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Six techniques for estimating power system frequency are presented in the paper. These 
techniques are Discrete Fourier Transform [1], Smart Discrete Fourier Transform [2], 
Modified Discrete Fourier Transform [3], Orthogonal Component method [4], Frequency 
Demodulation method [5], and Prony’s method [6]. These techniques are tested with 

waveforms free of harmonics at fundamental frequencies close to power system frequency 
(49.5 Hz and 50.5 Hz) and at fundamental frequency far from power system frequency (45 
Hz and 55 Hz). These techniques are also tested with waveforms corrupted with the third 
and fifth harmonics at the same fundamental frequencies used in testing the techniques 
with waveforms free of harmonics (49.5, 50.5, 45, and 55 Hz). The Matlab software package 
[7] is used in this study to generate the waveforms and to simulate the frequency estimation 
techniques. The main goal of this study is to select the technique having the performance 
necessary to cope with the requirements of future protection and control systems and 
robust enough to cope with the more demanding nature of modern power system conditions.  

تم اختبار هذة التقنيات عند لقد تردد نظم القوى الكهربية ولتقدير قيمة ستة تقنيات دراسة مقارنة لاستخدام نعرض فى هذة المقالة 
هرتز(  55و  95هرتز( وترددات بعيدة عن تردد تظم القوى) 55و5و  94و5ترددات قريبة من تردد نظم القوى الكهربية )

تم استخدام برنامج ماتلاب  لقدتوافقيات ثلاثية و توافقيات خماسية و االتوافقيات وموجات جيبية لهباستخدام موجات جيبية خالية من 
جراء العمليات الحسابية لكل تقنية بواسطة وحدة المعالجة زم لإلاحساب الزمن ال معلتوليد الموجات الجيبية وتمثيل التقنيات 

 الوقاية والتحكم الحديثةنظم ة التى تتناسب مع متطلبات اختيار التقني والمركزية و الغرض من هذة الدراسة ه
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1. Introduction 

 

Discrete Fourier Transform (DFT) is not 
accurate when it is used in the case of 

asynchronous sampling. ref. [1] uses phase 

angle error caused by asynchronous sampling 

frequency for frequency tracking and phasor 

estimation. But in this paper the phase angle 

error taking account is incomplete. Thus, the 
frequency calculation and phasor estimation 

results are not precise.  

The Smart Discrete Fourier Transform 

(SDFT) method developed in [2] takes into 

account of DFT errors completely, but it is 
complicated to calculate, especially in the 

presence of noise and higher order harmonics. 

Its complexity indicates its impracticality. 

Comprehensive analysis of DFT is given in [3]: 

1. Why it is accurate when used in the case of 

synchronous sampling (synchronous sampling 
means that the sampling frequency is 

synchronized to analog signal frequency) and 

2. How error rises in the case of asynchronous 

sampling. Simple but precise expressions of 

phase angle error and amplitude error are 
given. Practical formulas to calculate the true 

phase angle and amplitude are presented. The 

formulas are very simple and precise. Based 

on the formula to calculate true phase angle, a 

frequency tracking and phasor method was 

developed. This method can be calculated 
recursively, and with notable accuracy 

improvement. The calculation burden of this 

method is little more than the traditional DFT 

method. 

 The algorithm based on signal orthogonal 
components measurements is presented in [4]. 

This algorithm is based on the study of Moore, 

et al. given in ref. [8]. This study requires 

relatively high sampling rate of the input 

signal. Besides, proper numerical correction of 

both discrete derivative representation and 
orthogonal filters gains is necessary to obtain 

satisfactory accuracy of frequency estimation. 
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The algorithm given in [4] has been derived 

using finite differences rather than derivatives 

so it requires neither high signal sampling rate 
nor derivatives correction. Moreover, the 

varying filters frequency response does not 

affect the accuracy of frequency deviation 

measurement and thus no filter gains 

correction is necessary.  

 A method for frequency estimation in 
power system by demodulation of two complex 

signals is presented in [5]. The - 
transformation is used to convert three phase 

quantities to a complex quantity where the 

real part is the in-phase component and the 

imaginary part is the quadrature component. 
This complex is demodulated with a known 

complex phasor rotating in opposite direction 

to the input. The advantage of this method is 

that the demodulation does not introduce a 

double frequency component. For signals with 

high signal to noise ratio, the filtering demand 
for double frequency component can often 

limit the speed of the frequency estimation. 

