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When a single linear calibration model fails to represent a data set properly, splitting the 
data into linear subsets is an interesting solution for the problem. In such a case, the data 
set is represented by a pack of different linear calibration models; that makes estimation of 

the sought-for predicted variable " ŷ " for a new object being a dilemma. The present paper 

introduces three different nonparametric strategies to be used as discrimination tools for the 
new objects in a case of splitting the data set. The proposed strategies are not affected by 
the methodology used to split the data; so, each one can be appended any splitting 
algorithm. The introduced discrimination strategies have been applied on simulated and real 

data sets divided into training subsets and real ones. The obtained results were satisfactory.  
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1. Introduction 
 

In some practical calibration situations it 
is difficult to construct one universal 
calibration model representing the whole 
population of interest [1]. This is sometimes 
common case rather than an exception in 
chemical calibration. An important reason can 
be the lack of an adequate model for all 
objects producing the desired error. For 
instance, in QSAR studies, one is unavoidably 
involved in the case of modeling some activity 
of chemicals with multiple templates which 
may exhibit significant structural distinction 
between each other, in such a case there 
might be difficulties to use a single linear 
model to describe these compounds, and it is 
better to search an alternative model 

describing the compounds with consideration 
of the template influence. Likewise, in 
chemical engineering data such as corrosion 
diagrams, calibration curves for adsorption of 
toxic compounds, kinetic study diagrams 
…etc. sometimes need results with very small 
error for the new cases. To circumvent this 
problem, besides the non-linear approaches 
using sophisticated nonlinear functions, an 
alternative approach is to split the whole data 
set into subsets and treat the problem as a 
quasi-linear one which models each subset as 
linear substructures.  

The idea of splitting the whole data set 
followed by linear modeling in each subset is 
not new [2-7], so it is not the interesting point 
of the present study. However, predicting the 
variable 'y' for a new object is the actual 
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predicament facing most the published 
splitting methodologies since they have not 
introduce discrimination tools for the new 
objects. A special warning is given in 
prediction of a new object belonging to a split 
data set, in which correct classification is 
difficult and misclassification dangerous. 
Actually, systematic treatment of how optimal 
prediction of new objects is done when it is 
not known to which group they belong has 
rarely presented [8]. Therefore, splitting the 
data sets into linear subsets algorithm should 
be appended by a discrimination methodology 
for the new objects to medicate the problem 
properly.     

In the present study, the authors 
introduce three different discrimination 
strategies; the proposed strategies can be 
invoked as an integral epilogue for any 
splitting methodology. The first strategy is 
based on the linear machine which being used 
to check the linear separation of subsets in x-
space. In this strategy, to obtain a linear 
machine applicable for multi subsets system; 
an improved Minimum-Squared-of-Errors 
(MSE) approach has been used to estimate the 
linear discrimination functions. However, the 
second and third strategies are excerpted from 
the BiLinear Modeling (BLM). The popular PCR 
and PLSR algorithms which being used as 
bilinear calibration techniques have been 
modified to be discrimination tools in the 
second and third strategies respectively. The 
proposed strategies have been applied in 
minute exposition on a simple simulated data 
set to clarify discrimination procedures for the 
readers. Moreover, the strategies have been 
checked by two real data sets. The obtained 
results in a case of simulated and real data 
sets were acceptable.   
 
2. Theory  
 
2.1. The problem 
 

Mathematically, the problem can be 
explained as selecting the best linear model 
form a pack of linear models describing the 
data set to determine the variable y as well as 
possible from an observation of a vector x. In 
other words, discriminate the new prediction 
object. Discriminant analysis is usually 

defined as the construction of a rule that can 
be used to allocate a vector x to one of c 
different groups. A training set containing 
several observations from each group is 
needed together with a mathematical model 
for the distribution within each class. Note 
that in discriminant analysis the membership 
of all samples in the training set to the c 
different groups must be known, as opposite 
to cluster analysis. Discrimination analysis 
can be viewed as a calibration with a discrete 
response variable instead of the continuous y.  
  
