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The Cartesian Parallel Manipulator (CPM) which was proposed by Han Sung Kim, and Lung-
Wen Tsai [1] consists of a moving platform that is connected to a fixed base by three limbs.
Each limb is made up of one prismatic and three revolute joints and all joint axes are
parallel to one another. In this way, each limb provides two rotational constraints to the
moving platform and the combined effects of the three limbs lead to an over-constrained
mechanism with three translational degrees of freedom. The manipulator behaves like a
conventional X-Y-Z Cartesian machine due to the orthogonal arrangement of the three
limbs. In this paper, the inverse dynamics of the CPM has been presented using Lagrangian
multiplier approach to give a more complete characterization of the model dynamics. The
dynamic equation of the CPM has a form similar to that of a serial manipulator. So, the vast
control literature developed for serial manipulators can be easily extended to this class of
manipulators. Based on this approach, four control algorithms; simple PD control with
reference position and velocity only, PD control with gravity compensation, PD control with
full dynamic feedforward terms, and computed torque control, are formulated. Then, the
simulations are performed using Matlab and Simulink to evaluate the performance of the

four control algorithms.
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PD control with position and velocity reference.
PD control with gravity compensation.

PD control with full dynamics feedforward terms.
Computed torque control.
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1. Introduction

Parallel manipulators are robotic devices
that differ from the more traditional serial
robotic manipulators by virtue of their
kinematic structure. Parallel manipulators are
composed of multiple closed kinematic loops.
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Typically, these kinematic loops are formed by
two or more kinematic chains that connect a
moving platform to a base. This kinematic
structure allows parallel manipulators to be
driven by actuators positioned on or near the
base of the manipulator. In contrast, serial
manipulators do not have closed kinematic
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loops and are usually actuated at each joint
along the serial linkage. Accordingly, the
actuators that are located at each joint along
the serial linkage can account for a significant
portion of the loading experienced by the
manipulator. This allows the parallel
manipulator links to be made lighter than the
links of an analogous serial manipulator.
Hence, parallel manipulators can enjoy the
potential benefits associated with light weight
construction such as high-speed operation [2].

Han Sung Kim and Lung-Wen Tsai [1]
presented a parallel manipulator called CPM
fig. 1 that employs only revolute and prismatic
joints to achieve translational motion of the
moving platform. They described its kinematic
architecture and discussed two actuation
methods. For the rotary actuation method, the
inverse kinematics provides two solutions per
limb, and the forward kinematics leads to an
eighth-degree polynomial. Also, the rotary
actuation method results in many singular
points within the workspace. On the other
hand, for the linear actuation method, there
exists a one-to-one correspondence between
the input and output displacements of the
manipulator. Also, they discussed the effect of
misalignment of the linear actuators on the
motion of the moving platform. They suggested
a method to maximize the stiffness in order to
minimize the deflection at the joints caused by
the bending moment because each limb
structure is exposed to a bending moment
induced by the external force exerted on the
end-effector.

In this paper using Lagrange formulation,
we develop the dynamic equation of the CPM.
Based on the dynamical model, we
reformulate four basic control algorithms
simple PD control with reference position and
velocity only, PD control with gravity
compensation, PD control with full dynamic
feedforward terms, and computed torque
control. Then the simulation is wused to
evaluate the performance of each control
algorithm.

The paper is organized as follows. In section
2, the kinematic relations are developed. In

Fig. 1. Assembly drawing of the CPM.

section 3, we use the Lagrange’s equations of
motion to derive the dynamic equation of the
CPM. Four control algorithms are reviewed in
section 4. In section 5, Simulation is
described. Simulation results are presented in
section 6, followed by concluding remarks in
section 7.

