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This paper tackles the eminent case of a facility layout which is usually modeled in 
literature as a Quadratic Assignment Problem (QAP). In the first part of the paper, two 
models were investigated, the first considers only the material handling cost, and the second 
elaborates the effect of dividing the product flows between cells into batches. Operational 
and design attributes were engaged to the two models by means of a spine driveway layout. 
Effects of using different types of material handling transporters were also explored. A meta-
heuristic procedure combined with simulation search for the optimal layout assignment is 

considered. The two models were analyzed and solved using a set of other well known 
techniques, namely; a greedy, a random, and an explicit enumeration algorithm. A 
comparison was held to illustrate the superiority and the speed of the suggested meta-
heuristic procedure. In the second part of the paper, stochastic products flows (demand) 
between cells were assumed to imitate more pragmatic environment. Five different scenarios 

for the demand were analyzed. The effects of dependencies between product flows, in terms 
of different correlation coefficients, were studied. Finally, optimal assignments under those 
scenarios and the corresponding minimum total cost for the two models were calculated. 
The results evidently demonstrate the soundness of the proposed approach. 

سعالجتهةا  ( التحلةلةة  لQAPتتناول هذه الورقة  السأةةل  السيأةةسة  لتط ةة  السناةةن الةةنالة  والتةم لةام  سةا ةةتن اأةتطمان نسةاذ   
وةقمن الجزء الأول سن الورق  نسوذجةن، حةث ةعرض النسوذ  الأول تسلف  سناولة  السةوام طقة  ماطةل سن وسة  التةةنةة سمالة  للهةم  
بةنسا ةقمن النسوذ  الثانم تةثةر تقأةن ال لب بةن طيةا التةنةة الم مطعان سطتلف   طم سي النسوذجةن ةجةر  امسةا  ال ةرو  العسلةة  

(  ضسن هةذا اط ةار طقةم Spine Drivewayوالتباران تةسةن السناة  سن طيل اطتراض سط    رةق الحبل الاوسم   للتةنةة
تن مراأ  تةثةر اأتطمان وأائل ستعمم  لسناول  السوام للةم مالة  الهةم ، وسةن ثةن اطتبةار النسةوذجةن أةالفم الةذسر، ولقةم سقارنة  بةةن 

  سةة ال رةقة  السقترحة  للوةةول  للحةل الأسثةل طةم ضةوء أقةل التسةالة  وتحةن سجسولة  سجسول  سن أأالةب حل السأائل الستاةابه
حاسةةا  سقارنةة  بةةال رق سالقةةةوم الجمةةةم   حةةةث أاةةارن النتةةائ  الةةم جةةمو  وطعالةةة  أأةةلوب سةةا وراء الحلةةول التقرةبةةة  السبنةةة  للةةم ال

سعالجة  ال لةب  التةمطقان( سةا بةةن طيةةا التةةنةة سست ةةران التقلةمة  لهذه النولة  سن الساسين ةةعب  الحةل  طةم الجةزء الثةانم تةن 
( سةن اجسةالم التةمطقان  %100( و  %20احتسالة ، وذلك سن طةيل أةةنارةوهان سطتلفة  تتةراوه طةهةا نأةب هةذه الست ةةران بةةن  

ره للةةم النسةةاذ  الأةةةلة  ون ةةرالأ لأهسةةة  امرا  تةةةثةر التسةةام سةةوارم التةةةنةة للةةم بعضةةها طقةةم تةةن أةضةةالأ مراأةة  هةةذا السوضةةو  وأثةةا
واسسانةان الوةول للحل وبالتةالم السط ة  الأسثةل لهةذه النولةة  سةن ن ةن اىنتةا  طةم ضةوء ال ةرو  الجمةةم   لقةم أثبتةن نتةائ  هةذا 

 البحث جمو  وسفاء  الأأالةب السقترح  
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1.  Introduction 

 

In today’s highly competitive industrial 

environment, a process facility layout is 
characterized by its flexibility and suitability 

to handle a wide range of volume-variety 

applications. However, it suffers from: plan-

ning issues complexity, intra-traffic conges-

tions, and costs related problems. Many 
researchers with overwhelming number of 

articles were devoted, for decades, to solve the 

aforementioned problems and keep, at the 

same time, the advantages which could not be 

overlooked by other strategic advances in this 

connection. Solutions related to flexible manu-

facturing systems, cellular manufacturing and 
group technology adoption are quite some few 

examples in the field. Nevertheless, classical 

process layout proved its superiority and still 

being adopted in many production systems 

allover the world. 
 
1.1. Motivation for the problem of facility layout  
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The problem of process facility layout is 

concerned with finding the relative locations of 

physical manufacturing facilities (depart-
ments, cells, machines, etc.) to each other. 

The goal is to generate a block plan showing 

the relative positioning of the cells. The 

problem is often tackled by considering 

materials flows between cells and distances 

between locations as input data.  
The dilemma is mostly treated by trying to 

reduce the materials handling and other 

interrelated costs that link respective manu-

facturing cells to locations. With that 

framework, the problem is classically modeled 
as a Quadratic Assignment Problem (QAP), 

Burkard et al. [1]. 