2.2. Splitting the data 
 

A satisfactory splitting of calibration data 
into subsets has to focus in the size of the 
residuals from linear fitting within each 
subset and pay attention to the closeness of 
the samples in each subset in the data space, 
but the closeness care should not have bad 
influence on the linearity in each subset. As 
aforementioned above, many splitting 
methodologies have been introduced in the 
literature. Some splitting methods were based 
on cluster analysis [4-6]. Another approach 
has been proposed for splitting a 4-
dimensional data set into linear substructures 
via a high-breakdown-point robust regression 
method [9]. However, in this study an 
approach being introduced by the present first 
author [10] has been invoked as splitting 
procedure. In this approach, the data set is 
split into a sequence of subsets which are 
described by linear models with desired error 
level. As the linear models describing the data 
subsets can be transformed into hyperplanes 
in an augmented data space, then, the 
proposed approach reduces the splitting of 
data to the search for a series of hyperplanes 
which successively maximize the number of 
data points near these hyperplanes within 
desired error and simultaneously producing 
linearly separable subsets in x-space. Genetic 
Algorithms (GAs) have an interest growing as 
an optimization technique for chemical 
problems [11-15], so a modified genetic 
algorithm is invoked to determine sequentially 
the optimum hyperplanes representing 
linearly separable subsets. The modification in 
the used genetic algorithm came from using 
asexual crossover process instead of using 
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sexual one in the conventional ones since only 
one parent has been used to create a new 
generation. Moreover, a multi-parturition 
operation has been applying to create the 
individuals in the used modified GA. The 
reader can find detailed information about the 
splitting algorithm in the original paper. 
 
2.3. The discrimination strategies  
 

The proposed strategies are nonparametric 
ones to avoid the difficulty of the statistical 
methods.   
 
2.3.1. Linear machine with improved MSE  
    strategy 

Linear machine is a powerful method can 
be used in discrimination of multicategory 
data sets [16]. It defines c linear discriminant 
functions gi(x) for a data set containing c 
subsets, where  
                        

0i
T
ii wxw(x)g   i =1,2,…,c.      (1) 

 
Where wi is called the weight vector of the 

subset i and wi0 is the threshold.  Assigning x 
to the subset i if gi(x) > gj(x) for all j ≠ i. 
Actually, the linear machine divides the 
feature space into c decision regions, with gi(x) 
being largest discriminant if x is in the region 
corresponding to the subset i. Minimum 
squared errors procedure (MSE) is a common 
method used to estimate the weight vectors 
and the thresholds for binary problems [17.a]. 
In this work, the MSE methodology has been 
improved to be applicable in multicategory 
problems, in other words, it has been modified 
to be adequate for estimation the 
discrimination functions in a case of 
multicategory problems.  

The constraint used for estimating the 
discriminant surface in case of two-class 
problems will be invoked, this constraint is: 

 

10  wxwT     for all   x  class 1 

10  wxwT .    for all   x  class 2.  (2) 

 
However, in a case of multicategory problems; 
the constraint is [18]:  
 

10  i
T
i wxw     for all   x  subset i  

 

00  i
T
i wxw    for all   x  subset i. (3)                                             

 
The present study introduces an 

estimation methodology of the discrimination 
function corresponding to a subset the subset 
Xi (i.e. estimating wi  and wi0) as follow:   

Let bi is a column vector with all entries 
being ones and b1,b2,..bi-1, bi+1, …bc  are c-1 
column vectors with all entries being zeros. 

Also, let  iii XuZ    and 









i

i
i

w

w
a

0
  where ui 

is a column vector with all entries being ones. 
Consequently, according to the constraint in 
eq. (3), one can write: 
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Where *

iZ  is a matrix containing the remaining 

subsets, viz.   .111
T

cii
*
i , ...Z,Z, ...ZZZ  Eqs. (4) 

can be merged to be one equation as follow  
 

bZai  .           (5) 

 
Where Z is the whole data set, therefore, Z and 
b can be defined as follow  
  

 Tci, ...Z, ...ZZZ 1  

 
and 
 

T
ci ],...b,...b[bb 1 .          (6) 

