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A new flexibility distribution model is developed for simplified beam-column elements used 
in the seismic analysis of steel frame buildings. The developed model is used in representing 
the distributions of the cross section flexibility coefficients in the inelastic parts of the beam-
column elements subjected to seismic loadings. The model facilitates selecting the proper 
flexibility distribution shape along the element length.  It enables the user of the simplified 
beam-column elements to select any suitable flexibility distribution shape by determining 

the value of a flexibility factor (η). The value of the flexibility factor ranges from zero to one.  
The value of one corresponds to uniform flexibility distribution shape, the value of zero 
corresponds to zero flexibility distribution shape, while the value of 0.5 corresponds to 
triangular (linear) flexibility distribution shape. The developed model eliminates the need to 
formulate the element flexibility matrix each time there is a change in the flexibility 
distribution along the beam-column length. It facilitates calibrating the simplified beam-
column elements with the exact finite elements to find a proper selection of the flexibility 
factor (η) that produces flexibility distribution shapes with good match with the complex 
actual flexibility distributions of the finite elements. The new flexibility distribution model is 
employed in a simplified beam-column element, which is implemented into the general-
purpose computer Program DRAIN-2DX.  A numerical study has been carried out using the 

new flexibility distribution model.  The results indicated the effectiveness of the new model. 
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1. Introduction 

 
Intense research has been dedicated to 

develop beam-column elements for cyclic 
analysis of building structures in order to 
achieve high levels of accuracy and efficiency. 
Available beam-column elements in the 
literature range from the very simplified 
lumped plasticity elements to the computa-
tionally demanding finite element models.  

Lumped plasticity elements rely on the fact 
that inelastic behavior of frames subjected to 
lateral loading is usually concentrated at the 
ends of the beam-column members. 
Consequently, rotational or curvature springs 
are assumed at the member ends to model the 
inelastic flexural deformations. The models 
developed by (Giberson [1]; Otani, [2]) consist 
of two inelastic rotational springs at the ends 
of an elastic element. While, the models 
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proposed by (Meyer et al. [3]; Park et al. [4]) 
depend on using two curvature springs at the 
member ends to represent the inelastic 
flexural deformations. The rotational and 
curvature spring modeling approaches are 
simple and require little amount of 
computations; however, several limitations 
and discrepancies are associated with them 
which significantly limit their accuracy (Abou-
Elfath [5]). 

In the finite element approach, the 
structural element is divided longitudinally 
into a number of segments and the cross 
sections are divided into a number of fibers.  
The element response is calculated by 
numerically integrating the fiber responses 
over the cross section and the segment 
responses over element length.  Two types of 
finite element techniques are used in the 
literature to model beam-column element in 
framed structures. The first technique is 
displacement-based (stiffness-based) and 
requires predefined displacement shape-
functions to interpolate the displacements 
along the element length with respect to the 
nodal displacements (Keck [6]). The second 
technique is force-based (flexibility-based) and 
requires using interpolation functions to 
estimate the forces along the element length 
with respect to the nodal forces (Taucer et al. 
[7]). Contrarily to the rotational spring 
approach, the finite element approach is 
accurate, however, it requires substantial 
amount of computations for monitoring the 

fiber responses of the various cross sections 
along the element length.  

Despite the great developments in the field 
of digital computer, the finite element 
approach still is an unpopular tool to 
accomplish the seismic evaluation of building 
structures in reasonable time. This may be 
attributed to the huge computation demands 
in seismic evaluation process as it often 
requires repeated solutions of the responses of 
multi degrees of freedom systems. The 
simplicity of the modeling approach is a very 
important issue to achieve the seismic 
evaluation of building structures in reasonable 
time.  For this reason, in the field of seismic 
analysis of building structures, the rotational 
spring approach is still a popular approach 
despite of the limitations associated with it. 

