
Alexandria Engineering Journal, Vol. 47 (2008), No. 2, 175-188 175
© Faculty of Engineering Alexandria University, Egypt.

Adaptive storage model for XML in object-relational
databases- an extended version

Michael Kamel, Khaled Nagi and Nagwa El-Makky
Computer and Systems Eng. Dept., Faculty of Eng., Alexandria University, Alexandria, Egypt

mkamel@alex.edu.eg , knagi@alex.edu.eg and nagwamakky@alex.edu.eg

Object Relational DataBase Management Systems (ORDBMS) are becoming more popular in
storing and retrieving XML than native XML DBMS. In most ORDBMS, XML is stored as
CLOB inside the relation. Efficient XML parsers and indexing techniques are used to retrieve

the desired XML nodes. However, less attention is given to XML updates queries. With the
upcoming standardization of XML updates queries, the current implementation of the lock
granularity imposes a great limitation on the concurrency of parallel transactions. This
motivated several experimental ORDBMS to shred the XML nodes across internal relations.
This approach has also several drawbacks. In this paper, we propose an adaptive technique
for selective shredding. It is based on existing database engines and takes the changes in
the workload pattern into consideration. We analyze the performance of our approach and
compare it to the CLOB and the complete shredding approaches.

أكثر شيوعا في تخزين واسترجاع اكس ام ال عن قواعد البيانات اكس ام ال الأصلية. في الترابطية الشيئية البيانات أصبحت قواعد
بداخل العلاقة وتستخدم معالجات CLOBاكس ام ال على هيئة خانة كبيرة ملفات خزنت. الترابطيةمعظم قواعد البيانات الشيئية
. حتى الآن رة للبيانات باهتمام العلماءستعلامات الميي الا. ولكن لم تحظ المطلوبة كس ام الالااع نقاط فعالة ونظم فهرسة لاسترج

رة للبيانات حيث أن درجة ربط البيانات الحالية تحد كثيرا من مع ظهور مواصفات قياسية للاستعلامات الميي ينبيي تيير هذا الواقع
 البياناتيد من الباحثين لتقطيع ملفات الاكس ام ال وتوزيعها على عدة علاقات في قواعد عمل الحركة المتوازية. كل ذلك حرك العد

ة للتقطيع الاختياري للاكس ام ال. يفي كيتنعرض تقنية المعملية. ولكن لهذا الحل عيوب عديدة. في هذا البحثالترابطية الشيئية
يع التأقلم على التييير في الأحمال. يحتوى هذا البحث على تحليل لأداء تستخدم هذه التقنية قواعد البيانات الموجودة بالفعل وتستط

 .هذه التقنية ومقارنة بالأساليب الموجودة حاليا

Keywords: Xml storage models, Shredding techniques, Ordbms, Performance analysis

1. Introduction

XQuery [1] is becoming the standard query

language for querying XML data. Currently,

most commercial Object Relational DataBase

Management Systems (ORDBMS) treat the
whole XML document as a single text attribute

in the relation. They all implement row-level or

page locking techniques. Due to the non-

exclusive (shared) locks of read operations,

XQuery operations retrieving data from XML

never impose a performance problem with the
increase of concurrent users in a database

management system. The whole row

containing the XML in question is locked for

reading in a shared mode and efficient XML

parsers are used to retrieve the desired XML
nodes.

However, with the upcoming

standardization of update queries in the

XQuery language [2], the current

implementation of the lock granularity
imposes a great limitation on the concurrency

of parallel transactions. To overcome this

problem, several experimental ORDBMS

completely shred the XML nodes across

internal relations to achieve more
concurrency. The main drawbacks of this

approach are: the huge space consumption

used to store meta-data of the shredded XML

nodes and due to fragmentation and the

degradation of response time of XQueries

accessing large XML Sub-trees (not just single
nodes) which require an extra overhead to

rebuild the XML tree from the shredded nodes.

The current work presents a new XML

storage approach called Selective XML

Shredding in which the XML document is
gradually shredded into smaller XML portions

to achieve higher concurrency for XQuery

updates. The XML sub-trees that are

frequently accessed will be stored into

mailto:mkamel@alex.edu.eg
mailto:knagi@alex.edu.eg
mailto:nagwamakky@alex.edu.eg

M. Kamel et al. / Adaptive storage model for XML

176 Alexandria Engineering Journal, Vol. 47, No. 2, March 2008

separate XML portions in a separate relation

which helps to achieve higher concurrency of

access on these sub-trees. This approach tries
to save the huge space used by the complete

shredding schemes and meanwhile achieve

higher concurrency than CLOB based

schemes. The selective XML shredding is

designed to perform better than complete XML

shredding for operations on XML Sub-trees as
it saves the overhead required by the complete

XML shredding scheme to rebuild the

accessed XML Sub-tree from shredded nodes.