2. Problem formulation

The kinematic structure of the CPM is
shown in figure 2 where a moving platform is
connected to a fixed base by three PRRR
(prismatic-revolute-revolute-revolute) limbs.
The origin of the fixed coordinate frame is
located at point O and a reference frame XYZ
is attached to the fixed base at this point. The
moving platform is symbolically represented
by a square whose length side is 2L defined by
B1, B2, and B, and the fixed base is defined by

three guide rods passing through A, A, and
As. The three revolute joint axes in each limb
are located at points A;, M; and B; and are
parallel to the ground-connected prismatic
joint axis. The first prismatic joint axis lies on
the X-axis; the second prismatic joint axis lies
on the Y-axis; and the third prismatic joint
axis is parallel to the Z-axis. Point P
represents the center of the moving platform.
The link lengths are L, and L,.The starting

point of a prismatic joint is defined by d and
the sliding distance is defined by d.-d,.
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The schematic diagrams of the three limbs of the CPM are sketched in fig. 3. The relationships
for the three limbs are written for the position P [x, y, z] in the coordinate frame XYZ and

differentiation with respect to time yields eq. 1.

(y —L,cosé,-L)

(Z — L1 sin 011)

6, X
921 =I'y
6,, Z
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0
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where 911 , 921 , and 931 are the derivatives of
6, , 0, ,and 6, with respect to the time and

X,Y,and Zare the X,Y, and Z components of
the velocity of point P on the moving platform
in the reference frame. Differentiation of
equation 1 with respect to the time gives,
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9' —Tl v e B
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0, 4 z

3. Dynamics of closed-chain mechanism

The Lagrange formulation [4] is used to
find the actuator forces required to generate a
desired trajectory of the manipulator. In

general, the Lagrange multiplier approach
involves solving the following system of
equations:

d oL, oL d of
) =Q Y (A =) )
dt "oq;” oq; = 0q,

For j=1 to n, where

i is the generalized coordinate index,

is the number of generalized coordinates,
is the constraint index,

is the jth generalized coordinate,

is the number of constraint functions,

is the Lagrange function, where L= T- V,
is the total kinetic energy of the

NS S

(x siné,, +cos@,(y —D +L))L,

manipulator,
V is the total potential energy of the
manipulator,
fi is a constraint equation,
Q; 1is a generalized external force, and
Ai  is the Lagrange multiplier.

Theoretically, the dynamic analysis can be
accomplished by using just three generalized
coordinates since this is a 3 DOF manipulator.
However, this would lead to a cumbersome
expression for the Lagrange function, due to
the complex kinematics of the manipulator. So
we choose three redundant coordinates which

are,,0,, and6, beside the generalized

coordinates x, y, and z. Thus we havef,,,0,,,

(931 , X, Y, and z as the generalized coordinates.
Eq. (3) represents a system of six equations in

six variables, where the six variables are A,

for i = 1, 2, and 3, and the three actuator
forces, Q;j for j = 4, 5, and 6. The external
generalized forces, Q; for j=1, 2, and 3 are zero
since the revolute joints are passive. This
formulation requires three constraint
equations, fi for i = 1, 2, and 3, that are
written in terms of the generalized
coordinates.

It can be assumed that the first link of
each limb is a uniform rod and its mass is m;.
The mass of the second rod of each limb is
evenly divided between and concentrated at
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Fig. 3. Description of the joint angles and link lengths for the three limbs.
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joints Mi and Bi. So, the two particles M; and B;

have the same mass which is M2 . This

2
assumption can be made without significantly
compromising the accuracy of the model since
the concentrated mass model of the
connecting rods does capture some of the
dynamics of the rods.

The total kinetic energy T of the
manipulator is given by:

1 . . .
T =§[m1+2m2+m3+m4](x2+y2+z2) “@)
m. om0 2 2
+( 5 + 2 )L1(611+621+931)

where the mass of the tool is M, and msis the

mass of the prismatic joint A; and its actuator.
The total potential energy V of the manipulator
is calculated relative to the plane of the
stationary platform of the manipulator, and is
found to be:

m, +m .
V =-— gl (sin g, +cosd,,) (5)

—(m;+2m, +m, +m,)gz

The Lagrange function is L= T- V where

L=A(X?+y2+2%)+B (03 +05 +02) 6)

+C (sing, +cosb, )+ Ez

Where: A:%[m1+2m2+m3+m4] B:(%"'%)Lf
c=@g|_1 E=(m+2m,+m,+m,)g .

