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This paper presents a set of descriptors for On-line signature writer identification. These 
descriptors are intended to be used in e-business and e-government to detect signature 
forgery where it is hard to identify the writer across the Internet. Some descriptors represent 
global signature features, while the rest are dynamic signature features derived from the 
pen’s linear speed. The forms of forged and the genuine signatures used in this work look 
identical. Cepstral descriptors showed a higher rejection rate of (98%) for all forged 
signatures, and 100% acceptance of any genuine signature. Linear Predictive descriptors 

derived from de-noised signature data delivered significant results with a rejection rate of 
(95%).  

صفات يمكن إستخدامها لاكتشاا  اححتياا  قع عند التوقيع المباشر. هذه اليقدم هذا البحث مجموعة من الصفات للتثبت من هوية المو
صافات شاموليةت تصا  صفات إلى وتنقسم هذه ال والتزوير في أعما  التجارة احلكترونية والحكومة احلكترونية والبنوك احلكترونية.

التوقيعااات صاافات ديناميكيااة مستخلصااة ماان الساارعة الختيااة للقلاام تحاادد هويااة الموقااع وشااك  التوقيااع.  قيااعت وائص العامااة للتوالخصاا
احصلية و التوقيعات المقلدة التي شملتها الدراسة تبدو متابقاة باالعين المجاردة. صافات السبساترا  أعتات معاد  رفاص عاالى يصا  

التوقيعااات الصاالية. كااذلك صاافات التنباام الختااي المستخلصااة ماان بيانااات  % ماان إجمااالى التوقيعااات المقلاادةت وقبااو  لجميااع89إلااى 
 % من التوقيعات المقلدة وقبلت ك  التوقيعات الصلية.89التوقيع بعد إزالة التشويش أعتت نتائج جيدة حيث رفضت 
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1. Introduction 
 

The advent in e-commerce, e-business, e-

banking and, in general, web services 

necessitates the use of a robust, acceptable, 

collectable, and circumventable biometric 

technology for personal identification. 
According to Jain et al. [1], face, facial 

thermogram and signature are the most 

acceptable and collectable biometric tech-

niques. Face biometric shows medium 

performance whilst the facial thermogram and 

signature show lower performance.  
Signature verification has been an 

interesting research topic in Forensic Sciences 

since the beginning of the 20th century. 

Although, these researches are based on 

human signature verification rather than 
automated signature verification, they have 

reported very important notes. Osborn [2] 

reported that the process of forging a 

signature involves two processes; signature 

imitation by copying the features of the 

imitated signature and hiding writer’s 
personal writing characteristics. If the writing 

is free and rapid, it will certainly show many 

of the characteristics of the natural writing of 
the writer no matter what disguise may have 

been employed. Hilton [3] stated that the 

signature has at least three attributes; form, 

movement, and variation.  

The inadequacy of signature for personal 

identification stems from the signature 
matching methods. These methods rely on the 

signature form, and neglect the biometric 

features of the writer [4-8]. Biometric features 

are produced by the movement of the pen on 

the paper. The pen movement is produced by 

muscles of fingers, hand, wrist, and; for some 
writers; the arm. These muscles are controlled 

by brain impulses without any particular 

attention to detail [3]. Thus, this movement is 

the most important part of a signature, and 

can only be captured using graphic tablet and 
stylus. 

The objective of this work is to determine 

the most appropriate descriptors for writer 

identification, given that the forged signature 

and genuine signature look identical. Linear 

predictive coding, linear spectrum frequencies, 
discrete wavelet transform, and Cepstral 

descriptors are tested for writer identification. 
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Although all of them showed some acceptable 

results, the significant results are produced by 

Cepstral Descriptors and Linear Prediction 
Coding. 