Hence, the method can improve fast frequency 

estimation of signals with good noise 

properties. 

 A technique for estimating power system 
frequency based on Prony’s method is 

presented in [6]. Prony’s method is considered 

a powerful tool to analyze a signal and extract 

its modal information. This method can be 

used to analyze time independent signals and 
damped signals. The fact that Prony can 

handle damped signals and estimate the 

damping coefficients makes it suitable for 

applications based on power system 

transients. Prony calculates the modal 

information such as frequency, amplitude, 
damping and phase shift. These can be used 

to reconstruct the original signal or to make 

inferences about system conditions. 

 The organization of this paper is as 

follows:- The six techniques for estimating 
power system frequency are described briefly 

in section II. Simulation results to 

demonstrate the feasibility, precision, 

robustness, and simplicity of the techniques 

are presented in section III. The conclusions 

are presented in section IV. 
 

2.   Power system frequency estimation 

techniques 

  
The six techniques for estimating power 

system frequency are presented in this 

section. A brief description of each technique 

is given. 

 
2.1. Discrete Fourier transform 
 

 Consider a sinusoidal input signal of 

frequency  given by 
 

)sin(2)(   tXtx .      (1) 

 
Assuming that x(t) is sampled N times per 

cycle of 50 Hz waveform to produce the 
sample set {xk} 
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The Discrete Fourier Transform of {xk} 
contains a fundamental frequency component 

given by 
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where Xc and Xs are the cosine and sine 

multiplied sums in the expression for 1X . It 

was shown in ref. [1] that the phasor 

representation of a sinusoidal signal is related 

to the fundamental frequency component of 

its DFT by 
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It was also shown in ref. [1] that it is possible 

to calculate the phasor recursively from the 

following equation:- 
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If the input signal frequency is now assumed 

to change slightly from 50 Hz by an amount 

f, it was shown in ref. [1] that the recursive 

relation of eq. (6) changes into 
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where 
)0(

50X is the initial computation of the 

phasor from 50 Hz input signal having the 

same magnitude as (50+f) Hz signal, r is the 
recursion number, and N is the number of 

samples in a period of 50 Hz wave. Eq. 7 

shows that when the input signal frequency 

changes from 50 Hz to (50+f) Hz, the phasor 

obtained recursively undergoes two 

modifications:- a magnitude factor of 
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. The magnitude factor is 

independent of r, and is relatively small for 

small changes in frequency. However, the 

phase angle is far more sensitive to the 

frequency f, and provides a most direct 

measure of f. Denoting the phase factor by 

exp(jr ), where 
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Thus the phase angle at rth recursive 

computation directly depends on the 
frequency deviation and the recursion order r. 
Since r increases by 1 in each iteration, the 

recursive relation for r becomes 
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Further, the time interval between two 

iterations is1/50N seconds to be detected and 

therefore the angular velocity of  is given by 
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Then, the exact solution of the frequency 
becomes 

 

dt

d
ff



2

1
5050  .          (11) 

 
2.2. Smart discrete Fourier transform 

 

It was shown in ref. [2] that when the 
signal frequency changes slightly from 50 Hz 

by an amount f, the recursive relation of eq. 

(6) changes into 
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If we define Ar and Br as 
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Then eq. (12) can be expressed as 
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In the conventional DFT, it is assumed that 

the frequency deviation is small enough to be 

ignored, and r
r AX )( . However, in the SDFT 

we take Br into consideration. So we define 
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and from eq. (13 and 14), we  can find the 

following relations 
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There are three unknowns in eq. (15, 19 and 

20), and after some algebric manipulations we 

obtain: 
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Solve eq. (21) to obtain 
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Then from the definition of “a” in eq. (16), we 

can obtain the exact solution of the frequency 

as 
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2.3. Modified discrete Fourier transform 
 

 It was shown in ref. [3] that when the 
signal frequency changes slightly from 50 Hz 

by an amount f, the relationship between the 

phase angle calculated by DFT and the actual 

one is given by 
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where  is the actual phase angle and m is 
the phase angle calculated by DFT. 

Eq. (24) is the basic for frequency tracking 

algorithm presented in ref. [3]. In this 
algorithm, the signal x(t) is sampling with 

sampling period Ts to produce x(n) 
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x(n) is windowing with rectangular windows 

d(n) and d(n-M) to produce two sequences of 

length N 
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The phasor representation of )(nxd and 
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1*1
jeXX  , 2*2

j
eXX  ,        (27) 

 

where 1 and 2 are true phase angles of 

1X and 2X . They have the following 

relationship: 
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where T is the time period of the signal. 