A new modeling approach is proposed by 
Abou-Elfath [5] which is based on the 
assumption of linear (triangular) flexibility 
distribution shown in fig. 1. This preset-
flexibility model is proved to strike a good 
balance between the accuracy of the finite 
element approach and the simplicity of the 
lumped plasticity approach. In this model, 
only the end sections are divided into a 
number of fibers. The responses of only the 
fibers of the two end cross sections are 
monitored, which results in a significant 
reduction in computations in comparison with 
the finite element approach. The model is 
implemented into the general-purpose 
computer Program DRAIN-2DX [8]. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The preset-flexibility model proposed by Abou-Elfath [5]. 
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The preset-flexibility element has the same 
advantages of the finite element models. For 
example, it considers the moment-axial force 
interaction effects and the inelastic axial 
deformations.  Also, the fiber strains can be 
obtained as an output of the model. These 
strains can be used for performing seismic 
damage evaluation of the frame members. 
Moreover, the element accounts for the spread 
of plasticity and is capable of producing the 
gradual change of the member stiffness in the 
post yield range. The solution time of the 
preset-flexibility element is found less than 
one third of the solution time of the finite 
elements. The preset-flexibility element with 
triangular distribution of flexibility is found 
applicable only to I-shape cross sections. 
Applying the model to other cross section 
shapes requires modifying the flexibility 
distribution diagrams to new forms other than 
the triangular one shown in fig. 1. This main 
shortcoming requires inventing a new general 
flexibility distribution model that has the 
ability to produce various flexibility 
distribution forms in order to make the preset-
flexibility element applicable for the whole 
cross section shapes.  

The objective of this paper is to develop a 
new flexibility distribution model for the 
preset-flexibility element. The developed model 
facilitates selecting the flexibility distribution 
shapes along the element length and 
eliminates any lengthy derivations of the 
tangent flexibility matrix each time there is a 
change in the distribution of the flexibility 
shapes. The developed model uses a flexibility 
factor (η) which controls the distribution of the 
flexibility shapes along the element length and 
facilitates calibrating the response of the 
preset-flexibility element with the performance 
of the finite element models. The new 
flexibility distribution model is employed in 
the preset-flexibility element developed for the 
seismic analysis of steel frame buildings by 
Abou-Elfath [5], which is implemented into the 
general-purpose computer program DRAIN-
2DX. A numerical study is conducted to 
examine the advantages of using the new 
flexibility distribution model. The outcomes 
obtained from the numerical analysis 
indicated the efficiency of the new flexibility 
distribution model. 

2. The preset-flexibility modeling approach 
 

The preset-flexibility modeling approach is 
flexibility-based following the approach 
presented by Taucer et al. [7].  It is assumed 
that the axial force distribution is uniform and 
the moment distribution is linear along the 
element length.  Plane sections are assumed 
to remain plane and normal to the 
longitudinal axis of the element after 
deformation. The member deformations are 
assumed to be small and shear deformations 
are neglected. Each end section is divided into 
a number of fibers as shown in fig. 1. A 
material model that accounts for yielding and 
strain hardening of steel is assigned for each 
fiber. The behavior of each fiber is monitored 
at its center.  The lengths of the plastic zones 
at the member ends, X1 and X2, are calculated 
at every load increment using the approach 
proposed by Abou-Elfath [5]. 

The cross section response (tangent 
stiffness, force increments) is determined by 
integrating the fiber responses over the cross 
section.  Similarly, the element response is 
obtained by integrating the cross section 
responses along the element length assuming 
a preset flexibility distribution shape over the 
plastic zone regions at the member ends. 
  
3. Cross section tangent flexibility matrix 

 
The tangent stiffness and flexibility 

matrices of the two end sections are denoted 
Sj, Dj, respectively.  The subscript j is equal to 
1 for the left end section and 2 for the right 
end section.  The two matrices are defined as: 
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The two matrices relates the jth cross section 

incremental deformation vector {dj, dj} with 
the jth cross section incremental force vector 