In its general form the case could be 
illustrated by assuming (n) to be the number 

of cells, with known flows between them, to be 
assigned to (n) locations (with known 

distances between them). The problem is 
reduced to find the minimum cost assignment 

of the (n) cells to the (n) locations, as 

described by the following minimum cost 

objective function, Jensen and Bard [2]: 
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Here, (Cijkl) is the cost to assign cell (i) to 
location (k) and cell (j) to location (l). Also, 

(Cijkl) represents material handling and 

implicitly other cost interactions between cells 

(i) and (j). The decision variables are (xik), 
where (xik) equals 1 if cell (i) is assigned to 

location (k) and 0 otherwise. Also (xik) are  

between  0 <( xik) < 1 and integers for i=1,2,…, 
n , and  k = 1,2,…,n. 

The preceding treatment is a usual 

simplifying assumption since it disregards the 

stochastic nature of departmental flows and 
assuming deterministic, known for certain, 

flows (demand). Further, the model is focused 

on finding the cells assignment to locations 

that would minimize only the materials 

handling costs between cells. Justifications for 

such a treatment is attributed to the high 
share (20-50%) of the material handling costs, 

as non-value added costs,  in the total 

production cost of a manufacturing facility , 

Tompkins et al. [3].  As stated in a survey by 

Meller and Gau [4], such an approach was the 
subject matter of numerous research trends 

when attempting to workout the facility layout 

problem. However, even with the deterministic 

versions of the problem, it remains hard to 

solve. This is due to its combinatorial nature, 

yet for fewer numbers of cells and locations; 
the number of alternative configurations is 

enormous. Classified as an NP-hard problem, 

Garey and Johnson [5], the QAP is considered 

as one of the difficult to solve problems in the 

area of combinatorial optimization. It carries 
(n2) decision variables, with (n!) different 

assignment permutations for the objective 

function. 

Another feasible approach is to consider 

the flows between cells to be dynamic in 

nature under the same material handling 
constraints and objective, Conway and 

Venkataramanan [6]. This is a step towards a 

more pragmatic formulation of the problem, 

since demand is subject to change with time.  

With some degree of flexibility in the layout 

design configuration, a dynamic facility layout 
model could further enhance the suitability of 

the model to application, Balakrishnan and 

Cheng [7]. Other research work attempted to 

add some operational, technical aspects and 

physical improvement to the situation, such 
as; different cell design configuration, Filho 

and Tiberti [8], layout with aisles, Gómez, et 

al. [9], flexible layout under uncertainty, Yang 

and. Brett [10], effect of various material flow 

patterns in a manufacturing environments, 

Elbaz [11], and the use of product and process 
parameters to increase routing flexibility, 

Castillo and Peters [12]. 
On the other hand, most of the research 

work in the area focused on using different 
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search techniques to solve the problem.  

Since, its appearance as a sound challenge in 

the literature for industrial facility design, 
operations research, and operations manage-

ment, several methods were implemented.  

 
1.2. Optimization search procedures 

 

As far as the facility layout design is 
concerned, the QAP problem has been tackled 

by numerous algorithms to find near optimal, 

local and/or global optimal solutions. A partial 

list of applicable algorithms is displayed here 

after. In an early attempt, Hosni [13] sug-
gested the use of craft exchange algorithm 

that applied the steepest-descent pair-wise 

procedures to find a near optimal assignment. 

In a most recent work by Ioannou [14] an 

optimal solution is provided with the adoption 

of explicit enumeration technique. Foulds and 
Wilson [15] used a branch and bound 

algorithm for an assignment problem subject 

to a special set of side constraints. The 

resulting model represents a special case of a 

restricted facilities layout problem in which it 
is forbidden to locate any facility in certain 

zones. Ashayeri et al. [16] presented a 

modified simple yet effective generic search 

approach to the classical facility layout 

problem as applied to design warehouses and 

production systems.  
As more practical and operational-based 

issues incorporated, the need for additional 

powerful solution procedures escalates, to 

handle such additional complexities. 

Researches faced the dilemma of whether to 
deal with relatively simplified problems to get 

optimal results, or rather to reach sub-

optimal, second-best, solutions for multifac-

eted situations. Under that framework, 

heuristics are being used comprehensively to 

provide approximate solutions to complex 
facility layout problems, Chan, et al. [17]. 

Alternatively, the area of meta-heuristics 

arose, as valid search methodologies, with the 

goal of providing better environment, based on 

integrating high-level intelligent procedures 
and fast computing capabilities, Solimanpure 

et al. [18].  

With such innovations, the same problem 

was extensively tackled. Few examples are 

illustrated here as the use of; genetic 

algorithm, Lee et al. [19], tabu search, Chiang 

and Chiang [20], simulated annealing, Wang 

et al. [21], ant colony, McKendall and Shang 
[22], and many others. 

Generally, such broad concepts are based 

on not to separate the problem modeling 

realm from the optimization procedure 

domain. However, this made the solutions 

very limited to specific tailored cases. A proper 
treatment of that situation would consider 

building the model first and use a proper 

environment to link it with an optimizer 

Glover et al. [23]. For instance, a Monte Carlo 

simulation platform, built with MS Excel, 
would be used to take inputs from the model, 

change it and then feed it to the optimizer. 

The optimization procedure uses the outputs 

from the simulation model, evaluates the 

outcomes of the inputs, using a search 

procedure, and then feed it back into the 
model. The process continues until some 

termination criterion is satisfied. This 

repeatedly, and successively generated output 

would breed a highly efficient path to the 

optimal solutions. 
 