According to eq. (24), we have 
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where 1m is the calculated phase angle of 

phasor 1X and 2m is the calculated phase 

angle of 2X . 

Define 
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From eq.  (29 and 30). 
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The solution of eq. (35) is 

 

)(

)(

123

312

KKKK

k
f mm







 .         (36) 

 
The actual frequency of x(t) is 
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where fs is the sampling frequency. 

 
2.4. Orthogonal components 
 

 It was shown in ref. [4] that the orthogonal 
components can be obtained by processing the 

signal using a pair of orthogonal Finite 

Impulse Response (FIR) filters whose impulse 

responses should be even or odd, respectively. 

Such FIR filters reveal linear phase response 
and the difference of their digital transfer 

function arguments is equal to /2 for all 

frequencies. It means that the filters are 

orthogonal for all frequencies. The filters 
process the input signal x and produce a pair 

of output orthogonals yc, ys according to the 

following equations: 
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where N is FIR order that is equal to the ratio 

of sampling and power system nominal 

frequencies (also a number of samples in one 

period of fundamental frequency component). 

c and s are even and odd impulse responses 
of FIR filters,  respectively (sin and cos for 
example). 

It was also shown in ref. [4] that the signal 

frequency can be calculated according to the 

formula: 
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The delay k was chosen equal to N/4. 

It is noting from eq. (40) that the estimated 

frequency does not depend on filter gains, 
sampling period Ts, and discrete derivative 

representation. Thus this technique does not 

require filter gain correction, derivative 
correction and high sampling rate (contrary to 

the algorithm [8] in which calculation and 

correction of signal first derivative calls for 

high sampling rates). The only requirement is 
that the number of samples N must be 

selected in such a way that N/4 is a natural 

number. 

 
2.5. Frequency demodulation 
 

 Consider x1, x2, and x3 to be samples of the 

three phase signal.- 
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where ei is a general noise term that can be 

any combination of white noise and 

harmonics. 

The ,  components are defined as the 
complex phasor. 
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where the real and imaginary parts are 

calculated from 
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In the literature, the complete 

transformation is often called , , 0 
transform and also includes the zero sequence 
component. In our application we only use the 

two perpendicular parts  and  and therefore 
leave out the zero sequence component in our 

transformation. 

To make the analysis straightforward we 
first assume that the input signals x1, x2, and 

x3 do not have any negative sequence 

component nor any noise. We then have 
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where A is the phase to phase RMS value. 

The demodulation is done with a complex 
signal Z, that rotates in the opposite direction, 

i. e. , negative sequence, compared to the 
input signal V. 

The signal Z with a known frequency 0 is 
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The resulting signal after multiplication 

becomes 
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Note that the demodulation does not create 

the double frequency component. Hence, the 

demodulation does not add demands to filter 

away the double frequency component. 

However, there still might be a need to filter 

due to noise. To find the phase difference, we 
define the complex variable U as 
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where* stands for conjugate. We separate Y in 

real and imaginary and find that 
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The phase difference  between two 
consecutive samples is calculated from the 
real and imaginary parts of U. 
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The deviation in angular frequency is 

estimated from 
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The unknown frequency of the signal V is 

estimated as 
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where f0 is the nominal and,  fs is the sampling 

frequency. 

 
2.6. Prony’s method 

 

 It is shown in ref. [9] that the sinusoidal 
signal can be expressed by q1 real terms, 

corresponding to purely damped exponential, 
and q2 complex terms plus their conjugates: 
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p
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where p is the signal order (p = q1 + 2 q2) ,  k  

is the complex magnitude, and z k, is the 
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complex frequency.  k and zk can be written in 

terms of real parameters as follows: 

 k = Ak kje   for purely damped exponentials 

 k = 1/2 Ak kje  for pure and damped 

sinusoids 

zk =
Tfj kke  )2(  .                              (53) 

 
The 3-step Prony analysis identifies the ‘p’ 

distinct eigen values (ks) and signal residues 

(ks) according to the following procedure: 
Step I: Coefficients estimation 

Linear Prediction Model (LPM) 
construction in which the signal can be 

described by: 
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where: n=L+1...N. 

L: is an integer such that L >> p. 

