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The Cartesian Parallel Manipulator (CPM) which was proposed by Han Sung Kim, and Lung-
Wen Tsai [1] consists of a moving platform that is connected to a fixed base by three limbs. 
Each limb is made up of one prismatic and three revolute joints and all joint axes are 
parallel to one another. In this way, each limb provides two rotational constraints to the 

moving platform and the combined effects of the three limbs lead to an over-constrained 
mechanism with three translational degrees of freedom. The manipulator behaves like a 
conventional X-Y-Z Cartesian machine due to the orthogonal arrangement of the three 
limbs. In this paper, the inverse dynamics of the CPM has been presented using Lagrangian 

multiplier approach to give a more complete characterization of the model dynamics. The 
dynamic equation of the CPM has a form similar to that of a serial manipulator. So, the vast 
control literature developed for serial manipulators can be easily extended to this class of 
manipulators. Based on this approach, four control algorithms; simple PD control with 
reference position and velocity only, PD control with gravity compensation, PD control with 
full dynamic feedforward terms, and computed torque control, are formulated. Then, the 
simulations are performed using Matlab and Simulink to evaluate the performance of the 
four control algorithms.  

خلال الســنوات القــليلة   Parallel Manipulatorالتطـورات النظـرية والتطبـيقات العـملية في مجال الروبوت المتوازى  تنامت 
يتنـاول ذـ ا البحـر دراســة  لاضافة الى الســرعة العاليـة  الماضية لما يمنحـه من مميزات عدة مثل التحمـل الزائد والجساءة العالية با

  و Han Sung Kim والتحــا  اللـى فيــه   لـر الروبـوت الـ ى تــا  بتلـميمه اـل مـن  (CPM) الروبوت المتـوازى الاـارتيزى

Lung-Wen Tsai فة الـى الســرعة العــالية  ذ ا الروبوت يوفـر العـديد من المزايا مثل التحـمــل الزائـد والجــساءة العــالية بالاضـا
وله ا الروبوت ثلار درجات حرية ويتاـون من تاعـدة ثابتة وأخرى متحـراة حـراة إنتقال متوازى ، وتتلـل القاعــدتان معــا عــن 
طريق ثلاثة أ رع متحـراة متماثلة الترايب ، يتراـب الـ راع الواحــد مـن عضـوين يتحــراان علـى امتـداد أحــد إتجــاذات المحــاور 

  ةويدوران حـول نفس المحـور ويحـقـق ذ ا الروبوت سـلور الروبوت الاارتيزى التقـليدى انتيجـة للترتيب المتعـامد لأ رعــه الثلاثـ
معــتمدة علـى طريقـة لاجـران    واسـتطاع ذ ا البحر التولل الى النَّمو ج الرياضى ال ى يعطى ولفا ااملا لدينامياا ذ ا الروبـوت

المتسلســل لــ ا اماــن اســتخدا  بعــك طــرق الــتحا  الالــى المســتخدمة فــى  للروبــوتمثيلــه  هالنمــو ج الرياضــى ي ــب ولقــد تبــين أن ذــ ا
أجريـت دراســة علـى  لــ ا فـى ذــ ا البحــرأحــد الأذــداا الأسـاســية  تطبيـق بعـك طـرق الـتحا  الالـى يعــتبرو المتسلسل الروبوت

مات الحراــة تحـــا  مــة لاحـــدار الحراــة المطلوبــة وذـــ ا يسـتوجـــب املمـــا  بــدينامياا الروبــوت للحلــول علــى القـــوة اللاز بعـــك مح
ـرق المقـترحــة لتحـسـين النتائ  المتحـلل عـليها اما ت  تنفي     امـا أجريـت  المحاااة عــن طريـق تحــديد مســار لاخــتبار نتـائ  الطم

 مثل :طرق التحا  الالى  دراسـة على بعـك
 PD control with position and velocity reference. 

 PD control with gravity compensation. 

 PD control with full dynamics feedforward terms.  

 Computed torque control. 
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1. Introduction 

 

Parallel manipulators are robotic devices 

that differ from the more traditional serial 

robotic manipulators by virtue of their 
kinematic structure. Parallel manipulators are 

composed of multiple closed kinematic loops. 

Typically, these kinematic loops are formed by 

two or more kinematic chains that connect a 

moving platform to a base. This kinematic 

structure allows parallel manipulators to be 

driven by actuators positioned on or near the 
base of the manipulator. In contrast, serial 

manipulators do not have closed kinematic 
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loops and are usually actuated at each joint 

along the serial linkage. Accordingly, the 

actuators that are located at each joint along 
the serial linkage can account for a significant 

portion of the loading experienced by the 

manipulator. This allows the parallel 

manipulator links to be made lighter than the 

links of an analogous serial manipulator. 