The approach has another important

advantage of being adaptive. The scheme
shreds the portions of XML that are heavily

accessed, in so called hot spot areas. If the hot

spot area changes its location, the scheme

gradually consolidates the fragmented XML

portions that are no longer heavily used and

shreds those portions in the new area.
In our design, we undergo an important

constraint, that is simply ignored in the

experimental ORDBMS. We do not attempt to

change the internal storage management of

the database engine. We build the shredding
scheme as an isolated layer on top of existing

commercial ORDBMS. This makes our

approach more ready to use than others.

The rest of the paper is organized as

follows. Section II presents a background on

existing storage models. In Section III, we
present our proposed storage model and

briefly describe its implementation in Section

IV. Section V contains a brief validation and

verification of the system. Section VI describes

the simulation model used to analyze our
approach and compare it to the standard

CLOB based storage model and the complete

shredding storage model. The experiment

results are presented in Section VII. Section

VIII concludes the paper.

2. Background

There are several schemes used to store

XML data in ORDBMS, which can be

categorized as follows [3].

2.1. Storing XML as a single field

Generally, storing XML as a single field

(generally CLOB) allows for fast insertion and

retrieval of full documents but suffers from

poor search and extraction performance due

to XML parsing at query execution time. This
can be moderately improved if indexes are

built at insert time. While this incurs XML

parsing overhead, it may speed up queries

that look for documents which match given

search conditions. Yet, extraction of document

fragments and sub-tree level updates still
require expensive XML parsing. In Oracle 10g

XML documents can be stored with indexing

support as CLOBs or shredded to object-

relational tables [4]. Microsoft SQL Server

2005 stores XML documents as byte
sequences in CLOB columns as mentioned in

[5]. A primary XML index can be defined to

avoid parsing the XML CLOBs at query time

[5].

2.2. Shredding XML to a relational schema

Shredding XML to a relational schema is

the process of mapping XML elements into

relational data based on the tree

representation of the XML document.
Shredding XML to relational tables is

expensive at insert time due to costly XML

parsing and multi-table inserts [6]. But once

XML is broken into relational scalar values,

queries and updates in plain SQL promise

higher performance. XML Shredding can be
categorized into two main categories:

 Schema-based XML Storage: It depends on

storing XML in relational systems that make

use of a schema for the XML data in order to

choose a good relational schema.

 Schema-oblivious XML Storage: Its goal is

to find a relational schema that works for

storing XML documents independent of the

presence or absence of a schema.
Our work focuses on XML documents that do
not necessarily have a schema.

In STORED [7], given a semi-structured

database instance, a special mapping is

generated automatically using data mining

techniques. STORED is a declarative query
language proposed for this purpose. This

mapping has two parts: a relational schema

and an overflow graph for the data not

conforming to the relational schema. STORED

can be classified as a schema-oblivious
technique since the data inserted is not

M. Kamel et al. / Adaptive storage model for XML

 Alexandria Engineering Journal, Vol. 47, No. 2, March 2008 177

required to conform to the derived schema. In

[8], several mapping schemes are proposed.

According to the edge approach, the input
XML document is viewed as a graph and each

edge of the graph is represented as a tuple in

a single table. In a variant known as the

attribute approach, the edge table is

horizontally partitioned on the tag name

yielding a separate table for each
element/attribute. Two other alternatives, the

Universal table approach and the Normalized

Universal approach are proposed but shown to

be inferior to the other two.

The binary association approach [9] is a
path-based approach that stores all elements

that correspond to a given root-to-leaf path

together in a single relation. Parent-child

relationships are maintained through parent

and child identifiers. The XRel approach [10]

is another path-based approach. The main
difference here is that for each element, the

path identifier corresponding to the root-to-

leaf path as well as an interval representing

the region covered by the element are stored.

The latter is similar to interval-based schemes
for representing inverted lists proposed in [11,

12].

In [13], the focus is on supporting order

based queries over XML data. The schema

assumed is a modified edge relation where the

path identifier is stored as in [10], and an
extra field for order is also stored. In [14], all

XML data is stored in a single table containing

a tuple for each element, attribute and text

node. For an element, the element name and

an interval representing the region covered by
the element is stored. Analogous information

is stored for attributes and text nodes.

There has been extensive work on using

inverted lists to evaluate path expression

queries by performing containment joins [15,

16, 11, 17, 12, 18, and 12]. In [12], the
performance of containment algorithms in an

RDBMS and a native XML system are

compared. All other strategies are for native

XML systems. In order to adapt these inside a

relational engine, it is supposed to add new
containment algorithms and novel data

structures. The issue of how the relational

engine is extended to identify the use of these

strategies is open. In particular, the question

of how the optimizer maps SQL operations

into these strategies needs to be addressed.