 
If Z is not nonsingular, one can write  

bZa i
1  and obtain a formal solution at 

once. However, Z is rectangular; usually the 
number of samples (rows) is more than the 
number of variables (columns). When there 
are more equations than unknowns, ai is 
overdetermined, and ordinarily not exact 
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solution exists. However, one can seek a 
vector ai that minimizes some functions of 
error between Zai and b. If the error vector ei is 
defined by  
 
ei = Zai – b .          (7) 
 
then one approach is to try to minimize the 
squared length of error vector. This equivalent 
to minimizing the sum-of-squared error 
criterion function j: 
 

 




N

k

k
t
iii b(k)zabZa)J(a

1

22
 .   (8) 

 
N is the total number of samples in the data 
set. The problem of minimizing the sum of 
squared errors is a classical one. It can be 
solved by a gradient search procedure, it can 
be simply found by forming the gradient as 
follow  
                      

     




N

k

ii
t

kikk
t
ii bZaZzbzaaJ

1

22 , (9)            

 
and setting it equal to zero. This yield the 
necessary condition  
 

i
t

i
t bZZaZ    .           (10) 

  
Eq. (10) can be rewritten in terms of 
partitioned matrices:  
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By defining the sample means mi and the 
pooled sample scatter matrix SW as 
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1

x

xm    i = 1,2,…c .        (12) 
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One can multiply the matrices in eq. (11) and 
obtain            
 



































ii

i

i

i

t
ccc

t
iii

t
Wccii

t
ccii

mn

n

w

w

mmn...mmn...mmnSm...nm...nmn

m...nm...nmnN 0

11111

11

)(

)(
,              (14) 

 
This can be viewed as a pair of equations, the 
first of which can be solved for wi0 in terms of 
wi   
 

i
ti

i0 wm
N

n
w   .                                       (15) 

 
Where m is the mean of all of the samples, it 
equals 
 

c
c

i
i

1
1 m

N

n
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N
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N

n
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Substituting the value of wi0 form eq. (15) in 
the second equation obtained from the 
solution of eq. (14) and performing a few 
algebraic manipulations, we obtain 
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By knowing the value wi; the value of wi0 

can be calculated from eq. (15). By the 
aforementioned way the discriminant function 
of the i-th subset may be obtained. The 
procedure should be repeated with all the 
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subsets to estimate all the discriminant 
functions to apply the linear machine as a 
discriminating tool.  
 
2.3.2. Modification of bilinear models to be  
    discrimination methods. 
2.3.2.1. A brief introduction to the bilinear 
models. BLM is a significant multivariate 
calibration methodology [19-a]. The basic 
structure of BLM is that the information in the 

many observed variables  n,...,x,xxx 21  is 

concentrated onto a few underlying variables, 
called components, scores, regression factors 

or just factors Attt ,....., 21   i.e.  

                          

   




 




nA xxxhttt ,....,,..., 21121 A ≤ n .     (18)     

 
Here h1 is the transformation function and A 
indicates the number of scores can simulate 
the original variables. These scores are used 
as regressors in the regression equation with y. 
i.e.  
 

  f




 

 Attthy ,...., 212 .         (19) 

 
Here f represents those contributions to y 
which can not be explained   by t he scores t, 
(t = (t1,t2,….tA)).  Let X and y represent the 
centered input data i.e.  
 
 

X = Xinput – 1  x  ,           (20) 

 
 

y = yinput- 1 y .            (21) 

 
In terms of the centered X and y the full 
bilinear calibration model can be written as: 
                                     
 

EPTX  ,            (22) 
 
                                             

fTqy   .            (23) 

 
A loading matrix P represents the 

regression coefficients of X on the scores T, in 
the same way as q represents the regression 

coefficient of y on T. The residuals E and f 
represent the unique variation in X and y that 
being not explained by the A factors (T) in the 
bilinear structure. Really the name 'bilinear 
modeling" comes from the way X itself is 
approximated by the model in eq. (22) that is 
the product of two sets of linear parameters to 
be estimated, termed the scores (T) and 
loadings (P) plus noise E. Estimating of the 
scores T and the loadings P is the main 
problem in any bilinear calibration 
methodology. Simply, the scores T can be 
represented according to eq. (18) in the 
following form    
 
T = XV .             (24) 
 

Where V is unknown weight matrix. 
Principal Component Regression (PCR) and 
Partial Least Squares (PLS) are interested 
bilinear calibration methods eq. [19-b]. They 
introduce two different ways to calculate P and 
T which can be used to estimate a linear 
model describing the data set. In this work, 
these methods have been modified to be 
discriminating techniques rather than 
multivariate calibration methods.  
 