{dpj, dmj}. Where, dj is the axial strain 
increment at the center of the cross section, 

dj is the cross section curvature increment, 
dpj is the axial force increment and dmj is the 
moment increment. The stiffness coefficients 
s1,j, s2,j, s3,j are calculated as: 
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Where, Ak,j, Ek,j and Yk,j  are the area, the 
tangent modulus of elasticity and the Y-
coordinate of the kth fiber at the jth cross 
section.  Nfib is the total number of fibers over 
the cross section.  The cross section flexibility 
matrix Dj can be obtained by inverting the 
cross section stiffness matrix Sj. The 
distributions of the flexibility coefficients d1,j, 
d2,j, d3,j along the element length are defined 
using six flexibility distribution functions Bi,j 

as shown in fig. 2. The subscript i is equal to 1 
for the axial flexibility coefficient d1,j, i=2 for 
the compound flexibility coefficient d2,j and i=3 
for the flexural flexibility coefficient d3,j. The 
distribution functions Bi,j relates the values of 
the flexibility coefficients (the function output) 
with the variable x or x" (the function input). 
The lengths of the flexibility distribution 
shapes are defined by Xj (j = 1 for the left end 
and 2 for the right end) as shown in fig. 2.  
The heights of the ith flexibility distribution 

shape at the jth end are defined by (di,j-di,0) as 
shown in fig. 2. di,0 represents the ith flexibility 
coefficient of the elastic part of the beam-
column member (d1,0=1/EA, d2,0=0 and 
d3,0=1/EI), where, E is the member modulus of 
elasticity, A is the member cross section area 
and I is the moment of inertia of the member 
cross section. 

Three shape constants (C1, C2 and C3) are 
calculated for each flexibility distribution 
function. The constants C1, C2 and C3 are 
related to the area of the flexibility distribution 
shape (Ai,j), the distance between the center of 
the flexibility shape and the nearest member 
end (Ri,j) and the inertia of the flexibility shape 
about a central  axis perpendicular on the 
beam-column element (Ii,j). The flexibility 
functions of the beam-column element are 
assumed to be selected in a manner that 
makes all of them have the same shape 
constants. In this situation, the three shape 
constants can be estimated as: 
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Fig. 2. Flexibility distribution functions along the beam-column element. 
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4. Tangent flexibility matrix of the preset- 
    flexibility element 
 

The frame element has three local 
deformation components {U, θ1, θ2} and three 
local force components {P, M1, M2}. θ1 and θ2 
represent the nodal rotations, U represents 
the axial displacement, M1 and M2 represent 
the end moments and P represents the axial 
force. The incremental deformation vector {dU, 
dθ1, dθ2} and the incremental force vector {dP, 
dM1, dM2} of the element are related by a 
symmetric tangent flexibility matrix, according 
to:  
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The data required for determining the 
element tangent flexibility matrix are, (a) the 
tangent flexibility matrices of the two end 
cross sections, (b) the lengths of the two 
plastic zones (X1, X2), (c) the assumed 
flexibility distribution function and, (d) the 
properties of the elastic part of the member 
(EA, EI and X3). The flexibility coefficients fij 
are calculated using the elastic weight 
method. In the elastic weight method, the 
flexibility coefficients fij are the local reactions 
of the beam-column element when loaded with 
the elastic loads.  The elastic loads are 
obtained by integrating the flexibility 
distribution diagrams shown in figs. 2 with 
the internal force diagrams shown in figs. 3. 
The flexibility coefficients fij are calculated as 
follows: 
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The areas of the flexibility diagrams in eq. (5), 
Aij, can be defined as follows: 
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Fig. 3. Distribution of axial and bending moment 

increments along the beam-column. 
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The values of Z1, Z2, Q1 and Q2 are 
dependent on the shape constants, the 
inelastic lengths and the member length, they 
are described as follows: 
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Eqs. (5-7) indicates that the flexibility 

shapes are totally represented in the element 
flexibility coefficient formulas only by the 
length (X1 or X2), height (di,j-di,0) and the shape 
constants (C1, C2 and C3). This indicates that 
knowing the values of the three shape 
constants along with the heights and the 
lengths of the flexibility shapes of a beam-
column element eliminates the need for 
further information about the flexibility 
shapes. 
 
5. Selecting the flexibility distribution  

functions 
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The distributions of the flexibility 
coefficients d1,j, d2,j, d3,j along the element 
length are defined using six flexibility 
distribution functions Bi,j as shown in fig. 2. 
Three shape constants (C1, C2 and C3) are 
calculated for each flexibility distribution 
function. The values of the three shape 
constants are assumed to be the same for all 
the six flexibility distribution functions. This 
assumption requires selecting one form for all 
the six flexibility distribution functions. 
However, each function may need different 
coefficients in order to satisfy its boundary 
conditions.  