In [19], a new database index structure
called the XPath accelerator is proposed that

supports all XPath axes. The pre-order and

post-order ranks of an element are used to

map nodes onto a two-dimensional plane. The

evaluation of the XPath axis steps then

reduces to processing region queries in this
pre/post plane. In [19], the focus is on

exploiting additional properties of the pre/post

plane to speedup XPath query evaluation and

the Staircase join operator is proposed for this

purpose. The focus of [19] is on efficiently
supporting the basic operations in a path

expression and is complementary to the XML-

to-SQL query translation issue.

3. Proposed storage model

In our work, we focus on schema oblivious

XML storage for ORDBMS. We do not attempt

to change the underlying database storage

manager. Our solution is built on top of any

existing storage manager. This implies, as
well, that we do not change any interface to

the lock manager residing above the storage

manager.

Fig. 1 illustrates a general layered

architecture of an ORDBMS. We introduce a

component that maps XQuery operations to
SQL statements: the XQuery To SQL

Translator. The XML Storage Mapper is tightly

coupled to the XQuery To SQL Translator in

order to map the operation on XML nodes to

database operations performed on the
corresponding database tuples. The XML

Access Monitor examines the tuples being

accessed either through read or write

operations. Its job is to identify the hot spots,

which are XPathes with lots of read and write

operations in order to apply the selective
shredding algorithm.

3.1. Selective shredding

Selective Shredding based storage of XML
documents means that the XML document is

gradually shredded into smaller XML portions

to achieve higher concurrency for XQuery

updates. Using a sliding window concept to

evaluate the frequency of access, the XML

M. Kamel et al. / Adaptive storage model for XML

178 Alexandria Engineering Journal, Vol. 47, No. 2, March 2008

sub-trees that are frequently accessed are

gradually stored into separate XML portions.

There are two main parameters that control
the shredding phase.

 Time interval dt: It is the time between two

successive cycles of shredding and

consolidation.

 Frequency threshold of XQuery operations
on a certain XPath: It is the threshold of

number of XQuery operations that access the
same XPath during time interval dt. If this

threshold is exceeded at a certain XPath,
selective shredding takes place at this XPath.

When the access on the shredded XML

portions decreases, the XML Access Monitor

issues a command to consolidate these

portions back into a greater XML document or

portion. The following example explains our
scheme.

Let us assume a sample XML document of

the TPC-C benchmarking model, illustrated in

fig. 2. The node district shaded below in the

XML document experiences frequent XQuery
updates. The XML document is shredded into

two portions at the node being frequently

updated; i.e., the district node. Each of the

two XML portions is stored into a separate

XML CLOB field in order to achieve higher

concurrency for XQuery updates as illustrated
in fig. 2.

Fig. 1. Proposed system components.

<district id="A-001">

<customer id="M-

0023">

<order id="1">

...

</order>

<order id="2">

...

</order>

...

</customer>

<customer id="M-

0024">

...

</customer>

</district>

<company>

 <warehouse id="A">

 <!--Node Place Holder-->

 <district id="A-002">

 …

 </district>

 ...

 </warehouse>

 <warehouse id="B">

 <district id="B-001">

 <customer id="K-0024">

 <order id="1">

 ...

 </order>

 ...

 </customer>

 </district>

 ...

 </warehouse>

 ...

</company>

Fig. 2. XML after selective shredding.

M. Kamel et al. / Adaptive storage model for XML

 Alexandria Engineering Journal, Vol. 47, No. 2, March 2008 179

4. Implementation model

In our implementation model, we use the
standard edition of MS SQL Server 2005 in

order to verify our constraint of being ready to

run on existing ORDBMS without changing its

internal. We define a user defined data type,
myXMLType. We implement a simplified XML

converter similar to [10 and 13], which
translates XPath expressions in XQuery which

are in turn embedded in SQL to plain SQL

using stored procedures for insertion, update,

deletion and retrieval. The algorithms used in

these stored procedures depend on the

underlying storage model.
In order to keep our implementation as

simple as possible, we assume – without loss

of generality – that the lock manager uses the

standard Two Phase Locking scheme on row

level for the relational data. On the XML level,
we assume the Path Lock Propagation scheme

[20] since it is one of the best in time metric.

While mapping to the relational model, we

make sure that the same logical locks on XML

nodes are held by the lock manager using the

standard two phase locking scheme.