2.3.2.2. PCR bilinear modeling discrimination 
strategy. When PCR is used as a bilinear 
calibration modeling method V and P are 
identical, and representing the chemically 
meaningful eigenvectors extracted from the 
data set. Below, the authors report the 
procedure of developing the principal 
component regression to be a discrimination 
tool. The following procedure should be 
established on all subsets individually to elect 
the chemically meaningful eigenvectors in 
each subset, i.e. the loading matrix P for each 
subset. Xinput and yinput denote a subset and 
the corresponding y values, respectively. 
1. Centered the data points for the first 
subset, eqs. (20 and 21), they will be named 
here as X0 and y0. 

2. Estimate the eigenvectors for  00XX   (in 

this study the singular value decomposition 
method was used). 
3. Use the first eigenvector (name it as p1) to 

estimate the scores t1 ( 1t  = X0 1p ) and the 

residuals E1 (E1 = X0 – t1 1p ).  
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4. If the entries in the residuals matrix E1 are 
very small (i.e. it can be considered as noise) 
that means one eigenvector embeds most of 
the information in the data set and the loading 
matrix P1 corresponding to the first subset 
consists of only one column (the first 
eigenvector). Otherwise, the second 
eigenvector is invoked as p2. Also, the 
residuals E1 is used instead of X0, it is named 
X1. Estimate t2 and E2 via p2 (i.e.  t2 = X1p2 and 

E2 = X1 – t2 2p  ).  

5. Likewise, if the entries in E2 still not so 
small this means two eigenvectors are not 
enough and the third one should be used as 
p3, then; t3 and E3 are estimated, and so on 
and so forth. The process should be repeated 
until getting residuals (EA) very small and can 
be considered as noise. In such a case the 
loading matrix P1 consists of the exploited 
eigenvectors.  

Discrimination of a new object x can be 
performed by calculating the residual obtained 
with each subset as follow: 
 

      p)px(xxxe iiii  111    

 ......ppeee iiiii 22112  

iii iAiA)i(A)i(AiA ppeee 11     

i =1,2,…c.                                   (25) 
 

Where .,p,....p,pp
ii iA)i(Aii 121   are the chemically 

meaningful eigenvectors of the i-the subset, ix  

is the mean of this subset and Ai is the 
number of the valuable eigenvectors in the 
loading matrix Pi. Actually, the number of the 
valuable eigenvectors may change from subset 
to another one. The object x belongs to the 
subset i if  
                    

)(xe(x)e(x)e(x)e t
jAjAiAiA jjii

 for all j ≠ i .   (26) 

 
2.3.2.3. PLSR bilinear modeling discrimination 
strategy. As shown when PCR is used as 
bilinear model, allocation of a new object 
depends mainly on the residuals 
corresponding to predictor variable x, in other 
words, in the above strategy discrimination is 
achieved without taken in consideration the 
effect of y value.  

To do discrimination depends on both of X 
and y this strategy is introduced; it utilizes 
the linear model corresponding to each subset. 
The strategy modifies the algorithm 
introduced by Partial Least Squares 
Regression (PLSR) as bilinear multivariate 
calibration model. In the literature, there are 
two famous algorithms based on PLSR have 
been introduced as bilinear models, namely; 
the orthogonalized algorithm [20] and non-
orthogonalized one [21], in this work the 
orthogonal algorithm will be used because it is 
more simple and also there is no big difference 
between the final results obtained from them. 
Generally, PSLR approach needs an additional 
set of loadings called loading weights ‘W” 
where  

 
1 W)PW(V  .            (27) 

 
To modify the orthogonalized PLSR 

algorithm to be used as a discriminant 
technique, the following steps should be 
achieved for each subset individually to 
calculate the loading weights Wi correspond-
ing the subset i. Therefore, Xinput and yinput 
denote a subset and the corresponding y 
values. 