Hence, parallel manipulators can enjoy the 
potential benefits associated with light weight 

construction such as high-speed operation [2].  

Han Sung Kim and Lung-Wen Tsai [1] 

presented a parallel manipulator called CPM 

fig. 1 that employs only revolute and prismatic 
joints to achieve translational motion of the 

moving platform. They described its kinematic 

architecture and discussed two actuation 

methods. For the rotary actuation method, the 

inverse kinematics provides two solutions per 

limb, and the forward kinematics leads to an 
eighth-degree polynomial. Also, the rotary 

actuation method results in many singular 

points within the workspace. On the other 

hand, for the linear actuation method, there 

exists a one-to-one correspondence between 
the input and output displacements of the 

manipulator. Also, they discussed the effect of 

misalignment of the linear actuators on the 

motion of the moving platform. They suggested 

a method to maximize the stiffness in order to 

minimize the deflection at the joints caused by 
the bending moment because each limb 

structure is exposed to a bending moment 

induced by the external force exerted on the 

end-effector. 

In this paper using Lagrange formulation, 
we develop the dynamic equation of the CPM. 

Based on the dynamical model, we 

reformulate four basic control algorithms 

simple PD control with reference position and 

velocity only, PD control with gravity 

compensation, PD control with full dynamic 
feedforward terms, and computed torque 

control. Then the simulation is used to 

evaluate the performance of each control 

algorithm. 

The paper is organized   as  follows. In  section 
2, the  kinematic  relations  are  developed.  In  

 
 

Fig. 1. Assembly drawing of the CPM. 

 

section 3, we use the Lagrange’s equations of 

motion to derive the dynamic equation of the 
CPM. Four control algorithms are reviewed in 

section 4. In section 5, Simulation is 

described. Simulation results are presented in 

section 6, followed by concluding remarks in 

section 7. 

 
2. Problem formulation 

 

The kinematic structure of the CPM is 

shown in figure 2 where a moving platform is 

connected to a    fixed base     by   three PRRR  
(prismatic-revolute-revolute-revolute) limbs. 

The origin of the fixed coordinate frame is 

located at point O and a reference frame XYZ 

is attached to the fixed base at this point. The 

moving platform is symbolically represented 

by a square whose length side is 2L defined by 
B1, B2, and B

3
 and the fixed base is defined by 

three guide rods passing through A1, A2, and 

A3. The three revolute joint axes in each limb 
are located at points Ai, Mi, and Bi and are 

parallel to the ground-connected prismatic 

joint axis. The first prismatic joint axis lies on 
the X-axis; the second prismatic joint axis lies 

on the Y-axis; and the third prismatic joint 

axis is parallel to the Z-axis. Point P 

represents the center of the moving platform. 

The link lengths are L
1
, and L

2
.The starting 

point of a prismatic joint is defined by d
0i 

and 

the   sliding   distance   is   defined   by d
i 
- d

0i
.  
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The schematic diagrams of the three limbs of the CPM are sketched in fig. 3. The relationships 
for the three limbs are written for the position P [x, y, z] in the coordinate frame XYZ and 

differentiation with respect to time yields eq. 1. 
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where 11  , 21  , and 31  are the derivatives of  

11  , 21  , and 31 with respect to the time and 

x , y , and z are the X,Y, and Z components of 

the velocity of point P on the moving platform 
in the reference frame. Differentiation of 

equation 1 with respect to the time gives, 

 

11

21

31

x x
d

y y
dt

z z







     
     

       
         

.        (2) 

 

3. Dynamics of closed-chain mechanism 

 

The Lagrange formulation [4] is used to 
find the actuator forces required to generate a 

desired trajectory of the manipulator. In 

general, the Lagrange multiplier approach 

involves solving the following system of 

equations: 
 

1

( ) ( )
k

i
j i

ij j j

fd L L
Q

dt q q q




 
  

  
 .        (3) 

 
For j =1 to n, where 

j is the generalized coordinate index, 
n is the number of generalized coordinates, 
i is the constraint index, 
qj: is the jth

 
generalized coordinate, 

k  is the number of constraint functions, 

L is the Lagrange function, where L= T− V, 

T  is the total kinetic energy of the  

manipulator, 
V is the total potential energy of the  

manipulator, 
fi  is a constraint equation,  

Qj is a generalized external force, and 

i is the Lagrange multiplier. 
Theoretically, the dynamic analysis can be 

accomplished by using just three generalized 

coordinates since this is a 3 DOF manipulator. 