4.1. Implementation of the storage models

4.1.1. CLOB based storage

This is the standard approach used by
most of the commercial ORDBMS. The whole

XML document is stored as a single attribute

in the relation. A typical schema looks as in

table 1.

4.1.2. Complete shredding based storage

The data stores in the XML complete

shredding based system are:

 XML Relation: This relation is the original
relation that is supposed to store the XML

data but what actually is done is to store an

XML document identifier instead of storing the

whole XML document as a CLOB. The

identifier for the XML document is used in

nodes relation to relate the XML nodes to their
original XML document using a foreign key

constraint.

 Nodes Relation: This relation is used to
store the data of XML nodes resulting from the

tree representation of each XML document in

XML relation. It is related to XML relation by

XML document identifier. This relation is
created to achieve concurrency at XML node

level instead of being at the whole XML

document.

A typical schema looks as in table 2. The
attributes of the Nodes relation are listed in

table 3.

Table 1
CLOB based storage model

PK Name XML_Data

4711 ACME XMLdocument1 as CLOB

4712 Global Inc. XMLdocument2 as CLOB

Table 2

Complete shredding based storage model

PK Name MyXML_Column_ID

4711 ACME XML00000001

4712 Global Inc. XML00000002

Table 3
Nodes relation for the complete shredding based storage model

Attribute Description

PK Node unique identifier

Type node type (element or attribute or text or comment, etc.).

Value node value

For nodes of type element, it is NULL.

For nodes of type attribute or text or comment, it stores the contents of

the node.

XPath XPath of the XML node (tokenized)

docId XML document identifier which refers to the identifier of the XML

document in the base table.

ParentId Parent node identifier of the current node (foreign key to PK)

M. Kamel et al. / Adaptive storage model for XML

180 Alexandria Engineering Journal, Vol. 47, No. 2, March 2008

4.1.3. Selective shredding based storage

The data stores in the XML selective

shredding based system are:

 XML Relation: same as in the complete
shredding storage model

 XML Portions Relation: This relation is
used to store the data of XML portions

resulting from the shredding of frequently

updated sub-trees in the tree representation of

each XML document in the XML relation. It is

related to the XML relation by the XML
document identifier. This relation is created to

achieve concurrency at XML portion level

instead of being at the whole XML document.

The attributes of the XML Portions

Relation are listed in table 4.

Additionally, the XML access monitor logs
the XQuery operations in a volatile log to be

used for taking the decision whether to shred

or consolidate an XML portion. The log

contains the XML document identifier, the

operation type, the XPath used in the XQuery,
and the timestamp of the XQuery.

Table 4
XML portion relation for the selective shredding based

storage model

Attribute Description

XMLDocID XML document identifier
PortionID XML portion identifier
XPathOfRootForXM
LPortion

XPath of root for current XML
Portion

XMLPortion XML Portion document
ParentPortionID Parent XML document for

current XML portion

5. Validation using examples

The proposed model and its

implementation were verified running several

samples runs using both typical and

boundary values. In this paper, we show
examples using simple values for illustration

purposes.

5.1. Sample insertion

Consider the following Insert query:

Insert into TPC(CompanyID, CompanyName, [TPC XML]) Values(1, ‘‘Buckland Stores’’,
‘<company>

 <warehouse id="A">
 <district id="B-001">

 <customer id="M-0023" index="M">

 <name> Michael </name>

 <order id="1">

 <item> HB pencil </item>

 <price> 15 </price>
 <num> 12 </num>

 <status> undelivered </status>

 </order>

 </customer>

 </district>
 </warehouse>

</company>’)

For CLOB-based scheme, the XML document

is stored directly as a single field. For

Complete Shredding-based scheme, this

insertion is performed using the constructor of

the User Defined Type “MyXMLDataType”. The

XML is validated and the system traverses the
XML tree and stores the nodes in the “Nodes

Table” and also maintains the parent-child

relationship between XML nodes using foreign

key constraints as illustrated in table 5. It

then stores a row in the relational table

containing the XML column.

For Selective Shredding-based scheme, the

system validates the XML document. If the
XML is valid, it traverses the XML tree and it

initially stores the whole XML document as a

M. Kamel et al. / Adaptive storage model for XML

 Alexandria Engineering Journal, Vol. 47, No. 2, March 2008 181

single field in the “XML Portions Table”. It also

stores a row in the relational table containing

the XML column. Gradually, the XML
document is shredded into smaller portions at

the XPaths being frequently accessed. During

each shredding process, the XML Portions

table is modified by deleting the large XML

document and inserting two smaller portions
instead as illustrated in table 6.