1.3. Operational characteristics 

  

Despite the aforementioned contributions 

in the problem solution domain, its 

implementation in real and world class 
industry is not widely adopted. Reasons for 

such denial attitude could be attributed to the 

impracticality and inapplicability of the 

suggested methods. The lack of the proposed 

approaches, for example, to reflect the chal-
lenge, in today’s manufacturing environment, 

for product demand variability, and small 

batch size considerations are other prime 

reasons. It is well known that, most of the 

current obstacles that would face industrial-

ists are those raised due to the continual 
changing operational conditions and not to 

design principles. 

The main objective of this paper is to 

consider more practical and operational issues 

than the case when solving the facility layout 
as a problem of system design only. Important 

aspects like the inclusion of batch size 

considerations when material flows between 

cells, which generates setups and work-in-

process inventory are studied. Constraints are 
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xh 

Distance between any two cell location centroids is measured 
rectilinearly as 

d(pk,ph) = [Δykh1+ Δykh2+ Δxkh] 

= [Iyk-yhI+Ixk-xhI] 

Δykh2 

placed on initial conditions to further allow for 

flexibility and modularity. A useful configura-

tion, in this regard, is the spine driveway 
approach to facility arrangement. In addition 

to a deterministic or even a dynamic facility 

problem, a stochastic material flow pattern is 

then considered. On the other hand, a meta-

heuristic solution procedure rather than 

traditional optimization search procedures is 
adopted.  

 

2. Model formulation 

 
2.1. The spine driveway approach 
 

Instead of assuming a completely random 

initial layout design, it is more practical, as in 

real life situations; to start the analysis by 

having a general flow pattern. Such a bound 

on  the  solution  space  is usually  dictated by  
physical and technical constraints. The spine 

approach refers to a central driveway to 

conduct traffic-material, utilities, information, 

and people, Askin and Sandrdidge [24]. Fig. 1 

illustrates the spine concept where cells 
expand out from the central driveway core, 

and aisles can be used to conduct flows into 

cells. Utilities can be carried overhead to 

simplify the network of pipes and cables. 

Material is stored along the spine driveway, 

and with each department has an input and 
output storage area along the spine. This 

departmental storage concept reduces 

material flow as compared to a system’s single 

centralized warehouse visited by all parts and 

materials after each operation. 
Distance between the centroids of any two 

cells along the spine configuration is usually 

measured rectilinearly, as in fig. 1, by the 

equation: 

 
d(pk,ph)= [Δykh1+ Δykh2+ Δxkh]  

= [|yk-yh|+|xk-xh|].     (4) 

 

 

 
 

 

 

 

 

 
 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 
 

 
 
 

Fig. 1. The spine driveway configuration for cellular manufacturing. 

2.2. Batch size considerations  
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During a certain planning horizon, product 

flows between cells could be divided into 

batches with known sizes, in order to utilize 
the main advantage of the spine approach of 

distributing the system main storage area 

among different cell locations. On the other 

hand, and as inspired by a preliminary 

modified EPQ inventory model due to Irani 

and Liu [25], such an assumption would 
amend the generalized QAP model to include 

other cost terms. Accordingly, in this research, 
a certain batch size (Qij) is only allowed at a 

time to transfer between cells (i), (j), when cells 

(i,j) are assigned to locations (k,h), 

respectively. The difference in product 
quantities between the flows (Dij) connecting 
cells (i), and (j) and the transferred batch size 

(Qij) will be held in inter-departmental (Buffer) 

storage for that batch to be processed in the 
corresponding cell (i) with a certain holding 

cost (Hij). Further, a setup cost (Sij) will be 

allocated to cells for products in a rate that 

matches the number of travels between cells. 
The material handling cost in the objective 

function is the sum of material flows, or 
demands, (Dij) between cells multiplied by the 

distances (dkl) between all locations. If the 

material flows are assumed to occur on batch 

size basis, the cost function can be expanded 

to include other cost terms. For instance, 
demand (Dij) is divided to flow in batches (Qij) 

between cells, the number of material 
handling moves will be (Dij/Qij). Thus instead 

of having one material flow between each two 

cells, the number of moves will increase, 

causing the material handling cost to 
increase. Further, such material handling 

movements depend on the type of material 

transporter used. However, such increase in 

material flows is accompanied by the 

generation of instantaneous work-in-process 

(or a buffer) inventory to compensate for the 
difference between the demands (Dij) and the 

actual flow quantities (Qij). As already has 

been stated, the spine drive way layout 

configuration could easily allow for that 

assumption. On the other hand, another cost 

term would be added to portray the batch 
consideration setup cost. Hence, the previous 

QAP objective function in eq. (1) above could 

be expanded to be: 
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Where; for a certain part, and under a 

planning horizon (T): 
Cijkl = Material flow cost per travel between 

cells (i) and (j) when they are assigned to 

locations (k) and (l) respectively ($/travel) 

It should be noted that (Cijkl) is a function 

of the product unit load (uij) (parts/travel), (dkl) 

distance traveled between locations (k) and (l) 
in meters , (Vij) velocity of travel between cells 

(i), (j) (meter/min) , and the material handling 

transporter operational cost (Ot), (Cost of 

moving one part a unit distance at a velocity of 

1 meter/min).  Thus a compelling expression 
for (Cijkl) would be;  

 

ijij

kl

ttijklijijkl
Vu

d
OO,V,d,(u  C  ) .    (6) 

 

To show the effect of using different 
material handling transporter, eq. (6) is 

depicted in fig. 2 for six different types by 

changing the velocity as a parameter in that 

equation.  In addition to the model constraints 

shown in eqs. (3 and 4), the batching process 
dictates that   (Dij/Qij) is greater or equals to 1, 

otherwise 0. 