Taking the partial derivatives of the Lagrange
function with respect to the three generalized

011 , 021 0

coordinates , and 3!, we obtain

2Bd, ~C cosf, = A,, (7)
2B6, +Csing, = 4,, (8)
2BG, =1,. 9)

Rearrangement of eqgs. (7-9) then by
substituting into eq. (2) yields

A X dr X —C0s 6,

%, |=2BL| §|+2B-| y |+C| sin6, | - (10)
A Z Z 0

Taking the partial derivatives of the Lagrange
function with respect to the three generalized
coordinates x, y, and z, we obtain

2AX =F, T A4 -T 4, T4, (11)
2Ay = Fy T, A -4 —TuA, (12)
2A7 —E =F, —-T A4 -T 4 -T' 4, (13)
where F ,F , and F, are the forces applied

by the actuator for the first, second and third
limbs respectively. Fij is the (i, j) element of
the I’ matrix.

Rearrangement of eqgs. (11-13) then using eq.
(10) yields

F, 0 —C0sé,
F,|=-| 0 [+I"C| sin6,
F, E 0
T , 7o AT
+(2A1 +T" 2BI) |y |+T ZBE y
5 :

The dynamic equation of the whole system can
be written as

F=M(a)§+G(q,9)q+K(a), (14)
where

F, X X
F=Fy’Q=Y’Q=y’Q=y’

F A Z z

M (q)=2Al +T" 2BT
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G@.d)-r"28 5%, and
0 —cosd,

K@)=-|0|+T"C| sind,
E 0

Where g is the vector of joint displacement,
gis the vector of joint velocities, F is the
vector of applied force inputs, M(q) is the
G(q,q) is the
manipulator centripetal and coriolis matrix,
and K(q) is the vector of gravitational forces.

manipulator inertia matrix,

4. Controller design

In this section, we review four Dbasic
control algorithms for control of the CPM:

4.1. PD control with position and velocity
reference

The values for the joint position error and
the joint rate error of the closed chain system
are used to compute the joint control force F.

F=K,e+Kye, (15)

where €=(,; —(, is the vector of position error

of the individual actuated joints, € =, —( ,
is the vector of velocity error of the individual
actuated joints, (j; and (|, are the desired joint

velocities and positions, and Kp and Kp are 3
x3 diagonal matrices of velocity and position
gains.

Although this type of controller is suitable
for real time control since it has very few
computations compared to the complicated
nonlinear dynamic equations, there are a few
downsides to this controller. Using local PD
feedback law at each joint independently does
not consider the couplings of dynamics
between robot links. As a result, this
controller can cause the motor to overwork
compared to other controllers presented next.

4.2. PD Control with gravity compensation

Consider the case when a constant
equilibrium posture is assigned for the system

as the reference input vector qa. It is desired to
find the structure of the controller which
ensures global asymptotic stability of the
above posture. The control law F'is given by:

F=Kqe+Kye+K(q,) - (16)

4.3. PD control with full dynamics
feedforward terms

This type of controller augments the basic
PD controller by compensating for the
manipulator dynamics in the feedforward way.
It assumes the full knowledge of the robot
parameters. The key idea for this type of
controller is that if the full dynamics is
correct, the resulting force generated by the
controller will also be perfect. The controller is
in the form

F=M(q,)d, +G(a,,4,)dq +K(qd)+KPe+KDé_
(17)

If the dynamic knowledge of the
manipulator is accurate, and the position and
velocity error terms are initially zero, the
applied force F is sufficient to maintain zero
tracking error during motion.

4.4. Computed torque control

This controller uses a model of the
manipulator dynamics to estimate the
actuator forces that will result in the desired
trajectory. Since this type of controller takes
into account the nonlinear and coupled nature
of the manipulator, the potential performance
of this type of controller should be quite good.
The disadvantage of this approach is that it
requires a reasonably accurate and computa-
tionally efficient model of the inverse dynamics
of the manipulator to function as a real time
controller. The controller computes the
dynamics online, using the sampled joint
position and velocity data. The key idea is to
find an input vector F, using the following
force law as described by Lewis [3], which is
capable to realize an input/output relation-
ship of linear type. It is desired to perform not
a local linearization but a global linearization
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of system dynamics obtained by means of a
nonlinear state feedback.