The signature verification system, as 

shown in fig. 1, consists of a graphic tablet 

that samples the user signature data and 

delivers it to the host computer. The computer 

receives the data and reformats it to a 
readable form. The data is then filtered, and 

normalized to remove noise, translation and 

rotation information. Different features may be 

extracted from this data, depending on the 

criteria adopted for verification. Verification is 
performed by matching the stored descriptors 

with the input descriptors using the Least 

Mean Square Error (LMSE) criteria to decide 

either to accept or reject the signature. If 

accepted the user is granted access to the 

system. 
The following sections elaborate the 

presented work. section II describes the 

preprocessing of the raw signature data. 

section III explains the Cepstrum Descriptors. 

section IV explains the linear predictive 
coding, and section V demonstrates the 

experimental results. section VI is the 

conclusion. 

 

2. Signature preprocessing  

 
Signatures are captured using an A5 

graphic tablet called "Wacom Graphire". The 

tablet resolution is 40 pixels/mm (1015 

pixel/inch). It samples the pen information at 

100 samples/second. The tablet's pen is 
pressure sensitive (512 Pressure Levels). The 

sampling process is activated as soon as the 

pen enters the proximity above the tablet 

active area (≈ 5mm). Signature capturing 

software starts recording the pen movement 

when pen tip, and continues recording as long 
as the pen is moving. If the pen stops, the 

recording is paused until it moves again. Pen 

removal will pause the recording which will be 

resumed when pen tip pressure reaches the 

pre-defined threshold, and a delimiter code is 
inserted in the data stream. Signature data (S) 

consists of four vectors; two vectors for the     
(x, y) coordinates of the pen, one vector for 

pen-tip pressure (p) and one vector for 

sample's time in milliseconds (t).  
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Signature data in its raw form is not 
convenient for further processing. This data is 

preprocessed for axis displacement, size 

normalization and noise, and jitter removal. 

Different data is derived from the raw data 
such as the derivative of both x and y, pen 

linear speed v(t), and orientation sin θ(t), and 

finally the smoothed pressure )(tp . Fig. 2 

shows the derived data. 
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Where X is the signature's width and Y is 

the signature's height. 
The pen linear speed v(t) is the most 

important data, as it combines the features of 
x’(t) and y’(t). The movement orientation sin 

θ(t) has abrupt changes, which is natural for 

human writing. Movement orientation does 

not play a significant role in writer identifica-

tion, therefore it is neglected. The normalized 
pressure may reflect the writer emotion. 

Unfortunately, out of the collected signatures, 

forty eight percent of the writers are pressing 

the pen to saturation making pressure data 

insignificant for any further processing. 
Consequently, all the features in the next 
stage are derived from the linear speed v(t). 

 

3. Cepstral descriptors 

 

Cepstrum analysis is a nonlinear signal 
processing technique with a variety of 

applications in areas such as speech and 

image processing. The complex cepstrum for a 
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sequence v is calculated by finding the 

complex natural logarithm of the Fourier 
transform of v, then the inverse Fourier 

transform of the resulting sequence [9]. 
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The real cepstrum of a signal v, sometimes 

called simply the cepstrum, is calculated by 

determining the natural logarithm of 
magnitude of the Fourier transform of v, then 

obtaining the inverse Fourier transform of the 

resulting sequence. 
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The cepstrum can be seen as information 
about rate of change in the different spectrum 

bands. It was originally invented for 

characterizing the seismic echoes resulting 

from earthquakes and bomb explosions. It has 

also been used to analyze radar signal 
returns. 

The linear speed v(t) signal may be 

considered as the pen movement signal (low 

frequency spectrum), and different types of 

noise (high frequency spectrum). In the 

cepstrum graph, the pen movement signal will 
appear as steep slant at the beginning of the 

plot. The noise part is usually truncated. 

Thus, only ten cepstrum coefficients are used. 

fig. 3 shows the cepstral descriptors of a 

signature segment. 

 
4. Linear predictive coding 

 

Linear Predictive Coding (LPC) is a tool 
used mostly in audio signal processing and 

speech processing for representing the 

spectral envelope of a digital signal of speech 

in compressed form, using the information of 

a linear predictive model. It is a powerful 

speech analysis technique and a very valuable 
method for encoding good quality speech at a 

low bit rate and provides extremely accurate 

estimates of speech parameters [10]. 