However, this would lead to a cumbersome 

expression for the Lagrange function, due to 
the complex kinematics of the manipulator. So 

we choose three redundant coordinates which 

are 11 , 21 , and 31  beside the generalized 

coordinates x, y, and z. Thus we have 11 , 21 , 

31 , x, y, and z as the generalized coordinates. 

Eq. (3) represents a system of six equations in 

six variables, where the six variables are i  

for i = 1, 2, and 3, and the three actuator 

forces, Qj for j = 4, 5, and 6. The external 

generalized forces, Qj for j=1, 2, and 3 are zero 

since the revolute joints are passive. This 
formulation requires three constraint 
equations, fi for i = 1, 2, and 3, that are 

written in terms of the generalized 

coordinates. 
It can be assumed that the first link of 

each limb is a uniform rod and its mass is m1. 

The mass of the second rod of each limb is 
evenly divided between  and    concentrated at  



A. Elkady et al. / Cartesian parallel manipulator 

590          Alexandria Engineering Journal, Vol. 46, No. 4, July 2007 

 
 

 Fig. 2. Spatial 3-PRRR parallel manipulator. 
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Fig. 3. Description of the joint angles and link lengths for the three limbs. 
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joints Mi and Bi. So, the two particles Mi and Bi   

have    the   same mass which is 2

2

m . This 

assumption can be made without significantly 

compromising the accuracy of the model since 

the concentrated mass model of the 
connecting rods does capture some of the 

dynamics of the rods.  
The total kinetic energy T of the 

manipulator is given by: 

 

2 2 2

1 2 3 4

21 2
1

1
[ 2 ]( )

2

2 2 2( ) ( )
11 21 316 4

     
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T m m m m x y z

m m
L   

   (4) 

 

where the mass of the tool is 4m  and m3 is the 

mass of the prismatic joint Ai and its actuator. 
The total potential energy V of the manipulator 

is calculated relative to the plane of the 

stationary platform of the manipulator, and is 

found to be: 
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The Lagrange function is L= T− V where 
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Taking the partial derivatives of the Lagrange 

function with respect to the three generalized 

coordinates 11
, 21

 , and 31
, we obtain  

 

11 11 12 cosB C    ,       (7) 

 

21 21 22 sinB C    ,           (8) 

 

31 32B  .         (9) 

Rearrangement of eqs. (7-9) then by 

substituting into eq. (2) yields 
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Taking the partial derivatives of the Lagrange 

function with respect to the three generalized 

coordinates x, y, and z, we obtain  

 

11 1 21 2 31 32 xAx F      ,       (11) 
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where xF , yF , and zF  are the forces applied 

by the actuator for the first, second and third 

limbs respectively. ij is the (i, j) element of 

the   matrix. 

Rearrangement of eqs. (11-13) then using eq. 

(10) yields 
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The dynamic equation of the whole system can 

be written as 
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Where q is the vector of joint displacement, 

q is the vector of joint velocities, F is the 

vector of applied force inputs, ( )M q  is the 

manipulator inertia matrix, ( , )G q q  is the 

manipulator centripetal and coriolis matrix, 

and ( )K q  is the vector of gravitational forces.  

 

4. Controller design 
 

In this section, we review four basic 

control algorithms for control of the CPM: 

 
4.1. PD control with position and velocity  

reference 

 

The values for the joint position error and 

the joint rate error of the closed chain system 
are used to compute the joint control force F.  

 

P DF K e K e  ,           (15) 

 

where de q q  , is the vector of position error 

of the individual actuated joints, de q q  ,  

is the vector of velocity error of the individual 

actuated joints, dq and dq are the desired joint 

velocities and positions, and KD and KP are 3 

×3 diagonal matrices of velocity and position 

gains.  
Although this type of controller is suitable 

for real time control since it has very few 

computations compared to the complicated 

nonlinear dynamic equations, there are a few 

downsides to this controller. Using local PD 
feedback law at each joint independently does 

not consider the couplings of dynamics 

between robot links. As a result, this 

controller can cause the motor to overwork 

compared to other controllers presented next. 

 
4.2. PD Control with gravity compensation 

 
Consider the case when a constant 

equilibrium posture is assigned for the system 

as the reference input vector qd. It is desired to 

find the structure of the controller which 

ensures global asymptotic stability of the 
above posture. The control law F is given by: 

 

( )P D dF K e K e K q   .         (16) 

 
4.3. PD control with full dynamics  
       feedforward terms  

 
This type of controller augments the basic 

PD controller by compensating for the 

manipulator dynamics in the feedforward way. 