Table 5
Nodes table after insertion

Id TagName TId Value HId Pk1 ParentId

1 company 1 NULL company 1 NULL

2 warehouse 1 NULL company/warehouse 1 1
3 id 2 A company/warehouse/id 1 2
4 district 1 NULL company/warehouse/district 1 2
5 id 2 B-001 company/warehouse/district/id 1 4

6 customer 1 NULL company/warehouse/district/customer 1 4
7 id 2 M-0023 company/warehouse/district/customer/id 1 6
8 index 2 M company/warehouse/district/customer/index 1 6
9 name 1 NULL company/warehouse/district/customer/name 1 6

10 NULL 4 Michael company/warehouse/district/customer/name/#text 1 9
11 order 1 NULL company/warehouse/district/customer/order 1 6
12 id 2 1 company/warehouse/district/customer/order/id 1 11
13 item 1 NULL company/warehouse/district/customer/order/item 1 11

14 NULL 4 HB pencil company/warehouse/district/customer/order/item/#text 1 13
15 price 1 NULL company/warehouse/district/customer/order/price 1 11
16 NULL 4 15 company/warehouse/district/customer/order/price/#text 1 15
17 num 1 NULL company/warehouse/district/customer/order/num 1 11

18 NULL 4 12 company/warehouse/district/customer/order/num/#text 1 17
19 status 1 NULL company/warehouse/district/customer/order/status 1 11
20 NULL 4 undelivered company/warehouse/district/customer/order/status/#text 1 19

Table 6

Portions tables after shredding

XMLDocID PortionID XPathOfRootForXMLPortion XMLPortion ParentPortionID

1 1 NULL [XML Portion 1] 1
1 2 company/warehouse/district [XML Portion 2] 2

5.2. Sample update xqueries

(1) Insertion

let $x := /company/warehouse[@id="A"]/district[@id="B-001"]
do insert $x

<customer id="D-144">

 <name> David </name>
 <entry_date> 12/02/2002 </entry_date>

 </customer>

Steps for mapping XQuery for Selective

Shredding Scheme

1. XQuery Handler locates the XML Portion

that includes the XPath of the node being

accessed from the XML Portions table. Let us
say the XML Portion being accessed starts

with node called “district” as a root node.

2. XQuery Handler maps the XPath of the

XQuery transaction which is

“/Company/Warehouse[@id="A"]/district[@id=

”B-001”]” to a corresponding XPath of the XML

Portion that includes the node being accessed
which is “district[@id=”B-001”]”. The mapped

XQuery is

M. Kamel et al. / Adaptive storage model for XML

182 Alexandria Engineering Journal, Vol. 47, No. 2, March 2008

let $x := district[@id="B-001"]
do insert $x

<customer id="D-144">

 <name> David </name>

 <entry_date> 12/02/2002 </entry_date>

 </customer>

(2) Modification

let $x0 := /company/warehouse[@id="B"],
$x1 := $x0/district[@id="D-002"]/customer[@id="C-031"],

$x := $x1/order[@id="5"]/num

do replace value of $x with “10”

Steps for mapping XQuery for Selective

Shredding Scheme
1. XQuery Handler locates the XML Portion

that includes the XPath of the node being

accessed from the XML Portions table. Let us

say the XML Portion being accessed starts

with node called “district” as a root node.

2. XQuery Handler maps the XPath of the

XQuery transaction which is
“/Company/Warehouse[@id="B"]/district[@id=

”D-002”]” to a corresponding XPath of the XML

Portion that includes the node being accessed

which is “district[@id=”D-002”]”. The mapped

XQuery is:

let $x1 := district[@id="D-002"]/customer[@id="C-031"],
$x := $x1/order[@id="5"]/num

do replace value of $x with “10”

(3) Deletion

let $x0 := /company/warehouse[@id="B"],
$x := $x0/district[@id="D-002"]/customer[@id="C-031"],

$y := $x/order[date="19/02/2002"]

delete $y

Steps for mapping XQuery for Selective

Shredding Scheme

1. XQuery Handler locates the XML Portion

that includes the XPath of the node being

accessed from the XML Portions table. Let us
say the XML Portion being accessed starts

with node called “district” as a root node.

2. XQuery Handler maps the XPath of the

XQuery transaction which is

“/Company/Warehouse[@id="B"]/district[@id=

”D-002”]” to a corresponding XPath of the XML

Portion that includes the node being accessed
which is “district[@id=”D-002”]”. The mapped

XQuery is

let $x := district[@id="D-002"]/customer[@id="C-031"],

$y := $x/order[date="19/02/2002"]
delete $y

6. Simulation model

In order to evaluate the performance of our

proposed storage model, we build a simulator

based on MS SQL Server 2005 as illustrated

in fig. 3. We implement a simplified version of

all three storage models: CLOB-based storage
model, complete XML shredding model, and

the selective XML shredding model. The

parameters that control the data stored in

these data stores include the number of XML
documents, the number of levels in each XML

document and the average number of siblings

for each node. The default is 10,000

documents of depth 3 and average number of

siblings 5. In other words, the test database

contains about 1,250,000 XML nodes. We use
this relatively small number of nodes in order

to artificially increase the rate of conflicts and

thus stress-test the three approaches.