Linear predictive coding has been rarely 

used for signature verification [6]. Although 

there may not be a clear analogy between the 
signature linear speed v(t) and the speech 

signal, LPC is expected to produce good 

descriptors for the signature. Similar to 

cepstrum analysis, the linear speed will be 

considered as pen movement speed and 
multiple noises. LPC is required to model the 

pen movement speed only.   

 

 

 
 

 

 

 

 

 
 

 

 

 

 
 
 

 
Fig. 1. On-line signature verification. 
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a- Displacement speed x'(t) in X direction. b-) Displacement speed y'(t) in Y direction. 

  
c- Movement orientation sin θ(t). d- Normalized pressure p(t) 

 

 
e- Linear speed v(t). 

 
Fig. 2. Data derived from signature. 
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Fig. 3. The relevant cepstral descriptors for a signature segment. 

 

Linear prediction modeling assumes that 
each output sample of a signal, v(i), is a linear 

combination of the past n outputs and that 

the coefficients are constant from sample to 

sample: 
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where )(ˆ nv is the predicted signal value, v(n−i) 

the previous observed values, and ai the 

predictor coefficients. The error generated by 

this estimate is 
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where v(n) is the true signal value. 

Unfortunately, the linear predictive coeffi-

cients derived directly from the linear speed 

were insignificant. The insignificance is 
caused by the proximity of noise frequency 

spectrum to the frequency spectrum of the 

movement speed. Therefore, LPC technique is 

unable to split them.  

The Stationary Wavelet Transform (SWT) 

[12] is employed to de-noise the linear speed 
v(t). The SWT algorithm is very simple and is 

close to the discrete wavelet transform one. 

More precisely, for level 1, all the -decimated 

DWT (only two at this level) for a given signal 

can be obtained by convolving the signal with 
the appropriate filters as in the DWT case but 

without down sampling [13]. Then the 

approximation and detail coefficients at level 1 
are both of size N, which is the signal length. 

The linear predictive coding is then applied 

on approximation coefficients obtained from 
the SWT. Fig. 4 shows the LPC coefficients 

produced for a signature signal [14]. 

 

5. Experimental results  

 

The proposed descriptors are implemented 

and evaluated with 750 signatures from 35 

different writers. The first dataset contains 

250 genuine signatures from 25 writers. Each 

writer is given enough time to get familiar with 
the tablet and the capture software before 

writing his/her ten signatures taken collected 

in one session. The second dataset contains 

500 forged signatures from 10 imitators. None 

of these imitators are professional. Each one is 
trained to imitate one genuine signature 

flawlessly. Afterward each imitator makes 50 

forged identical signatures collected in five 

different sessions. Fig. 5 shows seven genuine 

signatures and one forged signature. 
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(a) 

 
(b) 

 
a- LPC applied to Linear Speed v(t)  b- LPC applied to approximation coefficients of SWT 

 
Fig. 4. Linear predictive coefficients. 

 

 

 
 

 

 

 
 

 
Genuine Signature 

 
Forged Signature 

 
Fig. 5. Sample signatures. 

 

For each signature, the system stores a 

single set of global descriptors and ten 

dynamic descriptor sets for each signature’s 
segment. The signature aspect ratio, number 

of segments, and the end-point location of 

each segment are the global descriptors. 

Dynamic descriptors must contain shape 

information as well as writer specific 

information. Two feature extraction 
techniques are candidate for this task: 

Cepstral descriptors and LPC applied on SWT 

coefficients. 
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5.1. Global descriptors 

 

Global Descriptors matching consists of three 
tests:  

(a) Number of segments must be an exact 

match. 

(b) Aspect ratio value must be within 10% of 

the template aspect ratio. 

(c) Endpoints relative locations must be 
similar and within 10% tolerance. Endpoints 

locations are sensitive to the writing order of 

signature segments. 

Throughout the experiments, the global 

descriptors of 4% of the forged signatures did 
not match the global descriptors of their 

corresponding genuine signatures. The 

mismatch is due to either difference in 

number of segments or out of order writing of 

the segments. Aspect ratio value did not cause 

any rejection. 
From the experiment, it is observed that a 

forged signature dataset is larger by a factor of 

three to six than a corresponding genuine 

signature dataset. On the other hand, the 

changes in size among genuine signatures for 
the same writer are between 10% and 15%.  
 