 
1. Center the input data points eqs. (20 and 
21). 
2. Use the variability in y0 to find the first 
loading weights w1 for the subset in study 
using Least Squares (LS) and the local model 
 

EwyX 100  ,                                   (28)  

 
and scale the vector to length 1. The solution 
is  
 

  00
50

00001 yXyXXyw
. 


 .        (29) 

 
3. Estimate the scores t1 using the local 
model  
 

EwtX  110 .           (30) 

 

The LS solution (since 111 ww ) 
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101 wXt   .            (31) 

4. Estimate the spectral loadings p1 using 
the local model  
 

EptX  110 ,                              (32) 

 
which gives the LS solution  
 

11101 tt/tXp   .           (33) 

 
5. Estimate the chemical loading q1 using 
Least Squares (LS),  as follow 
 

11101 tt/tyq  .            (34) 

 
6. Estimate the residuals f1 and E1 as follow  
 

1101 qtyf     .           (35) 

 

1101 ptXE     .           (36) 

 
7. If the residuals f1 it is so small this means 
one loading weights is enough otherwise 
another loading weights should be estimated, 
in such a case E1 and f1 will be used instead 
of X0 and y0 respectively, they are named X1 
and y1.   
8. The process is repeated until having very 
small fA where A is the optimum number of 
loading weights giving very small residuals. 
The required loading weight matrix Wi 
consists of all the exploited loading weight 
vectors.  

To allocate an object x, the final residuals 

)(xf
iiA  should be estimated with all subsets. 

The residuals can be estimated as follow  
 

      qwxxyyxf iiiiii  111 )(ˆ)(    

 

)()()( 1(22112 xfxf...qweexf )AiiAiiiii i 
    

                                                                                                                                                                          
)()(         1)1(   iiAi Aexf

i
 i =1,2,…c.          (37) 

 
Where Ai is the number of the weight loadings 
embedding most of the information in the 

subset i. While iŷ  is the predict value for the 

object calculated from the corresponding 
linear model of the subset i which is estimated 

by the splitting algorithm. However, ei1, 

ei2, ... )1( iAie  are the residuals in the x-domain, 

they can be calculated from eqs. (25), but the 
loading weights (Wi) are used instead of the 
eigenvectors (Pi). Now, one can say the new 
object x belongs to a subset i if  
 

)()()()( xfxfxfxf
jjii jAjAiAiA  for all j ≠ i.  (38) 

 
3. Data sets 
 

Three different data sets have been 
invoked to check out the efficiency of the 
proposed strategies. The used data sets can 
not be represented by a single linear 
calibration model since the corresponding 
errors were unacceptable as shown below. 
Therefore, the splitting algorithm has been 
utilized to split the data sets into the optimum 
linear subsets. To check the proposed 
strategies properly, the obtained subsets have 
been further divided into training and test 
ones.  
 
3.1. Simulated data  
 

This is a simple data set for detailed 
explanation of the second and third strategies. 
It consists of two subsets X1 and X2. The data 
points in each subset validate a specific 
hyperplane in the x-space eq. (39 and 41). 
Therefore, one can say this data set can not be 
represented by a single calibration model 
especially the chosen hyperplanes are not 
parallel. Training sets and test one have been 
established by randomly choosing data points 
validating the hyperplanes’ equations. The 
corresponding y values for each subset have 
been calculated by using a random linear 
model for each subset. The used hyperplanes 
and linear models in these simulated data are 
given below 
 
The first subset                  
 

Hyperplane 552 321 .xxx   .        (39) 

 

Linear mode 5.021  xxy .           (40)  

 
The second one              
 



N. Barakat et al. / Splitting data set 

120                                Alexandria Engineering Journal, Vol. 47, No. 1, January 2008 

Hyperplane 33 321  xxx .                    (41)        

 

Linear model 332 21  xxy .       (42) 

 
The training subsets and the corresponding y 
values are  
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More four data points have been randomly 

chosen validating the aforementioned hyper-
planes to be the test set. The first two points 
belong to the first subset, while the remaining 
ones belong to the second one. The chosen 
test set is  
 























72.516.713

5.15.16

125.5

75.136

set test The  .       (44) 

 
3.2. The vibration frequency data 
 

This data set consists of 75 samples of 
tetrahedral halide species with tetra-
coordinated central atoms, the data set is in 6 
dimension space [22]. 
 