It assumes the full knowledge of the robot 
parameters. The key idea for this type of 

controller is that if the full dynamics is 

correct, the resulting force generated by the 

controller will also be perfect. The controller is 

in the form  
 

( ) ( , ) ( )d d d d d d P DF M q q G q q q K q K e K e    
.

                                                             (17) 

 
If the dynamic knowledge of the 

manipulator is accurate, and the position and 

velocity error terms are initially zero, the 
applied force F is sufficient to maintain zero 

tracking error during motion. 
 
4.4. Computed torque control 

 
This controller uses a model of the 

manipulator dynamics to estimate the 

actuator forces that will result in the desired 

trajectory. Since this type of controller takes 
into account the nonlinear and coupled nature 

of the manipulator, the potential performance 

of this type of controller should be quite good. 

The disadvantage of this approach is that it 

requires a reasonably accurate and computa-
tionally efficient model of the inverse dynamics 

of the manipulator to function as a real time 

controller. The controller computes the 

dynamics online, using the sampled joint 

position and velocity data. The key idea is to 
find an input vector F, using the following 

force law as described by Lewis [3], which is 

capable to realize an input/output relation-

ship of linear type. It is desired to perform not 

a local linearization but a global linearization 
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of system dynamics obtained by means of a 

nonlinear state feedback.  

 

( )[ ] ( , ) ( )d D pF M q q K e K e G q q q K q     .  (18) 

 

To show that the computed torque control 
scheme linearizes the controlled system, the 

force computed by equation 18 is substituted 

into equation 14, yielding: 

( ) ( ) ( )[ ]d D pM q q M q q M q K e K e    

Multiplying each term by
1( )M q

, and 

substituting the relationship, de q q  , 

provides the following linear relationship for 

the error: 

 

0D Pe k e k e   .              (19) 

 
This relationship can be used to select the 

gains to give the desired nature of the closed 

loop error response since the solution of 

equation 19 provides a second order damped 

system with a natural frequency of n , and a 

damping ratio of   where: 

 

n PK  ,
2

D

P

K

K
  .                   (20) 

 

The natural frequency n determines the 

speed of the response. It is customary in robot 

applications to take the damping ratio 1   so 

that the response is critically damped. This 

produces the fastest non-oscillatory response. 
So, the values for the gain matrices KD and KP 

are determined by setting the gains to 

maintain the following relationship:  

 

2D PK K  .                (21)  

 

5. Simulation 
 

In controlling the manipulator, any sudden 

changes in desired joint angle, velocity, or 

acceleration can result in sudden changes of 

the commanded force. This can result in 

damages of the motors and the manipulator. 
Here, the manipulator is given a task to move 

along careful preplanned trajectories without 

any external disturbances or no interaction 

with environment. 
The sample trajectory of the end-effector is 

chosen to be a circular path (see fig. 4) with 

the radius of 0.175 meters and its center is 

O(0.425 ,0.425 ,0.3). This path is designed to 

be completed in 4 seconds when the end-

effector reaches the starting point P1 (0.6, 
0.425, 0.3) again with constant angular 

velocity 
2


   rad/sec. The desired end-

effector position along x-axis is 

0.425 0.175cos( )x t   meters, along y-axis is 

0.425 0.175sin( )y t   meters, and along z-

axis is . 0.3z const   meters where the time t 

is in seconds. 

The performance of each control method is 
evaluated by comparing the tracking accuracy 

of the end-effector. The tracking accuracy is 
evaluated by the Root Square Mean Error 

(RSME). The end-effector error is defined as  

 

2 2 2( )xyz x y zE e e e   ,          (22) 

 
where ex, ey , and ez are the position errors in 

x-, y-, and z-axis given in manipulator’s 

workspace coordinates.  
 

2

xyzE
RSME

n



,               (23) 

 
where n is the number of the samples. The 

simulation is used to find a set of minimum 
proportional gain KP and derivative gain KD 

that minimized RSME. It must be considered 

that the actuators cannot generate forces 

larger than 120 Newtons.  

The values of the physical kinematic and 
dynamic parameters of the CPM are given in 

table 1 and table 2. 

 
Table 1 
Kinematic parameters of the CPM 
 

Parameters L (m) L1 (m) L2 (m) D (m) 

Values 0.105 0.5 0.373 0.9144 
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Table 2 

Dynamic parameters of the CPM 
 

Parameters 
1m (kg) 

2m (kg) 
3m (kg) 

4m (kg) 

Values 1.892994 0.695528 0.2 0.3 

 

 
 

Fig. 4: End-effector path for the circular trajectory. 