Eq. (56) can be written in the following 

matrix form in which the coefficients [ak]k=1  L 
are the unknowns. 
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The least square estimator for the coefficients 
‘aks’ can be obtained using the pseudo inverse 

of  hankel matrix [h1]. 
 
Step II: Polynomial root finding  

Solving the characteristic polynomial 

associated with LPM. The eigen values can be 
obtained using the roots (Zkk) of the equation. 

 

f(z) =  


L

k
kzz

1
)( = (z  - z1)(z - z2)(z - zL) 

or zL - (a1 zL-1 + a2  zL-2 +  +aL ) = 0.     (56) 

Step III: Signal residue estimation 

Using the roots obtained as the complex 

modal   frequencies  for  the   signal,   we   can  

 
determine the signal residues for each mode 

according to the equation: 

 

Bvx


. ,                  (57) 

 
v:  is a Vander mode matrix. 
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The least square method is applied to yield the 

solution 

 

xvvvB TT 
.)( 1 .                    (58) 

 

Prony’s method is completed with 

computation of the frequency: 

 

t

)angle(z
f k
k




2
            k = 1q.           (59) 

 

3. Simulation results 

 

The six techniques are tested with 
sinusoidal waveforms free of harmonics at 

frequencies close to power system frequency 

(49.5 Hz and 50.5 Hz), and at frequencies far 

of power system frequencies (45 Hz and 55Hz). 

These techniques are also tested with 
waveforms corrupted with third and fifth 

harmonics at the same frequencies (45.5, 

50.5, 45, and 55 Hz) used in testing the 

techniques with waveforms free from 

harmonics. The Matlab [7] software package is 

used to generate waveforms and to simulate 
frequency estimation techniques. The 
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computation time of each technique is 

calculated and used also in testing the six 

techniques. 
 
3.1. Testing the techniques with sinusoidal  

wave forms free from harmonics 
 

The six techniques are tested with 

sinusoidal waveforms free of harmonics and 
the simulation results are shown in fig. 1. The 

following remarks are observed from these 

results:- 

1. The 50 Hz frequency is correctly estimated 

by DFT as shown in Fig. 1-a. But when this 
technique is used for estimating 49.5, 50.5, 

45, 55 Hz frequencies, the deviations between 

the calculated values and true values are 

large. 

2. The 45, 49.5, 50, 50.5, and 55 Hz 

frequencies are correctly estimated by smart 
discrete fourier transform as shown in fig. 1-b. 

3. The 49.5, 50, and 50.5 Hz frequencies are 

correctly estimated by Modified Discrete 

Fourier Transforms as shown in fig. 1-c. But 

when this technique is used for estimating 45 
and 55 Hz, oscillations are observed in the 

estimated values. The amplitudes of these 

oscillations are smaller than those shown in 

fig. 1-a. 

4. The 45, 49.9, 50, 50.5, and 55 Hz 

frequencies are correctly estimated by the 
technique of orthogonal components as shown 

in fig. 1-d. 

5. When the frequency demodulation 

technique is used for estimating 45, 49.5, 50, 

50.5, and 55 frequencies, oscillations are 
observed in the estimated values as shown in 

fig. 1-e. The amplitudes of these oscillations 

are smaller than those shown in fig. 1-a. 

6. The 45, 49.9, 50, 50.5, and 55 Hz 

frequencies are correctly estimated by the  

Prony’s method as shown in fig. 1-f. 
 
3.2. Testing the techniques with waveforms 
       corrupted by harmonics     

 

The six techniques are tested with 
sinusoidal waveforms corrupted by third and 

fifth harmonics and the simulation results are 

shown in fig. 2. The following remarks are 

observed from these results:- 

1. The 50 Hz frequency is correctly estimated 

by the DFT as shown in fig. 2-a. But when this 

technique is used for estimating 45, 49.5, 
50.5, and 55 Hz, the deviations between the 

calculated values and true values are large. 

These results are similar to those shown in     

fig. 1-a. 

2. The 50 Hz frequency is correctly estimated 

by Smart Fourier Transform as shown in fig. 
2-b. But when this technique is used for 

estimating 45, 49.5, 50.5, and 55 Hz, the 

deviations between the calculated values and 

actual values are large. The frequencies 

estimated by this technique are deviated from 
actual values when the sinusoidal waveforms 

used in the test corrupted by harmonics but 

they are closed to actual values when the 

sinusoidal waveforms are free from harmonics. 