If the number of the boundary conditions 
at each flexibility distribution shape is 
considered equal to two (the coordinates of the 
two end points of the flexibility distribution 
shape), then only uniform and linear functions 
can be used to represent the flexibility 
distributions. However, more complicated 
functions can be utilized to represent the 
flexibility distributions, when considering 
extra boundary conditions other than the 
preliminary ones. 

In the current study, the bilinear flexibility 
diagram shown in fig. 4 is adopted to 
represent the flexibility distribution shapes of 
beam-column elements. The bilinear shape is 
defined by the broken line m-q-n using a 
flexibility factor η. The flexibility factor η 
defines the position of the middle point q.  The 
point q coincides with the point o when η=1, 
while it coincides with p when η=0, as shown 
in fig. 4.  

The value of the flexibility factor η ranges 
from zero to one. The value of one corresponds 
to uniform flexibility distribution shape, the 

value of zero corresponds to zero flexibility 
distribution shape, while the value of 0.5 
corresponds to triangular (linear) flexibility 
distribution shape.  The higher is the value of 
the flexibility factor η, the lower is the stiffness 
of the inelastic part of the beam-column 
element.  

The shape constants (C1, C2 and C3) of all 
the bilinear flexibility distribution shapes can 
be calculated as follows:  
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Eq. (8) indicates that, in case of adopting 
the bilinear flexibility distribution shape, the 
values of the shape constants are only 
dependent on the value of the flexibility factor 
η. Assuming a constant flexibility factor η for 
all the flexibility distribution shapes, leads to  
identical shape constants (C1, C2 and C3) for 
all the flexibility shapes. 

The proposed flexibility model presented in 
eqs. (5-8) eliminates the need to formulate the 
element flexibility matrix each time there is a 
change in the flexibility distribution along the 
beam-column length. The various levels of the 
flexibility factor η provide tremendous number 
of flexibility distribution selections that are 
expected to approximately fit any actual 
flexibility distribution shape. Values of the 
shape constants corresponding to some levels 
of the flexibility factor η are summarized in 
table 1. 
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Fig. 4. Selected flexibility distribution diagram. 

Table 1 

Shape constants corresponding to some levels of 

the flexibility factor η. 

 

 C1 C2 C3 

0.00 0.00 0.000 0.0000 

0.25 0.25 0.250 0.0521 

0.50 0.50 0.333 0.0555 

0.75 0.75 0.417 0.0660 

1.00 1.00 0.500 0.0833 

 
6. Numerical verification of the flexibility  
    distribution model 
 

The new flexibility distribution model is 
employed in the preset-flexibility beam-
column element developed for the seismic 
analysis of steel frame buildings by Abou-
Elfath [5], which is implemented into the 
general-purpose computer program DRAIN-
2DX [8]. The proposed model is evaluated on 
the level of one element. The model prediction 
is compared with the   fiber  model of Taucer 
et al. [7]. The element considered in the 
current study is a 2.0 m cantilever beam 
(shown in fig. 5). The steel yield stress is 300 
MPa and the modulus of elasticity is 200,000 
MPa. The beam is modeled using 10 fibers 
over the cross section and 10 segments at 
each end of the element. 

The cantilever beam is assumed to be 
subjected to a lateral static load (P) and an 
axial static load (F) at the free end. The 
accuracy of the proposed model is evaluated 
by measuring one global performance 
parameter which is the level of lateral load at 
2.0% lateral drift ratio of the free end and one 
local performance parameter which is the 
absolute value of the maximum strain at the 
fixed end. The prediction errors of the 
proposed model are measured as the absolute 
differences   between   the predictions   of   the 

 
 
 
   

 
 
 
 
 
 

 
Fig. 5. Cantilever beam. 

proposed model and those of the fiber model 
and are normalized with respect to the fiber 
model predictions. The effects of the cross 
section type, level of axial loading and the 
dynamic loading on the accuracy of the 
proposed model are investigated in details in 
the following subsections. 
 
7. Effect of cross section type 
 

Two types of steel cross sections are 
considered in this study. The first is a 
rectangular shape cross section, while the 
second is a W-shape cross section. The strain-
hardening ratio is considered to be 1.0% and 
the axial load (F) is assumed to be equal to 
zero. A displacement controlled analysis is 
conducted until the lateral deflection of the 
free end reaches 2.0% of drift ratio.  