M. Kamel et al. / Adaptive storage model for XML

 Alexandria Engineering Journal, Vol. 47, No. 2, March 2008 183

Fig. 3. Simulation model.

The workload generator submits database

transactions using XQuery embedded in SQL.
Each transaction executes in a separate

thread. We launch up to 250 transactions in

parallel to simulate 250 concurrent users. The

complexity of a single transaction varies from

1 to 10 database statements. Transactions
can be read-only containing SELECT and

XQuery retrieval operations only or can be

read-write containing SQL UPDATE and

XQuery insertion, modification, or deletion

operations. We have two types of selectivity

factors. The first one is the selectivity of
database tuples. Traditionally, it does not

exceed 10%. The second factor is inside the

XML document itself. It determines the level of

the parent node of all nodes accessed by the

XQuery statement and accordingly the
percentage of its siblings that are being

affected by the statement. This percentage can

vary from 0% to 100% in real life.

In order to test the adaptive nature of each

storage model, we artificially create hot spots

by concentrating the access to XML nodes to
one small subset of the existing nodes.

Periodically, we switch to another subset to

simulate changes in the hot spot areas over

time.

The performance monitor measures the

overall system throughput in terms of
committed transactions per second; the

average response time for all types of

transactions, the percentage of aborted
transactions, and the space consumption.

7. Experiment results

7.1. Adaptive nature of the storage models

In this set of experiments, we investigate

the effect of changing the hot spot access

areas of XML nodes over time in the three

storage models. The hot spot area is changed

periodically and the transient behavior of each
storage model is plotted. Figs. 4 and 5 show

that the system throughput and the response

time of the complete shredding and CLOB

based storage model are slightly affected by

the change in the hot spot area. This is
probably due to diverse caching mechanisms.

However, the proposed selective shredding has

a much better performance as it selectively

begins to shred the hot spot. With the shift in

the hot spot (the graphs illustrate three shifts

in the hot spot), the improvement in the
performance measures diminishes till the next

consolidation and shredding phase. In all

cases, the percentage of aborted remains

insignificant. Thus, the transient behavior of

the system demonstrates the adaptive nature

of the suggested solution.

M. Kamel et al. / Adaptive storage model for XML

184 Alexandria Engineering Journal, Vol. 47, No. 2, March 2008

Fig. 4. Moving average system throughput.

Fig. 5. Moving average response time.

7.2. Effect of increasing the number of

concurrent users

In this set of experiments, the number of

concurrent users submitting transaction is

varied from 50 to 250. With this huge number

of parallel transactions the possibility of lock
conflicts increases dramatically. Moreover, the

artificially small database size magnifies the

rate of conflicts.

As expected, complete shredding with its

fine grained locks performs better than the

other storage models. CLOB-based and
selective shredding storage model perform

similarly. Their system throughput seems to

saturate at 40 transactions/second, as

illustrated in fig. 6. Whereas the complete

shredding seems scale linearly even at 250
concurrent users achieving a throughput of 80

transactions/second, which is double that of

CLOB or selective shredding. The same applies

to the response illustrated in fig. 7. The

response time of CLOB and selective

shredding climb to 6 seconds whereas

complete shredding remains at 3 seconds. The

abort rate of CLOB and selective shredding,
illustrated in fig. 8, remains below 12% which

is acceptable. Not a single abort is observed in

the complete shredding model due to the fine

granularity of its locks.

Fig. 6. Throughput vs. # of concurrent users.

Fig. 7. Response time vs. # of concurrent users.

Fig. 8. Transaction aborts vs. # of concurrent users.

M. Kamel et al. / Adaptive storage model for XML

 Alexandria Engineering Journal, Vol. 47, No. 2, March 2008 185

7.3. Space consumption

The great performance of selective
complete shredding has certainly its price. In

this set of experiments, we increase the

number of XML nodes in the system and

observe the space consumption of all three

storage models. The increase can be done by

either increasing the number of XML
documents, their level, or the average number

of their siblings. All three factors are applied

and all yield similar results. Here, we show

only the space consumption as a function of

the number of XML documents.
The selective shredding and CLOB go side

by side with the increase in XML documents;

whereas the complete shredding consumes

huge amounts of storage due to fragmentation

as illustrated in fig. 9. By increasing the

number of XML documents by a factor of 10,
the space consumed by the complete

shredding increases by a factor of 10 and

amounts to 2,5 GB. The selective shredding

remains under 1,2 GB and CLOB storage

under 750 MB. The throughput and response
times illustrated in figs. 10 and 11 degrade

gracefully. The rate of aborted transactions

remains in a save area.