3. The results of estimating frequencies by 

Modified Discrete Fourier Transform shown in 
fig. 2-c are similar to those shown in fig. 1-c. 

The estimated frequencies by this technique 

are the same whether the sinusoidal 

waveforms used in the test free or corrupted 

by harmonics. 
4.  The 49.5, 50, and 50.5 Hz frequencies are 

correctly estimated by the technique of 

Orthogonal Components as shown in fig. 2-d. 

These results are similar to those shown in     

fig. 1-d. But when this technique is used for 

estimating 45 and 55 Hz, small oscillations 
are observed in the estimation values. The 

49.5, 50, 50.5 Hz are correctly estimated by 

this technique whether the sinusoidal 

waveforms are free or corrupted by harmonics. 

But when it used for estimating 45 and 55 Hz 
small oscillations are observed in the 

estimation values if the waveforms used in the 

test are corrupted by harmonics. 

5. When the frequency demodulation 

technique is used for estimating 45, 

49.5,50,50.5, and 55 Hz in presence of 
harmonics, the deviation between actual  and 

estimated   values  are  large  as  shown  in 

fig. 2-e. 

6.  When the Prony’s method is used for 

estimating 45, 49.5, 50, 50.5, and 55 Hz in 
presence of harmonics, the estimated values 

are closed to actual values as shown in         

fig. 2-f. 
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(a) Discrete fourier transform technique. 
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(b) Smart Discrete Fourier transform.  
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(c) Modified Fourier transform.  
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(d) Orthogonal components. 
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(e) Frequency Demodulation technique. 
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f) Prony's method.) 

Fig.1. Test of the techniques with sinusoidal waveforms free from harmonics.
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(a) Discrete Fourier transform technique. 
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(b) Smart discrete Fourier transform.  
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(c) Modified Fourier transform. 
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(d) Orthogonal components. 
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(e) Frequency demodulation technique. 
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(f) Prony's method. 

 
 

Fig. 2. Test of the techniques with sinusoidal waveforms corrupted by harmonics. 
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 Table 1 
 Computation time 

 

The method Discrete 
Fourier 
transform 

Smart 
discrete 
Fourier 

transform 

Modified discrete 
Fourier 
transform 

 

Orthogonal 
components 

Frequency 
demodulation 

Prony’s 
method 

Time (Sec) 1.7 2.58 1.76 0.11 0.05 6.71 

 
3.3. Computation time 
 

Table 1 shows the CPU time of each 

technique. There are 240 data per 0.4 Sec. 

computed by each technique. We find that the 
frequency demodulation technique is the 

fastest one, but the estimated frequencies 

using this technique are largely deviated from 

the actual values. The slowest is Prony’s 

method, but the estimated frequencies 

obtained by this technique are close to the 
actual values. The technique of Orthogonal 

Components is slower than Frequency 

Demodulation but is faster than other 

techniques. The estimated frequencies using 

this technique are close to actual values if it is 
used to estimate frequencies close to power 

system frequencies (49.5, 50, and 50.5 Hz) 

whether the waveforms used in the test are 

free or corrupted by harmonics. But when this 

technique is used for estimating frequencies 

far from power system frequencies (45 and 55 
Hz), small oscillations are observed in the 

estimated values if the waveforms used in the 

test are corrupted by harmonics. Thus the 

technique of the Orthogonal Components is 

the most suitable one to cope with the 
requirements of future protection and control 

equipments.  

 

4. Conclusions  

 

A comparative study has been carried out 
to six techniques for estimating power system 

frequency. These techniques are tested at 

frequencies close to power system frequency 

and far from power system frequency with 

sinusoidal waveforms free and corrupted by 
harmonics. It is found that the computation 

time of Prony’s method is the largest one but 

the estimated frequencies using this technique 

are close to actual values. The Frequency 

Demodulation technique has the smallest 

computation time but the estimated 
frequencies using this technique are far from 

the actual values. The computation time of the 

technique of Orthogonal Components is bigger 

than the frequency demodulation technique 

but it is smaller than other techniques. When 

this technique is used for estimating 
frequencies close to power system frequency, 

the estimation values are close to actual 

values whether the waveforms used in the test 

are free or corrupted by harmonics. But when 

this technique is used for estimating 

frequencies far from power system frequency, 
small oscillations are observed in the 

estimation values if the waveforms used in the 

test are corrupted by harmonics. Thus the 

technique of Orthogonal Components is the 

most suitable one to cope with future 
requirements of protection and control 

equipments. 
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