5.2. Dynamic descriptors 

 

After the Signature has succeeded the 

global descriptors matching, it is subjected to 
shape analysis and writer identification. The 

input signature is matched to ten stored 

genuine signature. The matching is performed 

as segment to segment matching. The failure 

in matching of any segment will cause 
signature rejection.  

Two types of descriptors are tested for 

writer identification.  The first type is the 

Cepstral coefficients. Fig. 6 shows the 

distribution of Cepstral coefficients.  The first 

five coefficients which represent the movement 
speed are sufficient for signature matching. 

Fig. 7 shows example of cepstral coefficients of 

a genuine descriptors versus cepstral 

coefficients of forged signature. From the 

experiments, the cepstral descriptors are more 
likely describing the writer, as 98% of the 

forged signatures are rejected and all genuine 

signatures are accepted. 

The second type of descriptor is the Linear 

Predictive Coding. Fig. 8 shows the 

distribution of linear predictive descriptors. 
From the experiments, the Linear Predictive 

Descriptors yield a remarkable significance 

after removing the noise from the input signal 

using the SWT. Fig. 9 shows the LPC 

descriptors for two segments of a genuine 
signature versus the same LPC descriptors for 

two segments of a corresponding forged 

signature. 

The LPC descriptors has rejected 95% of 

all forged signatures and accepted all genuine 

signatures.  
 

 

 

 
 

 
Fig. 6. Cepstral descriptors variations for genuine signatures. 
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Fig. 7. Cepstral coefficients for genuine and forged signatures. 

 

 

 

 

Fig. 8. LPC Descriptors variations for genuine  signatures. 
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Genuine Signature 

 
Forged Signature 

 
Fig. 9. LPC for genuine and forged signature. 

 
6. Conclusions 

 

In this paper, two feature extraction 

techniques are investigated for dynamic 

signature verification. Cepstrum analysis is a 

spectrum analysis technique, while linear 
predictive coding is a parametric modeling 

technique, but both have a common concept. 

They consider the input signal as a 

combination of high frequency noise source 

and a transfer function that shapes the 
generated high frequency noise. This concept 

is justified for voice and speech signal 

processing. In this work, it is assumed that 

the pen linear speed is a combination of two 

signals, the pen movement speed and different 

types of noise; such as the quantization noise, 
the human hand vibration, the friction of the 

pen again the writing surface, …, etc.. 

Cepstrum analysis delivered a significant 

discrimination between genuine and forged 

signature. It rejected about 98% of all forged 
signature. Linear Predictive coding failed to 

discriminate between genuine and forged 

signatures. This failure is due to the small 

frequency gap between noise frequencies and 

the pen movement speed frequencies. Unlike 

Linear Predictive Coding, Cepstrum succeeded 

to split the movement speed from the noise in 

a single step.  
 To test this hypothesis, the stationary 

wavelet transform is applied to the input 

signature data in order to remove the noise. 

The approximation coefficients of the 

stationary wavelet transform is the de-noised 
signature data. Linear Predictive descriptors 

derived from the de-noised signature data 

delivered significant results. The Linear 

Predictive Coding is able to discriminate 

between genuine and forged signatures with a 

rejection rate of 95% of all the forged 
signatures.  

The computational complexity of the 
Cepstral technique is in the order of O(n3). The 

computational complexity of LPC algorithm 

plus the wavelet de-noising algorithm is in the 
order of O(n4).  Using a Pentium D Dual Core 

computer at 3.4GHz, the calculation of the 
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Cepstral descriptors and LPC descriptors for 

fifty signatures required less than 3 seconds. 

A hardware implementation of these processes 
is advised to perform the authentication at 

real-time.  

From this work, it can be concluded that 

most of the feature extraction techniques 

working on speech signal envelop can be 

applied to signature data after the removal of 
the noise signal. Moreover, signature 

verification is still a promising biometric 

measure for use in electronic transactions and 

more research works are needed to improve 

writer identification techniques.   
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