 
2.3. Application of meta-heuristics search  

 

Classical optimization search techniques, 

like linear programming or integer linear 
programming solvers are efficient for solving 

less intricate problems. However, they 

generally lacked the power to provide high 

quality solutions to complex problems. When 

dealing with the optimization of complex 
systems, as in the case of the QAP facility 

layout, specialized heuristic procedures are 

used which, in general, rely on approximate 

course of action to reach a better solution.  
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Fig. 2. Effect of using different material handling transporters on (Cijkl) coefficient. 

 

For an optimal solution, meta-heuristics 
provided a way of considerably improving the 

performance of simple heuristic procedures. 

Like their heuristic counterpart, meta-

heuristics are also approximate techniques. 

The general form of an iterative meta-heuristic 

based on local search is given in Appendix 1 
(Randall M.C. [26]). 

The search strategies implemented with 

meta-heuristic result in iterative-procedures 

with the ability to escape local optimal points. 

Consequently, the optimization problem is 
defined outside the system, which is 

represented in this case by a simulation 

model. Therefore, the simulation model can 

change and evolve to incorporate additional 

elements, while the optimization routines 

remain the same. Hence, there is a complete 
separation between the model that represents 

the system and the procedure that is used to 

solve optimization problems defined within 

this model. 

The optimization procedure uses the 
outputs from the simulation model which 

evaluate the outcomes of the inputs that were 

fed into the model. On the basis of this 

evaluation, and on the basis of the past 

evaluations which are integrated and analyzed 

with the present simulation outputs, the 
optimization procedure decides upon a new 

set of input values (see fig. 3). The process 
continues until some termination criterion is 

satisfied (usually by a time limit or a number 

of simulation runs set by the user). 

An implementation of the meta-heuristic 
system described above is released under Opt 
Quest for Crystal Ball, Glover et al. [27]. In its 
current version, Opt Quest has been 

specifically customized to help users find 

optimal input parameter settings to simulation 
models built with Crystal Ball, (A registered 

trademark of Decisioneering, Inc.) In order to 

use Opt Quest the user first creates a Crystal 
Ball, Excel-based spreadsheet model. Once the 

simulation model has been created, an option 
can be selected within the system to access 

the optimization procedure. 

A brief description of the search procedure 
and the major components of the Opt Quest 

system algorithm are outlined henceforth.   

Two types of meta-heuristic procedures 
are used; Scatter Search (SS) and Tabu 

Search (TS). Scatter search is designed to 

operate on a set of points, called reference 

points that constitute good solutions obtained 

from the suggested initial solution. The 

approach systematically generates linear 
combinations of the reference points to create 

new points, each of which is mapped into an 

associated feasible point. TS is then 
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superimposed to control the composition of 

reference points at each stage. TS is often 

done by defining suitable attributes of moves 
or solutions, and imposing restrictions on a 

set of the attributes, depending on the search 

history. The search process is intelligently 

guided to forbid certain duplicate or past 

solutions. More detailed information related to 

SS and TS could be found in Laguna [28], and 
Glover [29] respectively. Also check appendix 1 

for pseudo code of both the TS and the SS 

algorithms. 

A neural network filter (accelerator) is 

implemented to increase the power of the 
system’s search engine. The concept behind 

embedding a neural network is to filter values 

of decision variables that are likely to result in 
a very poor value of the objective function.  It 

is a prediction model that helps the system 

accelerate the search by avoiding simulation 
runs whose results can be considered as 

inferior. Information is usually collected about 

the objective function values obtained by 

different optimization variable settings. This 

information is then used to train the neural 
network during the search. The system 

automatically determines how much data is 

needed and how much training should be 

done, based once again on both the time to 

perform a simulation or the optimization time 

limit provided by the user, Glover et al. [30]. 
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Fig. 3. Flow of the meta-heuristic search logic procedure. 
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3.  Product deterministic flows 

 
3.1. Problem initial investigation 
 

To investigate the soundness of the facility 

layout problem model, as described in the 

previous sections, a medium sized case is 

assumed which comprises eq. (10) cells that 

must be assigned to eq. (10) different 
locations. Materials or product flows (demand) 

between cells are assumed to be symmetric. 

Distances are measured rectilinearly between 

cell centroids, in a spine driveway 

configuration and an initial assignment as 
depicted in fig. 4, to denote respective 

locations. Instead of generating a random 

layout, an initial layout is assumed to be 

(12345678910). Cells are arranged in a spine 

driveway (i.e. starting from upper left corner 

with cell 1 in location 1, and up to cell 5 in 

location 5, and then cell 6 from lower left 

corner in location 6 up to cell 10 in location 
10. Tables 1 and 2 display the material flows 
(Dij) and distances (dkl) between cells (n =10). 

As already what has been stated, the problem 

as described has (3,628,800) objective 

functions to evaluate to reach an optimal 

solution.  
With the initial layout assignment, a 

presentation  of  the  total  cost, as given by 

eq. (5), at different batch sizes and using 

different types of material handling 

transporters is given in fig. 4. Results show 

that there is an optimum batch size, for each 
type of transporter, at which total cost retains 

a minimum value as shown in table 3. 