F=M(a)[d, +Kpe+K e]+G(a,q)q+K(a) - (18)

To show that the computed torque control
scheme linearizes the controlled system, the
force computed by equation 18 is substituted
into equation 14, yielding:

M(a)d =M (a)d, + M (Q)[Ke+K e]
term  byM 7(q), and
relationship, € =(, — ¢,

Multiplying each
substituting the

provides the following linear relationship for
the error:

€+k,e+k.e=0. (19)

This relationship can be used to select the
gains to give the desired nature of the closed
loop error response since the solution of
equation 19 provides a second order damped

system with a natural frequency of @, , and a

damping ratio of ¢ where:

K
a)nz,fKP,J:Z }2 . (20)
p

The natural frequency ), determines the

speed of the response. It is customary in robot
applications to take the damping ratio £ =1 so

that the response is critically damped. This
produces the fastest non-oscillatory response.
So, the values for the gain matrices Kp and Kp
are determined by setting the gains to
maintain the following relationship:

Koy =2K, - (21)

5. Simulation

In controlling the manipulator, any sudden
changes in desired joint angle, velocity, or
acceleration can result in sudden changes of
the commanded force. This can result in
damages of the motors and the manipulator.
Here, the manipulator is given a task to move

along careful preplanned trajectories without
any external disturbances or no interaction
with environment.

The sample trajectory of the end-effector is
chosen to be a circular path (see fig. 4) with
the radius of 0.175 meters and its center is
0(0.425 ,0.425 ,0.3). This path is designed to
be completed in 4 seconds when the end-
effector reaches the starting point P1 (0.6,
0.425, 0.3) again with constant angular

velocity -7 rad/sec. The desired end-
2
effector position along X-axis is

x =0.425+0.175c0s(at) meters, along y-axis is
y =0.425+0.175sin(at)

axis is Z =const.=0.3 meters where the time ¢
is in seconds.

The performance of each control method is
evaluated by comparing the tracking accuracy
of the end-effector. The tracking accuracy is
evaluated by the Root Square Mean Error
(RSME). The end-effector error is defined as

E,. = €2 +e7 +e?) (22)

where ex, ey , and ez are the position errors in
x-, Y-, and z-axis given in manipulator’s
workspace coordinates.

meters, and along z-

2

2 Ed
RSME =,|[& 2~ (23)
n

where n is the number of the samples. The
simulation is used to find a set of minimum
proportional gain Kp and derivative gain Kb
that minimized RSME. It must be considered
that the actuators cannot generate forces
larger than 120 Newtons.

The values of the physical kinematic and
dynamic parameters of the CPM are given in
table 1 and table 2.

Table 1
Kinematic parameters of the CPM

Parameters L (m) L (m) Lz (m) D (m)

Values 0.105 0.5 0.373 0.9144
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Table 2
Dynamic parameters of the CPM

Parameters m, (kg) m, (kg m; ke M, ke

Values 1.892994 0.695528 0.2 0.3

Z (meters)

0.8

0.4

02 oz

¥ (meters) # (meters)

Fig. 4: End-effector path for the circular trajectory.
6. Simulation results

In this section, some results are presented
for the four control algorithms implemented
on the CPM. The simulation results are
presented in table 3.

6. 1. PD control with position and velocity
reference

It was required that the robot achieved the
desired trajectory with a position error less

than 3x107°m after 0.3 seconds. Although
this controller is easy to implement and no
knowledge of the system is needed to develop
this type of controller, the tracking ability is
very poor (especially along z-axis because of
the limbs weight) compared to the rest of the
controllers used in this paper. The position
and velocity errors of the end-effector obtained
from this controller are shown in figures 5 and
6. To improve the performance, the
proportional gain Kp must be increased but it
is impossible because of the limitation of the
actuators.

6.2. PD Control with gravity compensation

It was required that the robot achieved the
desired trajectory with a position error less
than 3x10“m after 0.3 seconds. The imple-
mentation of the PD controller with gravity
compensation requires partial dynamic model-
ing information incorporated into the control-
ler. The simulation results show a significant
improvement in tracking ability from a simple
PD controller (see figs. 7-8).