For the case of using a rectangular cross 
section with 8 cm width and 40 cm height, fig. 
6 shows the relationships between the lateral 
drift of the free end and the lateral load in 
case of using η=0.22, η=0.50 and the fiber 
model. The maximum strain outputs at the 

fixed end of the proposed model are 2.1210-2 

in case of using η=0.22 and 1.2110-2 in case 
of using η=0.50. The corresponding value 

given by the fiber model is 2.1210-2. The 
results presented in fig. 6 as well as the strain 
outputs indicate the good performance of the 
proposed model in case of rectangular cross 
section when using η=0.22. 

For the case of using a W21122 cross 
section, fig. 7 shows the relationships between 
the lateral drift ratio of the free end and the 
lateral load in case of using η=0.22, η=0.50 
and the fiber model. The results presented in 
fig. 7 indicate the good agreement between the 
proposed model and the fiber model in 
predicting the global behavior of the W-
sections when using η=0.5. The maximum 
strain outputs at the fixed end of the 

cantilever reached 5.0410-2 in case of using 

η=0.22 and 3.0210-2 in case of using η=0.50, 
while the corresponding value given by the 

fiber model is 3.010-2. These strain 
measurements indicate the good performance 
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of the proposed model when using η=0.50 for 
the W-sections. 

The results presented indicates the 
accuracy of the proposed model   in predicting  
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Fig. 6. Lateral load-lateral drift relationship in case of  

the rectangular section. 

 Fig. 7. Lateral load-lateral drift relationship in case of 

the W-section. 

Table 2  

Global and local prediction errors of the proposed model  

 

W-Sections, η=0.5 Rectangular Sections, η=0.22 

Section Height/width Global error (%) Local error (%) Height/width Global error (%) Local error (%) 

W44x285 3.73 0.16 0.98 0.1 0.01 0.17 

W30x211 2.05 0.99 5.33 0.5 0.01 0.17 

W21x122 1.77 0.10 0.67 1.0 0.01 0.17 

W18x130 1.72 0.36 2.40 5.0 0.01 0.17 

W14x159 0.96 0.37 3.43 10.0 0.01 0.17 

 
both the global and the local responses of the 
steel frame members subjected to a monotonic 
static loading when selecting a proper level of 
the flexibility factors η. Local and global 
prediction errors are calculated for a variety of 
W and rectangular cross section shapes using 
η=0.5 for the W-section and η=0.22 for the 
rectangular section. The local and global 
prediction errors are summarized in table 2. 
The results presented in table 2 indicate that, 
for all the selected cross sections, the higher 
global prediction error is equal to 0.99 % and 
the higher local prediction error is equal to 
5.33 %. 
 
8. Effect of axial loading 
 

The free end of the cantilever beam is 
subjected to lateral static load (P) and axial 
static load (F). The strain-hardening ratio is 
considered 1.0%. A displacement controlled 
analysis is conducted until the lateral 
deflection of the free end reaches a 2.0 % of 
drift ratio. 

Fig. 8 shows the relationships between the 
lateral load P and the lateral deflection of the 
free end when using the rectangular cross 
section and a level of axial load equal to 50% 
of the axial load capacity of the cross section. 
The results presented in fig. 8 indicate the 
good agreement between the proposed model 
and the fiber model in predicting the global 
behavior of structures having rectangular 
sections when using η=0.22.  The obtained 
maximum strain levels at the fixed end of the 

cantilever are 2.310-2 for the proposed model 

and 2.4810-2 for the fiber model.  
Fig. 9 illustrates the relationship between 

the lateral load P and the lateral deflection of 

the free end when using the W21122 section 
and a level of axial load equal to 50% from the 
axial load capacity of the cross section. The 
results presented in fig. 9 show the accuracy 
of the proposed model in predicting the global 
behavior when using η=0.50 for W-sections.  
The obtained maximum strain levels at the 

fixed end of the cantilever are 3.3610-2 for the 

proposed model and 3.5910-2 for the fiber 
model.  
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Local and global prediction errors of the 

W21122 section and the rectangular section 
are also calculated for a level of axial load 
equal to 75% of the axial load capacity of the 
cross. Table 3 summarizes the global and the 
local prediction errors corresponding to the 
50% and the 75% levels of the axial load (F). 
The results presented in table 3 indicate that, 
for the two axial load levels considered, the 
higher global prediction error is equal to 
2.32% and the higher local prediction error is 
equal to 8.93%. 
 
