqs. (1, 2) are the transformation equations 
for the conformal mapping from the ellipsoid 

surface ),( E  to the conformal sphere ),( S . 
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Fig. 1. Conformal Mapping. 

 

 
2.2. Inverse projection of spherical geodesics 

 

Geodesic passing through two points 

1,2,=i ),,(*
iiip   is an arc of a great circle 

[7,8] passing through the two points and it 

can be expressed as:  
 

0cotsincos   CBA ,     (4) 

 

where 
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Conformal mapping is obtained according to 

the relation between 11,  given in eq. (2). 

Therefore, the conformality between the 

ellipsoidal positions ),( 111 p and ),( 222 p  

and their correspondence ),( 11
*
1 p and 

),( 22
*

2
p on a conformal sphere is satisfied if 

the ellipsoidal and spherical co-latitudes 

11 and  are transformed to each other 

according to eq. (2).  

Substituting eqs. (4 into 5), one can get: 
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And then, 
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Rearranging eq. (6) and applying some 

trigonometric relations we get: 

 

0= )sin( )sin()sin( 121221   JJJ .

            (9) 

 

Eq. (9) is applied here to define the mapping of 

the spherical geodesic onto the triaxial 

ellipsoid. The transformed geodesic is 

important to offer a reasonable prediction for 
the exact representation of geodesic on the 

ellipsoid [9].  
 
2.3. Azimuth of the transformed geodesic 

 
The ellipsoidal  image  g  represents  the  

transformation of the spherical geodesic *g  

through the two points ),( 11
*
1 p and 

),( 22
*

2
p . The ellipsoidal meridians passing 

through the two points ),( 111 p and 

),( 222 p are denoted by 1m  and 2m  

respectively. The curve g  makes the angles 

1 and 2  respectively with the meridians 

1m and 2m . One of the most useful notations 

and formulations of the theory of conformal 

mapping is that the transformation preserves 

angles between any two intersecting curves on 

the two surfaces, which are transformed onto 
each other. Therefore these angles can be 

calculated on the sphere and converted onto 

the triaxial ellipsoid as follows: 

Let the two meridians *
1m and *

2m  through 

),( 11
*
1 p and ),( 22

*

2
p  on the sphere, be 

corresponding to 1m  and 2m  on the ellipsoid. 

If point N  is the spherical north pole, then 

solving the spherical triangle *
2

*
1 PNP  shown in 

fig. 2, yields: 
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and 
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Where   is the spherical angle between the 

two points ),( 11
*
1 p  and ),( 22

*

2
p . 

 

From eqs. (10, 11) one can find: 
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According to the definition of J, eq. (7), and 

the principals of trigonometry one can obtain: 
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Fig. 2. Azimuth based on spherical trigonometry. 

 

Substituting from eqs. (12- 14), the angles at 
which the image g intersects the meridians 

can be defined explicitly in the ellipsoidal 

parameters such that: 
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Although the common conformal 

transformation preserves angles, it does not 

the geodesics. From the practical point of 

view, the eccentricity of the earth’s equator is 

too small " 5)10(2  ", [10] Therefore, it is more 

realistic to apply the mapped spherical 

geodesic for developing the approximate 

features of the real geodesic on the ellipsoidal 

earth. Even though, the term of distortion has 

many definitions, one associates a small 

correction for the spherical geodesic. The 
respective corrections in angle and distance 

are very small and perhaps even negligible. 

 
2.4. Azimuth of a prayer’s direction 

 
Determination of the line along which the 

prayers are directed to Al-Kebla at Meka, is 

one of the most important applications. The 

prayer is generally directed to Al-Kebla along a 

geodesic. The ellipsoidal converted spherical 

geodesic is used herein to develop a probable 
approximate direction to the Muslims prayers. 

Particularly, at any position ),( 111 p on 

the ellipsoidal earth, the azimuth angle 1  

between north direction and the inverted 
geodesic g directed to a fixed point like Al-

Kaaba [11] 

)}437.2190{  ,817.39( NEp kkk
    can 

be expressed as a function of the local 

point ),( 111 p  such that: 
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in which 1J is defined by eq. (6) according to 

the parameters )and,,,( 11 cba . The 

parameters of the triaxial ellipsoidal earth are 

considered [12], such as: 

 

Km  6378173a ,   ab )
93800
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1
1(  .               (18) 

 

If the earth is modeled as a sphere, in which 

abc   and 11    and 11 cotJ , eq. (16) 

becomes: 
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3. Mutual conformality between the 

spherical and ellipsoidal loxodromes  

 

Referring to Lane [1], the curvilinear 
equation of the curves (called Loxodromes) 

crossing the meridians of sphere at constant 

angle is: 
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Where c is a constant defining the location of a 

loxodrome on the surface and it can be 

obtained according to a given point on the 

required loxodrome. Eliminating   from eqs. 

(2 and 20) yields the transformed loxodrome 

on the triaxial ellipsoid such that: 
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    (21) 

 

Because the conformal inverse preserves angle 
 , the transformed loxodrome represented by 

eq. (21) is the actual loxodrome on the triaxial 

ellipsoidal earth. 

Utilizing of the properties of the conformal 
transformation from the triaxial ellipsoid onto 

a plane, via Mercator’s chart [1] of the 

conformal sphere up on the plane, one can 

find out that: "The sum of the internal angles 

of a triangle whose sides are three loxodromic 
curves on the ellipsoid is two right angles".   

 

 

 

4. Conclusions 

 

The present paper offers a direct analytical 

method to represent the exact loxodrome and 
to approximate the geodesic on the triaxial 

ellipsoidal surface. The conformal mapping 

technique is exploited for reconverting the 

curves, which are already represented on a 

sphere, onto the corresponding triaxial 
ellipsoid. The present method comforts the 

laborious elliptical integral, which may be 

incorporated in the other methods. Because 

the conformal mapping preserves angles, the 

direction of the approximate geodesic with 

respect to the meridians of the ellipsoid is 
directly achieved on the conformal sphere.  
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