6.3. PD control with full dynamics feedforward
terms

It was required that the robot achieved the
desired trajectory with a position error less

than10°m after 0.3 seconds. The model
based controllers such as this type and
computed torque controller can generate force
commands more intelligently and accurately
than simple non-model based controllers.
After 0.4 seconds, the position errors are
approximately zeros but the velocity errors are
approximately zeros after 0.3 seconds (see
figs. 9 and 10).

6.4. Computed torque control

The initial conditions of the error and its
derivative of our sample trajectory of the end-
effector are e(0)=[0 0 0], and €(0)=[0 €, O
then the solution of eq. (19) is:

e =6, te 0" (24)

Eq. (24) suggests that the derivative gain Kp
should be a maximum value to achieve the
desired critical damping but the actuator force
cannot exceed more than 120 Newtons.

According to eq. (24), the position errors in
Xx-, z-axis are zeros because the initial velocity
errors in x-, z-axis are zeros. After 0.2
seconds, the position and velocity errors are
approximately zeros (see figs. 11 and 12). The
simulation results show that the computed
torque controller gives the best performance.
This is a result of the computed torques
canceling the nonlinear components of the
controlled system.
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Table 3
The performance of various controllers
Controller Kp Kp Position RSME Velocity RSME
Pd control with position and 3
velocity reference 12691 436 2.7x10 0.0223
Pd control with gravity 4
compensation 8507 436 3.4804 %10 0.021
Pd control with full dynamics 4
feedforward 7053 436 3.0256x10 0.0182
Computed torque control 2550.25 101 2.3469%x10™* 0.0161
x 10’ 03 . T \
I = -~ Along X axis
***** Along X axis 0k Along ¥ axis |
Along Y axis — — Alang Z axis
— — — Along 7 axis 4
021 B
5 050 .
B
& ol ,
§= 005 B
]
il DEU 4
01 1 1 1 1 1 1
o 05 1 18 2 25 38 4

Tirre (seconds)

Fig. 5. Position error of the end-effector obtained from

Puosition Error{meters)

Fig.

25

0.5
0

the simple PD controller.

— - — - Along X axis
Along Y axis
— — Alang Z axis |

Time (seconds)

7. Position error of the end-effector obtained from
the PD controller with gravity compensation.

Alexandria Engineering Journal, Vol. 46, No. 4, July 2007

Fig. 6. Velocity error of the end-effector obtained from
the simple PD controller.

0.3

025

0z

0.15

0.1

Yelocity Error (mfs)

0.05

Fig. 8. Velocity error of the end-effector obtained from

Time (seconds)

— - —-Along ¥ axis
— Alang ¥ axis
— — Along Z axis

045 1 158

Time (seconds)

the PD controller with gravity compensation.
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20 Along X axis

Along ¥ axis

— — — Along I axis

Position Errar{meters)

I 1 I
0z 028 03
Time (seconds)

03 04

Fig. 9. Position error of the end-effector obtained from
the PD controller with full dynamics feedforward terms
within the first 0.4 seconds.

n

Along X axis

Along Y anis

— — — Along Z axis

Pasition Error{meters)

I
008

01 0%

Time (seconds)

Fig. 11. Position error of the end-effector obtained from
the computed torque controller within the first 0.25
seconds.

7. Conclusions

In this paper, using Lagrangian multiplier
approach, a model for the dynamics of the
manipulator is developed which has a form
similar to that of a serial manipulator. Then
we have presented four control algorithms on
the CPM. The performance of these controllers
are studied and compared.
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“elocity Error (més)

Along X axis

Along Y axis
— — — Along I axis

02
Time (seconds)

03 0.3 04

Fig. 10. Velocity error of the end-effector obtained from
the PD controller with full dynamics feedforward terms

“velasity Errar (m/s)

within the first 0.4 Seconds.

= - = Along X axis
— Along ¥ axis
— — Along I axis

0%

Tirme (seconds)

Fig. 12. Velocity error of the end-effector obtained from
the computed torque controller within the first 0.25

seconds.

As expected, complete mathematical
modeling knowledge is needed to give the
controller complete advantage in motion
control. The model based control schemes
perform  better than non-model based
controllers. Hence, the need for studying
dynamics of robot manipulator as well as
having a good understanding of various basic
motion controller theories are important in
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designing and controlling motion of the robot
to achieve the highest quality and quantity of

work.
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