9. Effect of dynamic loading 
 

The proposed model response is calculated 
under the effect of an earthquake loading. A 
lumped mass is assumed at the free end of the 
cantilever beam. The mass value is 
determined in order to produce a 1.0 sec. 
period in the lateral direction of the cantilever 
beam. The earthquake excitation considered 
in this study is the S00E component of El 
Centro record which has been recorded during 
the Imperial Valley, California earthquake of 
May 18, 1940.   

The dynamic analysis of the cantilever is 
performed using a 3.0% viscous damping and 
a time step increment of 0.005 second. The 
ground motion record is scaled to different 
Peak Ground Acceleration (PGA) levels. The 

maximum selected PGA level is 0.18 g. The 
relationship between the peak lateral 
deflection of the cantilever and the PGA of the 
earthquake is presented in fig. 10 for the 
rectangular section and in fig. 11 for the 

W21122 section. 
The results presented in figs. 10 and 11 

indicate the good agreement between the 
proposed model and the fiber model in 
predicting the global seismic behavior of the 
rectangular section with η=0.22 and the W-
sections with η=0.5. 

At maximum PGA level (0.18 g), the 
predicted peak lateral displacement at the free 
end and peak strain at the fixed end of the 

cantilever with W21122 section are 5.67 cm 
and 0.039, respectively. The corresponding 
values obtained from the fiber model are 5.78 
cm and 0.039, respectively. For the 
rectangular section, at maximum PGA level, 
the predicted peak lateral displacement at the 
free end and peak strain at the fixed end are 
4.44 cm and 0.024, respectively. The 
corresponding values obtained from the fiber 
model are 4.46 and 0.024, respectively.  These 
results indicate the effectiveness of the 
proposed model in predicting the global and 
the local responses of the rectangular section 
with η=0.22 and the W-sections with η=0.5. 
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Fig. 8. Behavior of rectangular section to lateral load 

(axial load ratio=50%). 

 

Fig. 9. Behavior of W21122 section to lateral load  

(axial load ratio=50%). 
 

Table 3  

Global and local prediction errors due to axial loading 

 

Axial load ratio 
W21122 section, η =0.50 Rectangular section (406 cm ), η =0.22 

Global error (%) Local error (%) Global error (%) Local error (%) 
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0.50 1.87 6.30 1.23 7.35 

0.75 1.78 4.05 2.32 8.93 
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Fig. 10. Global seismic response of the cantilever with 

rectangular section. 

Fig. 11. Global seismic response of the cantilever with 

W21122 section. 

 
10. Computer time demands and storage  
 requirements of the proposed model 
 

The solution of the cantilever beam is 
carried out on a personal computer. The 
solution time of the proposed model has been 
found approximately one third the 
corresponding time of the fiber model. The 
number of integer and real variables required 
for one element of the proposed modeling 
approach is approximately one fourth the 
corresponding number of the fiber modeling 
technique.     
 
11. Conclusions 
 

A new flexibility distribution model is 
developed for simplified beam-column 
elements used in the seismic analysis of steel 
frame buildings. The developed model is 
employed in the preset-flexibility element 
developed by Abou-Elfath [5]. The new model 
significantly improved the preset-flexibility 
element performance. It provided the preset-
flexibility element with the capability of 
modeling any cross section shape by the 
proper selection of a flexibility factor (η). 

The numerical study conducted in this 
paper on the element level indicated that 
adequate accuracy can be obtained when 
using the preset-flexibility element in both 
static and dynamic analysis with η=0.22 for 

rectangular cross sections and η=0.5 for W-
sections. 

There is a need to test the preset-flexibility 
element on the structure level and also to 
provide adequate data regarding the proper 
values of η for cross section shapes other than 
the rectangular and the W shapes. 
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