 
 

 

 

 

 
 

 

 

 

 

 
 

 

 

 
 

Fig. 4. Initial assignment and layout configuration.   

 
Table 1 
Flows (demand) between cells 

 

Dij j =1 2 3 4 5 6 7 8 9 10 

i =1 0 78 96 0 81 52 0 0 65 61 

2 78 0 0 87 88 93 0 54 0 76 

3 96 0 0 98 63 95 56 76 0 70 

4 0 87 98 0 88 0 0 85 0 0 

5 81 88 63 88 0 93 0 52 0 74 

6 52 93 95 0 93 0 0 52 52 0 

7 0 0 56 0 0 0 0 84 0 64 

8 0 54 76 85 52 52 84 0 84 58 

9 65 0 0 0 0 52 0 84 0 78 

10 61 76 70 0 74 0 64 58 78 0 

1 2 3 4 5 

5m 3m 4m 6m 6m 
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6 7 8 9 10 
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Table 2 
Distances between corresponding locations 

 

dkl k =1 2 3 4 5 6 7 8 9 10 

l =1 0 14 17.5 22.5 28.5 10 14 17.5 22.5 28.5 

2 14 0 13.5 18.5 24.5 14 10 13.5 18.5 24.5 

3 17.5 13.5 0 15 21 17.5 13.5 10 15 21 

4 22.5 18.5 15 0 16 22.5 18.5 15 10 16 

5 28.5 24.5 21 16 0 28.5 24.5 21 16 10 

6 10 14 17.5 22.5 28.5 0 14 17.5 22.5 28.5 

7 14 10 13.5 18.5 24.5 14 0 13.5 18.5 24.5 

8 17.5 13.5 10 15 21 17.5 13.5 0 15 21 

9 22.5 18.5 15 10 16 22.5 18.5 15 0 16 

10 28.5 24.5 21 16 10 28.5 24.5 21 16 0 

 
Table 3 
Minimum cost and corresponding batch size with different MH transporters  
under deterministic flow pattern between cells (assignment 12345678910) 

with total cost = $ 6099144 @ batch size = D 
 

MH Transporter 1 2 3 4 5 6 

Min cost ($) (*) 139152 282111 392598 485683 567879 642224 

Batch size 34 50 62 70 78 86 

(*)  Conversion factor 1 $    5.72 LE (December 2005 Prices)   

 
3.2. Solving the problem 

 
The problem, as initially analyzed, is 

solved for an optimum assignment using four 

different search strategies, namely; a greedy 

algorithm, a random search, an explicit 

enumeration, and a meta-heuristic approach.  

It should be noted that a problem like the 
one under investigation is hard to solve. The 

greedy method could provide an acceptable 

solution for this problem, and so does, with 

lesser degree, the random generation 

algorithm. Improvements can be applied to the 
randomly generated solutions, and given 

sufficient time, better solutions to the problem 

are possible, Jensen and Bard [2]. Despite the 

overwhelming iterations, explicit enumeration 

can reach an optimal solution. However, it is 

certainly irrational for problems with more 
than 10 cells unless the allowed assignments 

are highly restricted. 

A deterministic material flows between 

cells are considered with two basic models; (a) 

with no batching consideration according to 

eq. (2 and b) with batching process as 
described by means of eq. (5). Algorithms and 

search techniques were conducted on a 

personal computer with an AMD processor of 

2.66 GHz CPU speed and a 512 MB RAM, 
using MS Excel and a set of QAP add-ins that 

were originally developed by Jensen and Bard 

[2], and extensively modified by the author to 
suit the application, as a test bed. Opt Quest 

was the optimization platform environment for 

the meta-heuristic method. A comparative 
analysis between the results obtained using 

the different search techniques is exhibited in 

table 4. Generally, when flows are allowed to 

move in batches, a noticeable decrease in the 

system total cost is achieved. Using different 

material handling transporters in transferring 
batches between cells, also affect total 

minimum costs and its corresponding batch 

size. A greedy algorithm provides a fast, yet a 

non-guaranteed optimal solution to the 

problem, as compared to the random search 
which suggests a best found alternative within 

the search space. Explicit enumeration affords 

an optimal solution; however it suffers from 

extensively large number of search runs (over 

3.6 million runs) and considerable long search 

time (about 3.7 hours) for model (b) problem 
type. On the other hand, Meta-heuristics 

provides the same confident optimal solution 
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and lower minimum cost levels with 

significantly lesser search time (about 5 

minutes) and total solution seek runs (1350 
simulation runs). Best (optimal) solutions were 

reached after (530 and 612)  runs  for  model 

(a and b) respectively. Figs. 5 shows the 

relationship between the minimum total cost 

values versus the number of simulation runs 
with the meta-heuristic approach generated 

for the two models (a and b).