 
 
 
 
 
 
 
 
 
 

3.3. Descriptors and retention indices of  
 alkenes 

 
Many molecular descriptors have been 

reported to describe the relationship between 
molecular structure and retention behavior, 
such as, molecular connectivity indices series, 
kappa indices series and quantum chemical 
parameters. In order to obtain a regression 
model with good fitting and predicting ability, 
20 topological indices were used as 
descriptors of molecular structure for alkenes 
compounds. Therefore, these data are in 21 
dimension space [23] 
 
4. Results and discussion  
 

The simulated data have been used to 
explain in details the second and third 
strategies. Table 1 shows the result obtained 
when the PCR have been used as bilinear 
modeling technique, as shown in the table; 
two eigenvectors embedded most of the 
information in the first subset since the 
residuals became negligible after the second 
eigenvector. Table 2 shows the result obtained 
when the same method have been applied for 
the second subset, as shown in the table also 
two eigenvectors having most of the variance. 
As aforementioned, the first strategy 
discriminate a new object according to the 
residuals obtained from eq. (25) and the 
constraint in eq. (26), i.e. the object belongs to 
the subset producing a minimum residual. 
Table 5 indicates that the strategy has 
discriminated the test set successfully since 

the residuals ( 1212 ee  ) of first two data points 

in the training set were very small when the 
eigenvectors of the first subset have been 
utilized in eqs. (25). However, when the 
eigenvectors corresponding to the second 
subset have been utilized; the obtained 

residuals ( 2222 ee  ) were relatively higher. 

That means the proposed strategy has 
discriminated the first two points successfully. 
Likewise, the remaining data points, the 
strategy has allocated it successfully as shown 
in table 5. 
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Table 1 

PCR calibration results for the first subset 

 

 x1 x2 x3 Y  

Average y,x  8 4.5 3.5 3  

Object no X0 y0 t1 

1 2 4 3 -2 5.4 

2 0 1 0.5 -1 1 

3 -2 -2 -2 0 -3.4 

4 1 0 0.5 1 0.67 

5 -1 -3 -2 2 -3.7 

The first eigenvector, p1 0.4 0.73 0.56 q1 = -0.33  

Object no X1 y1 t2 

1 -0.123 0.082 -0.02 -0.205 -0.15 

2 -0.398 0.266 -0.06 -0.664 -0.48 

3 -0.673 0.45 -0.11  -1.123 -0.82 

4 0.734 -0.491  0.12 1.225 0.89 

5 0.459 -0.307  0.08 0.766 0.56 

The second eigenvector, p2 0.82 -0.55 0.14 q1 = 1.374  

Object no X2 y2  

1 0 0 0 0  

2 0 0 0 0  

3 0 0 0 0  

4 0 0 0 0  

5 0 0 0 0  

 

 

   Table 2 

   PCR calibration results for the second subset 

 

 x1 x2 X3 Y  

Average y,x  8.8 4.2 3.334 3  

Object no X0 y0 t1 

1  1.7  1.8 1.167 -2  -2.7 

2 3.7 2.8 2.167 -1 -5.2 

3 -1.8 -1.2 -1   0 -2.4 

4 0.2 -0.2 0  1 -0.02 

5  -3.8 -3.2 -2.34  2   5.5 

The first eigenvector, p1 0.7 0.57 0.43 q1=-0.31  

Object no X1 y1 t2 

1 -0.21 0.25 0.01 -1.16 -0.32 

2 -0.11 0.13 0 0.59 0.16 

3 -0.13 0.16 0  -0.74 -0.21 

4   0.18 -0.22 0.01 1 0.28 

5   0.05 0.06 0 0.3 0.08 

The second eigenvector, p2  0.64 -0.76 -0.04 q2 = 3.58  

Object no X2 y2  

1 0 0 0 0  

2 0 0 0 0  

3 0 0 0 0  

4 0 0 0 0  

5 0 0  0 0  

 
Tables 3 and 4 show the results obtained 

when PLSR have been used to estimate weight 
loadings having most of the variances in the 
first and second subsets. As shown in the 
tables for both subsets two weight loadings 
embedding most of the information since the y 
residuals were so small after the second 
loading weight. As aforementioned, in the 