 

6. Simulation results 

 

In this section, some results are presented 

for the four control algorithms implemented 
on the CPM. The simulation results are 

presented in table 3.  

 
6.1. PD control with position and velocity  

reference 

 
It was required that the robot achieved the 

desired trajectory with a position error less 

than 
33 10 m after 0.3 seconds. Although 

this controller is easy to implement and no 

knowledge of the system is needed to develop 

this type of controller, the tracking ability is 

very poor (especially along z-axis because of 

the limbs weight) compared to the rest of the 

controllers used in this paper. The position 
and velocity errors of the end-effector obtained 

from this controller are shown in figures 5 and 

6. To improve the performance, the 
proportional gain KP must be increased but it 

is impossible because of the limitation of the 

actuators.   
 

 

6.2. PD Control with gravity compensation 

 
It was required that the robot achieved the 

desired trajectory with a position error less 

than 43 10 m  after 0.3 seconds. The imple-

mentation of the PD controller with gravity 

compensation requires partial dynamic model-

ing information incorporated into the control-

ler. The simulation results show a significant 

improvement in tracking ability from a simple 
PD controller (see figs. 7-8).  

 
6.3. PD control with full dynamics feedforward  

 terms 

 

It was required that the robot achieved the 
desired trajectory with a position error less 

than
510 m

 after 0.3 seconds. The model 

based controllers such as this type and 
computed torque controller can generate force 

commands more intelligently and accurately 

than simple non-model based controllers. 

After 0.4 seconds, the position errors are 

approximately zeros but the velocity errors are 

approximately zeros after 0.3 seconds (see 
figs. 9 and 10). 
 

6.4. Computed torque control 

 
The initial conditions of the error and its 

derivative of our sample trajectory of the end-

effector are (0) [0 0 0]te  , and 
0(0) [0 0]te e  

then the solution of eq. (19) is:  

 
0.5

0
DK t

e e te


 .               (24) 

 
Eq. (24) suggests that the derivative gain KD 

should be a maximum value to achieve the 
desired critical damping but the actuator force 

cannot exceed more than 120 Newtons. 

According to eq. (24), the position errors in 
x-, z-axis are zeros because the initial velocity 

errors in x-, z-axis are zeros. After 0.2 

seconds, the position and velocity errors are 

approximately zeros (see figs. 11 and 12). The 
simulation results show that the computed 

torque controller gives the best performance. 

This is a result of the computed torques 

canceling the nonlinear components of the 

controlled system. 
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   Table 3 
   The performance of various controllers  

Controller KP KD Position RSME Velocity RSME 

Pd control with position and 
velocity reference 

12691 436 -32.7 10  0.0223 

Pd control with gravity 

compensation 
8507 436 -43.4804 10  0.021 

Pd control with full dynamics 
feedforward 

7053 436 -43.0256 10  0.0182 

Computed torque control 2550.25 101 -42.3469 10  0.0161 

 

. 

 
 

Fig. 5. Position error of the end-effector obtained from 
the simple PD controller. 

 
 

Fig. 6. Velocity error of the end-effector obtained from 
the simple PD controller. 

 
 
Fig. 7. Position error of the end-effector obtained from 

the PD controller with gravity compensation. 

 
 

Fig. 8. Velocity error of the end-effector obtained from 
the PD controller with gravity compensation. 
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Fig. 9. Position error of the end-effector obtained from 

the PD controller with full dynamics feedforward terms 
within the first 0.4 seconds. 

 

 
 

Fig. 11. Position error of the end-effector obtained from 
the computed torque controller within the first 0.25 

seconds. 

 
 

Fig. 10. Velocity error of the end-effector obtained from 
the PD controller with full dynamics feedforward terms 

within the first 0.4 Seconds. 

 

 
 

Fig. 12. Velocity error of the end-effector obtained from 
the computed torque controller within the first 0.25 

seconds. 

 

 

7. Conclusions 

 

In this paper, using Lagrangian multiplier 
approach, a model for the dynamics of the 

manipulator is developed which has a form 

similar to that of a serial manipulator. Then 

we have presented four control algorithms on 

the CPM. The performance of these controllers 

are studied and compared. 

As expected, complete mathematical 

modeling knowledge is needed to give the 

controller complete advantage in motion 
control. The model based control schemes 

perform better than non-model based 

controllers. Hence, the need for studying 

dynamics of robot manipulator as well as 

having a good understanding of various basic 

motion controller theories are important in 
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designing and controlling motion of the robot 

to achieve the highest quality and quantity of 

work. 
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