 
 Table 4 
 Results summary for the different search methods 
 

Search 
method 

Search 
time 
(Sec) 

No. of 
runs 

Min cost 
($) @ 
Batch 

size =D 

Optimal 

Min. 
cost ($) 
with 

MHT1 

Min.  
cost ($) 
with 

MHT2 

Min.  
cost ($) 
with 

MHT3 

Min. 
cost ($) 
with 

MHT4 

Min. 
cost ($) 
with 

MHT5 

Min. 
cost ($) 
with 

MHT6 

Optimal 
layout 

Initial (a)  -- -- 6099144 -- -- -- -- -- -- -- 
12345 
678910 

Initial (b) -- -- 6093544 -- 
139152 
(Q=34) 

282111 
(Q=50)  

392598 
(Q=62) 

485683 
(Q=70) 

567879 
(Q=78) 

642224 
(Q=86) 

12345 
678910 

Greedy (a) 28.2 387 5492774 Greedy -- -- -- -- -- -- 
98267 
310145 

Greedy (b) 324 387 5399077 Greedy 
118724 
(Q=34) 

253426 
(Q=46)  

357217 
(Q=58) 

444860 
(Q=66) 

522202 
(Q=74) 

592258 
(Q=82) 

105389 
47261 

Random (a) 42.3 1575 5612954 
Best 
found 

-- -- -- -- -- -- 
27148 
351096 

Random (b) 554 1575 
5589401 
 

Best 
found 

124261 
(Q=34) 

261611 
(Q=46)  

368955 
(Q=58) 

456270 
(Q=66) 

534922 
(Q=74) 

606033 
(Q=82) 

24187 
693105 

Explicit (a) 7390 3628800 5171754 Optimal -- -- -- -- -- -- 
31862 
710954 

Explicit (b) 13550 3628800 5166304 Optimal 
111876 
(Q=34) 

243303 
(Q=46)  

345174 
(Q=58) 

430749 
(Q=66) 

506470 
(Q=74) 

574735 
(Q=78) 

86317 
210954 

Metah (a) 300 530 5171754 Optimal -- -- -- -- -- -- 
31862 
710954 

Metah (b) 300 612 5166304 Optimal 
111876 
(Q=34) 

243303 
(Q=46)  

345174 
(Q=58) 

430749 
(Q=66) 

506470 
(Q=74) 

574735 
(Q=78) 

86317 
210954 

 (a) No batch size consideration 

 (b) With Batch size consideration and different material handling transporters (MHTm) 

 

 

1000

201000

401000

601000

801000

1001000

1201000

1401000

2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102 106 110 114 118

Batch Size

T
o

ta
l 
A

s
s
ig

n
m

e
n

t 
C

o
s
t

MH Transporter (1)
MH Transporter (2)
MH Transporter (3)
MH Transporter (4)
MH Transporter (5)
MH Transporter (6)

 
 

Fig. 5. Total cost as functions of traveled batch size for different types of Material Handling (MH) transporters.  

 

Minimum Cost Line 
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Fig. 6. Minimum total cost with meta-heuristic search output using simulation for models (a and b). 

 

4.  Product flows under uncertainty 

 
Previous work in the area, mostly consider 

a deterministic product flow quantities 

between cells to find an optimal layout 

assignment. Deterministic product flows 

assume that all flows and consequently 

related costs are constant and known for 
certain over a given planning horizon. A more 

realistic formulation of the problem would 

consider such flows to be stochastic in nature. 

Demand conditions, in this context, are 

presented by means of expected values and 
standard deviations, assuming normal 

distribution conditions. This problem 

assumption allows more actual situation 

effectiveness. However, it would rather 

complicate the search for an optimal 

assignment. 
 

4.1. Sources of uncertainties 

 

In real situations, the allotted product 

flows between cells are subject to be under or 
overestimated due to system external 

variability.  It is almost impractical to assume 

that those flows (demands) will meet their 

predicted values when seeking an optimal 

assignment. Lots of factors will cause that 

variability on a production system. For 

instant, effects of the general economic 

conditions, seasonal and random variations, 
customer behavior, competitive environment, 

supply chain responsiveness, etc. A major 

reason of uncertainties is not to consider the 

dependencies between each pair of flows in 

the system. Such circumstances would 

generate due to, for instance, sharing the 
resources between cells. For example, same 

operators, fixtures, material handling and 

tooling may be used for more than a single 

cell.  In spite of that, it is rather difficult to 

capture every correlation coefficient between 
all products flows. An acceptable solution for 

that endemic situation is to assume a general 

correlation coefficient to study the effect of 

such a factor. 

 
4.2. Problem initial investigation  
 

The investigation starts by assuming 

product flows between cells to be stochastic 

under a set of five different scenarios. With a 

preset level of 99% degree of confidence, the 
five scenarios are classified into (20%, 40%), 

(60%, 80% and 100%) of the total flows are 

stochastic. Such operational scenarios 

reproduce different conditions of product flow 

uncertainties which the production system 

would face during parts processing. For 

Total Number of Simulations: 1350 

Neural Network Engaged after simulation: 1350 

Number of Simulations Avoided Due to Neural Network:  0 
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instance, a 20% scenario for the stochastic 

flows of the total demand would imitate a case 

of relatively high certainty environment.  
While, a 100% stochastic product flows 

represent the case of low certainty (high 

uncertainty) of demand circumstances. The 

latter case would be considered, for example, 

in conditions of highly competitive situations.    

The problem is preliminary investigated for 
the two models (a and b) under the initial 

assignment, (i.e. 12345678910). Input product 

flows are assumed to be normally distributed 

with mean = its predicted value, as shown in 

table 1, and with a standard deviation = 10% 
of its mean. For zero product flows, standard 

deviation is considered to equal 1. Simulation 

runs are conducted to analyze the effect of the 

aforementioned assumptions on the system 

total cost values in both cases.  

Results for each run are expressed in 
terms of a frequency distribution, and the 

cumulative probability distribution of the total 

cost function. Another useful output is given 

by the percentiles (Px’s) of the forecast 

probability distribution for the total cost 
function. Where, A Px is the xth percentile of a 

probability distribution. This indicates that 

there is an x% probability that the total cost is 

less than its value at Px.  
 