third strategy the discrimination process 
depends on y values and x vector of the new 
object. Therefore, when it was supposing that 
all the data points belonging to the first subset, 
the linear model describing this subset eq. (40) 
has been used to estimate the values of y for 
the data points (y1 in table 5). Then, eq. (37) 
has been exploited to estimate the y-residuals 
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obtained with the test set, however, the 
residuals in x-domain in such a case have 
been estimated from equations 25 by using 
the loading weights of the first subset. By the 
same way, eqs. (42, 37 and 25) have been 
used to estimate y-residuals and residuals in 

x-domain when it was supposing that the data 
points belonging to the second subsets.  As 
sown in table 5, the third strategy 
discriminated all the data points in the test 
set successfully since the residuals  
 

 

Table 3 

PLSR calibration results for the first subset 

 

 x1 x2 X3 Y  

Average y,x  8 4.5 3.5 3  

Object no X0 y0 t1 

1 2 4 3 -2 -5.3 

2 0 1 0.5 -1 -1 

3 -2 -2 -2 0 3.2 

4 1 0 0.5 1 -0.5 

5 -1 -3 -2 2 3.7 

The first loading weight, w1 

P1 

-0.27 

-0.4 

-0.8 

-0.74 

-0.53 

-0.56 

 

q1 = 0.34 

 

Object no X1 y1 t2 

1 -0.1 0.05 -0.03 -0.16 -0.15 

2 -0.42 0.21 -0.1 -0.63 -0.48 

3 -0.74 0.37 -0.18 -1.1 -0.82 

4   0.79 -0.4 0.19 1.18  0.89 

5   0.47 -0.24 0.12 0.71  0.56 

The second loading weight,w2 

P2 
0.82 

0.82 

-0.55 

-0.55 

0.14 

0.14 

q2 = 1.374  

Object no X2 Y2  

1 0 0 0 0  

2 0 0 0 0  

3 0 0 0 0  

4 0 0 0 0  

5 0 0 0 0  

 

Table 4 

PLSR calibration results for the second subset 

 

 x1 x2 X3 Y  

Average y,x  8.8 4.2 3.334 3  

Object no X0 y0 t1 
1   1.7  1.8 1.167 -2 -2.73 

2   3.7 2.8 2.167 -1 -5.1 

3 -1.8 -1.2 -1  0 2.36 

4   0.2 -0.2 0  1 -0.01 

5  -3.8 -3.2 -2.34  2 5.49 

The first loading weight ,  w1 

P1 

-0.67 

-0.7 

-0.6 

-0.57 

-0.42 

-0.42 

q1=-0.31  

Object no X1 y1 t2 

1 -0.22 0.24 0 -1.16 -0.32 

2   0.11 -0.12 0 0.59 0.16 

3 -0.14 0.15 0  -0.74 -0.21 

4  0.19 -0.21 0 1 0.28 

5  0.06 -0.06 0 0.3 0.1 

The second loading weigh ,w2 
 P2 

 0.67 

 0.67 

-0.74 

-0.74 

-0.02 

-0.02 

 

q2 = 3.56 

 

Object no X2 Y2  

1 0 0 0 0  

2 0 0 0 0  

3 0 0 0 0  

4 0 0 0 0  

5 0 0  0 0  
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Table 5 

The results obtained from the second and the third strategies for the training set of the simulated data 

 

Object  

Actual  

subset 

The second strategy  PCR The third strategy PLSR 

The first 

subset 

The second 

subset 

 

Pr. 

subset 

The first subset The second subset  

Pr. 

subset 
1212 e*e   2222 e*e   y1 )()(

11 1212 xx ff   y2 

)(

)(

21

2

22

22

x

x

f

f


 

1 1 1×10-24 0.05 1 2.5 0.005 6 0.0764 1 

2 1 4×10-30 0.026 1 3 0.054 8 0.14 1 

3 2 0.167 1×10-5 2 4.5 1.024 10.5 0.0009 2 

4 2 1.75 3×10-6 2 5.3 5.47 7.5 0.0014 2 

 
obtained with the first two data points when 
the loading weights of the first subset have 
been utilized were very small, while they were 
relatively high when the loading weights of the 
second subset were used. Likewise, the 
remaining data points have allocated success-
fully as indicated from the residuals in table 5, 
this means the strategy has classified the test 
set probably. 