Fig. 9. Space consumption vs. number of XML

documents.

Fig. 10. Throughput vs. # of XML documents.

Fig. 11. Response time vs. # of XML documents.

7.4. Analysis of xquery update operations

Figs. 12 and 13 show the effect of the
different XQuery update operations on the

throughput and response time respectively.

During XQuery modification and deletion, it is

just the value of an XML node(s) that will be

affected (updated or deleted). This makes the

performance of the complete shredding
superior to the other two models, since it is

always faster to update or delete the relational

data in the nodes tables than to update a

CLOB field.

As for the XQuery insertion, it is required

for the complete shredding based system to
map the inserted XML nodes into relational

data as well as to relate the new nodes to their

parent nodes in the nodes tables. This a cost

intensive operation. In the CLOB based and

selective shredding based systems, a CLOB

M. Kamel et al. / Adaptive storage model for XML

186 Alexandria Engineering Journal, Vol. 47, No. 2, March 2008

field is updated with the newly inserted nodes;

which is a much faster operation. The

percentage of transaction aborts remains
reasonably low for all XQuery update

operations in all three storage models.

7.5. Analysis of xquery retrieval operations

Since retrieval operations usually
constitute 80% of the total number of

operations, we analyze its performance under

different types of queries. In the relational part

governing which XML documents are in

question for the XQuery operation, we assume
a selectivity factor of 10%; which is normal for

typical relational database retrieval queries.

Inside the XML documents, the selectivity

factor of the XML nodes varies heavily. We

examine the whole spectrum from 0% to

100%. Moreover, the performance of the
system depends on the depth of the XPath. In

this paper, we show the throughput and

response time in case that the XPath matches

level 2 and 3 of the whole XML document.

In figs. 14 and 15, we illustrate the
throughout and response time for XPath

accessing nodes at level 2 respectively. Here, it

is clear that the CLOB-based storage model

outperforms the complete shredding storage

based model. This is due to the fact that the

chosen sub-trees are near to the root of the
original document and are relatively deep.

This makes their reconstruction from deeply

fragmented nodes a cost intensive operation.

The selective shredding storage based model

comes slightly after CLOB.

Fig. 12. Throughput of XQuery update operations.

Fig. 13. Response time of XQuery operations.

Fig. 14. Throughput of XQuery retrieval operations vs. the
selectivity factor of XML nodes at level 2.

Fig. 15. Response time of XQuery retrieval operations vs.
the selectivity factor of XML nodes at level 2.

In figs. 16 and 17, we illustrate the

throughout and response time for XPath

accessing nodes at level 3 respectively. Here,

M. Kamel et al. / Adaptive storage model for XML

 Alexandria Engineering Journal, Vol. 47, No. 2, March 2008 187

we get the opposite results. The complete

shredding storage based model outperforms

the CLOB based storage model. This is due to
the fact that the chosen sub-trees are near to

the leaf nodes of the original document and

are hence not expensive to reconstruct from

fragmented single nodes. Here also, the

performance of our selective shredding storage

based model lies between both standard
approaches.

In conclusion, while both CLOB-based and

complete shredding storage based models

have their strengths and weaknesses

according to the nature of the XQuery
operation and parameters, the performance of

our selective shredding is stable and presents

a good compromise between them.

Fig. 16. Throughput of XQuery retrieval operations vs. the

selectivity factor of XML nodes at level 3.

Fig. 17. Response time of XQuery retrieval operations vs.

the selectivity factor of XML nodes at level 3.

8. Conclusions

In this paper, we present the Selective
XML Shredding storage scheme for XML in

ORDBMS. It is a mix of CLOB based storage

and XML Shredding based storage. The main

objective of this new scheme is to increase

concurrency of XQuery operations on XML

documents by splitting the XML document
into smaller XML portions deduced from the

XML tree representation and store these

portions in a separate relation. Our approach

does not touch the underlying DBMS. It is

built as a layer on top existing systems.
We build a prototype of the existing

storage schemes and compare the throughput,

response time, space consumption and the

ratio of aborted transaction to our scheme.