4.3. Analysis of results 

 

Considering the initial layout, figs. 7 and 8 

are system total cost example outputs of the 

simulation runs under the aforementioned 

(20%) scenario of product flows. Additional 
outputs are summarized in fig. 9 which 

groups the relationships between the total 

costs and the percentile of the total cost 

probability distributions under the five 

different stochastic product flow scenarios for 

model (a). Fig. 10 is the same output as 
generated for model (b). Results clearly 

indicate that the relationship is relatively 

steeper in cases for low level of uncertainties 

in product flows, thus those levels 

approaching a deterministic flow cases. This 
reflects that as the level of uncertainty in 

demand increases (e.g. the 100% scenario) the 

total costs variability increases – the range of 

probable total cost values becomes wider. The 

pivot point at which the relationships are 

intersecting is at the ($620,000) level. The 

probability not to exceed that level is as low as 

(35%) for all scenarios. While there is a (90%) 
probability that the total cost will not exceed 

($6356831), and ($6521367) for the (20%) and 

the (100%) product flows scenarios 

respectively. 

Similar results are drawn for model (b), in 

fig. 10, with improved total cost levels. The 
($6200000) cost level is achievable at a 

probability of (80%) for the (20%) product flow 

scenario and at (58%) for the (100%) scenario. 

Further, a probability of (90%) is observed to 

achieve a cost level of ($6301481) for the worst 
scenario of (100%) stochastic flow as 

compared to the ($6521367) obtained for 

model (a). This is an improvement of about 

(3.4%). 

 

 
 
Fig. 7. Total cost frequency distribution at 20% scenario of 

product flows – simulated output. 

 

 
 

Fig. 8. Total cost cumulative probability distribution at 

20% scenario of product flows – simulated output. 
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Fig. 9. Percentile of the total cost probability distribution at different stochastic demand scenarios – no batch size 
consideration – model (a). 

 
 

 

 
 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 
 
 

 
 
  

  

 
Fig. 10. Percentile of the total cost probability distribution at different stochastic demand scenarios – with batch size 

consideration – model (b). 
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4.4. Effect of dependencies between product 
 flows 

 
Dependencies between product flows are 

experimented by assuming three levels of total 

correlation coefficients. Although it is not 

totally adequate, assuming an inclusive corre-

lation coefficient is satisfactory here for the 

sake of study. Such correlation coefficients 
are: No correlation condition resembles the 

case of no dependencies between product 

flows, a (0.3), and a (0.7) correlation coeffi-

cients represent the cases of relatively 

moderate and strong dependencies respec-
tively. Results for those cases are summarized 

by means of figs. 11 and 12 which display the 

outcome of the different correlation coeffi-

cients on the mean value of the system total 

cost for the two models (a and b). Figs. 13 and 

14  show  the  same  effects  on  the  standard  
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Fig. 11. Effect of correlation on total cost mean under 
different stochastic demand scenarios – no batch size 

consideration – model (a). 
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Fig. 12. Effect of correlation on total cost mean under 
different stochastic demand scenarios – with batch size 

consideration - model (b). 

deviation of the total cost, again for models (a 

and b). Experiments are conducted under the 

previously mentioned five levels of stochastic 
product flows; (20%, 40%, 60%, 80%, and 

100%) scenarios. The results indicate that the 

higher the correlation coefficient the higher is 

the system total cost mean value. Such 

conclusion holds for both models (a and b). 

Also the effects of the correlations are ampli-
fied as the product flows become more 

stochastic in nature (i.e. Scenarios of higher 

stochastic level). Higher values of standard 

deviations, which resemble higher system 

variability, are noticeable for model (b) as com-
pared to model (a). This lead to the inference 

that the system total cost become more 

uncertain and amplified due to the combined 

effects of high correlation, high stochastic 

flows, and batch size considerations.  
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Fig. 13. Effect of correlation on total cost standard 
deviation under different stochastic demand scenarios – 

no batch size consideration - model (a). 
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Fig. 14. Effect of correlation on total cost standard 
deviation different stochastic demand scenarios – with 

batch size consideration - model (b). 
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4.5. Finding the optimal assignment 

 

The meta-heuristic search procedure is 
then implemented under simulation, as in the 

case of deterministic models, with a 

termination criterion of 1000 simulation trials 

to find optimal assignment solutions that 

guarantee minimum total costs.  

Fig. 15 presents the optimization search 
outputs as the minimum total cost obtained 

with the simulation runs using the meta-

heuristic search for model (a). The figure 

includes such an output for the five different 

proposed scenarios of product stochastic 
flows. It shows also the number of simulation 

runs at which the solution is reached for each 

scenario, i.e. the point at which no more 

improvement in the solution is attainable (best 

solution). Fig. 16 gives the same output but 

for model (b) of the problem. 
Table 5 summarizes the results of the 

search experiments and the optimal layout 

under each product flow scenario for the two 

models (a and b) that represent, correspond-

ingly, the cases of no batch size consideration 

and with batch size considerations. 
Both table 5 and fig. 17 indicate that, as 

compared to the optimal solution for the 

deterministic models, a stochastic flow pattern 

leads to higher values of minimum cost and 

variant layout assignments. Such a 
conclusion is augmented as the level of 

uncertainty in product flows increases. 
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Fig. 15. Minimum total cost with the meta-heuristic search output using simulation under different  

demand scenarios for model (a).  
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Fig. 16. Minimum total cost with the meta-heuristic search output using simulation under  
different demand scenarios for model (b). 
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Table 5.  
Optimal assignment and the corresponding minimum total cost under different  

demand scenarios for both models (a and b) 
 