To check properly the discrimination 
ability of the proposed strategies, two QSAR 
real data sets were used; each one has been 
divided training set and test one.  

The first real data set is data 2, as 
mentioned above; this set consists of 75 
samples. Since the residuals obtained when a 
single linear model estimated by least squares 
method was used to represent this data were 
unacceptable; the splitting algorithm was 
invoked to split this data set. The splitting 
algorithm has split data set into two linear 
subsets; the first one contains 33 data points 
while the second containing 42. Fig. 1 shows a 
comparison between the error percents 
obtained in a case of splitting the data into 
two subsets (the solid line) and when only a 
single linear model has been used to describe 
the data set (the light line). As shown in the 
figure, splitting the data set decreases the 
errors of the linear calibration.  As mentioned 
above, the obtained subsets has been 
furthermore divided into training set and test 
one to check up properly the ability proposed 
discrimination strategies. Actually, three are 
two famous techniques used to check any 
proposed algorithm; namely; leave-one-out 
technique and subtracting a portion (usually 
10%) from data points to be a test set (17, b). 
In the present study, the second technique 
was utilized. Therefore, the test set in this 

data set consists of seven data points; three 
points from the first subset and four ones 
from the second one. The remaining data 
points in the two subsets have been used as a 
training set. Since the splitting algorithm has 
split this data into two subsets the problem 
was reduced into two-class one, so, only one 
weight vector and its corresponding threshold 
were enough to achieve the discrimination 
analysis in the first strategy. The obtained 
results were satisfactory since all the data 
points in the test set have been discriminated 
successfully. For the second and the third 
strategies, they gave good results also since 
the two strategies classified all the data points 
in the test set successfully. The number of the 
used eigenvectors and the loading weights in 
the second and the third strategies were the 
same; they were four eigenvectors in second 
strategy and four loading weights in the third 
one.  

The second real data set has been 
previously treated [10], the obtained results 
indicated that if this data set is split into three 
subsets (the first subset contains 65 data 
points, the second contains 35 and the third 
contains 49), the corresponding errors will be 
a relatively smaller than if only single linear 
model is used to represent the whole data set, 
as shown in fig. 2.  This data set has been 
divided into training containing 135 samples 
(58 from the first subset, 32 from the second 
one and 45 from the third) and test set 
containing 14 randomly chosen samples (6 
from the first, 3 from the second and 5 from 
the third). Since this data set is a 
multicategory one (containing 3 subsets), 
three discrimination function have been 
estimated in the linear machine strategy. The 
obtained results were satisfactory since only 
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one data point from the training set has been 
misclassified (a data point had to be discrimi-
nated as a first subset was misclassified into a 
third subset) while the other 13 points have 
been discriminated successfully.  The calcula-
tion in the second and the third strategies 
were a bit complicated since the data set is in 
relatively high dimensional space, in the 
second strategy the residuals in the x-space 
were small after 15 eigenvectors used, (i.e. E15 
was very small). Also, in a case of the third 
strategy, the used loading weights were 15 to 
get small y residuals. Although the computa-
tional times in these strategies were relatively 
higher than the first one but the obtained 
result was better since these strategies have 
discriminated all the data points in the test 
set successfully.   
 
5. Conclusions  
 

Splitting the data into linear subsets may 
be used to get better chemical calibration 
since it decreases the error obtained. The 
problem of predicting of the membership of 
unknown object in a case of splitting the 
original data set was treated by three 
nonparametric proposed discrimination 
strategies to avoid the complexities of the 
statistical methods. The result obtained when 
the proposed strategies have been applied on 
the real data sets indicated that the strategies 
might be appended any splitting algorithm to 
properly calibrate the chemical data.   
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Fig. 1. The error percent obtained when one linear model 

represents data 2 (the light line) and when the data set 

was split into two subsets (the solid line). 
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Fig. 2. The error percent obtained when one linear model 

represents data 3 (the light line) and when the data set 

was split into three subsets (the solid line). 
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