The simulation results show that the XML

Shredding based system has higher
throughput than the CLOB based system

when the number of concurrent users

performing XQuery updates increases in the

system but the main drawback concerning the

XML Shredding based system is the extra
storage used to store XML nodes which is

larger in size from storing the whole XML

document as a text. The depth of the XML

nodes being accessed has the main effect on

differentiating the competitive three

approaches. Selective Shredding based system
is the best on intermediate depths as it is a

hybrid approach of the CLOB based and

Complete Shredding. Being adaptive against

the change in the workload pattern, our

approach promises the best compromise
between the existing approaches.

References

[1] S. Boag, D. Chamberlin, M. Fernandez,

and et al., "An XML Query Language",
XQUERY 1.0: W3C Working Draft (2001).

[2] M. Yoshikawa, T. Amagasa, T. Shimura,

and S. Uemura, "XRel: a Path-Based

Approach to Storage and Retrieval of

XML Documents Using Relational
Databases", ACM Transactions on

Internet Technology (TOIT), 1(1):110-141

(2001).

M. Kamel et al. / Adaptive storage model for XML

188 Alexandria Engineering Journal, Vol. 47, No. 2, March 2008

[3] M. Nicola, et al., "XML Parsing, a Threat

to Database Performance", Proc. of CIKM

(2003).
[4] M. Nicola, and B. Van Der Linden,

"Native XML Support in DB2 Universal

Database", IBM Silicon Valley Lab, 555

Bailey Avenue, (2005).

[5] Pat et al., "Oracle XML DB 10g",

www.oracle.com/technology/tech/xml/x
mldb., (14) Pat et al., "Indexing XML

Data Stored in a Relational Database",

Proc. of VLDB (2004).

[6] Q. Li and B. Moon, "Indexing and

Querying XML Data for Regular Path
Expressions", Proc. of VLDB (2001).

[7] A. Deutsch, M. Fernandez, and D. Suciu,

"Storing Semistructured Data with

STORED", Proc. of SIGMOD (1999).

[8] D. Florescu and D. Kossman, "Storing

and Querying XML Data Using an
RDBMS", Data Engineering Bulletin, 22,

3 (1999).

[9] A. Schmidt, M. Kersten, M. Windhouwer,

and F. Waas, "Efficient Relational

Storage and Retrieval of XML
Documents", Proc. of WebDB (2000).

[10] C. Zhang, J.F. Naughton, D.J. DeWitt, Q.

Luo, and G. Lohman, "On Supporting

Containment Queries in Relational

Database Management Systems", Proc.

of SIGMOD (2001).
[11] H. Jiang, H. Lu, W. Wang and B. C. Ooi,

"XR-Tree: Indexing XML Data for

Efficient Structural Joins", Proc. of ICDE

(2003).

[12] D. Srivastava, S. Al-Khalifa, H.V.
Jagadish, N. Koudas, J.M. Patel, and Y.

Wu, "Structural Joins: A Primitive For

Efficient XML Query Pattern Matching",

Proc. of ICDE, (17) I. Tatarinov, S. D.

Viglas, K. Beyer, J. Shanmugasundaram,

E. Shekita, and C. Zhang, "Storing and

Querying Ordered XML Using a
Relational Database System", Proc. of

SIGMOD (2002).

[13] J. Teubner T. Grust, M.V. Keulen,

"Staircase Join: Teach a Relational

DBMS to Watch its (Axis) Steps", Proc. of

VLDB (2003).
[14] D. DeHaan, D. Toman, M. P. Consens,

and T. Ozsu, "A Comprehensive XQuery

to SQL Translation Using Dynamic

Interval Encoding", Proc. of SIGMOD

(2003).
[15] S. Chien, Z. Vagena, D. Zhang, V. J.

Tsotras, and C. Zaniolo, "Efficient

Structural Joins on Indexed XML

Documents", Proc. of VLDB (2002).

[16] T. Grust, "Accelerating XPath location

steps", Proc. of SIGMOD (2002).
[17] N. Bruno, N. Koudas, and D. Srivastava,

"Holistic Twig Joins: Optimal XML

Pattern Matching", Proc. of SIGMOD

(2002).

[18] W3C XQuery Update Facility
Requirements, W3C Working Draft,

http://www.w3.org/TR/2005/WD-

xquery-update-requirements-

20050603/. (2005).

[19] W. Wang, H. Jiang, H. Lu, and J.X. Yu,

"PBiTree Coding and Efficient Processing
of Containment Joins", Proc. of ICDE

(2003).

[20] S. Dekeyser, and J. Hidders, "Path Locks

for XML Document Collaboration", Proc.

of WISE (2002).

Received November 13, 2007

Accepted March 31, 2008

* A shorter version of this paper has been published in the IADIS,

International conference on applied computing, Algraue, Portugal,

April 2008 and awarded the outstanding paper award.