Model (a) - no batch size considerations 

 Under  
Deterministic 
Demand 

20%  
Scenario 

40%  
Scenario 

60%  
Scenario 

80%  
Scenario 

100% 
Scenario 

Min total cost mean 5171754 5192400 5199328 5199300 5211000 5213900 

Best found @ run # 530 465 891 546 754 564 

Optimal assignment 
31862 
710954 

263107 
45189 

641109 
25387 

641109 
25387 

254107 
61389 

24189 
653107 

Model (b) - with batch size considerations 

Min total cost mean 5166304 5174347 5183893 5195111 5202366 5207624 
Best found @ run # 612 345 345 167 459 650 

Optimal assignment 
86317 
210954 

463109 
25187 

461107 
25389 

65110 
94387 

251107 
46389 

25189 
643107 
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Fig. 17. Minimum total cost under different demand scenarios for both models (a and b). 

 

5. Conclusions 

 

Process oriented facility layout is widely 

used in many production environments due to 
its flexibility and suitability to the ever-

changing nature of today’s industry. However, 

assigning the manufacturing facilities to 

locations and minimizing its associated costs 

under the planned inter-facilities flow, is 
usually considered a hard to solve combinato-

rial optimization problem. With the case 

modeled as a quadratic assignment problem, 

many search techniques have been considered 

to tackle this problem, but they lacked the 

practicality and they suffer from the lengthy 

computational time and procedures. Meta-

heuristics techniques combined with Monte 

Carlo simulation platform can significantly be 
used to overcome such drawbacks. Opera-

tional characteristics, as the spine driveway 

layout, could be easily incorporated into an 

Excel based model to replicate real life 

configurations. Dividing the product flows 
(demand) into batches is a second approach 

that would enhance the practicality of the 

models. Such an approach leads also to lower 

cost levels. As compared to the traditional 

optimization search strategies, such as; 
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Greedy, random and explicit enumeration 

techniques, the proposed meta-heuristic 

procedure (a combined Scatter and Tabu 
searches) proved its superiority and speed to 

reach an optimal solution. A further step 

towards more pragmatic treatments is to 

consider a stochastic demand (product flows) 

between facilities (manufacturing cells). To 

append such experiments to the proposed 
models, one may assume that product flows 

may occur in different scenarios (e.g. a 20% of 

the total flows are stochastic in nature with a 

normal distribution), 40%, 60%, 80% and 

100%. The problem is treated using the same 
approach, as in the case of deterministic 

flows, and it shows that with the inflated 

degree of uncertainty, notably lower cost levels 

are achievable with batching considerations. 

Dependencies between product flows are 

common in any manufacturing facility due to 
shared or limited resources and other 

planning issues. Consequently, it is sensible 

to apply some sort of general correlation 

factors between product flows. Despite the fact 

of that such an assumption is difficult to 
calculate and implement in reality, however it 

is reasonable for the sake of experimentation. 

Different global correlation coefficients are 

assumed to study the aforementioned case; 
flows with No correlation, a correlation 

coefficient = 0.3, and 0.7). Experiments reveal 

that with increased altitudes of correlation the 

assignment cost increases. However, mean 

values of the costs are less for models that 

consider batch sizes as compared to those 
without batching. Further, the degree of 

uncertainty (i.e. risk) presented by the output 

cost standard deviations have escalated. 

Finally, the problem was solved under the 

stochastic flow considerations, presented with 
the different scenarios, using the meta-

heuristic approach to get the optimal layout 

assignments. Once again, the proposed 

approach, models and procedures proved 

highly adequate to handle such type of 

difficult to resolve circumstances. For 
instance, one may consider the resulted layout 

assignment in high stochastic scenarios for 

heavy loaded, uncertain demand conditions 

where competitiveness is largely affected by 

those factors.  
 

 

Appendix  

 

Pseudo Code for the Greedy Search (GS) [31] 

 

X = Generate Initial Feasible Solution 

C(X) = Compute initial cost of X; 

Continue = TRUE; 
While (continue = TRUE) 

 Transition = Select a transition from Neighborhood (X); 

      X’ = Apply Transition(X, Transition); 

      ΔC = Compute Change in Cost (X, X’, Transition); 

      If (minimization problem and ΔC < 0)  
           X = X’; 

           C(X) = C(X) + ΔC; 

      Else 

           Continue = FALSE; 

      End If; 

End while; 
Output C(X); 

End. 
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Pseudo Code for the Tabu Search (TS) [26] 

 

X = Generate Initial Feasible Solution 
C(X) = Compute initial cost of X; 

Best_cost = C(X); 

Initialize tabu list T = Ø; 
While (stopping criterion not met) 

  For (s Є N(X)) 

    X’ = Apply Transition(X, s, Transition); 

    ΔC = Compute Change in Cost (X, X’, s); 

  End For; 

       While (suitable neighbor not found) 
              s Є N(X); 

              If (s does not belong to T) 

     X = Apply Transition(X, s, Transition); 

     T = T  s; 
                    C(X) = Compute Cost of X; 

                    found suitable neighbor = TRUE; 
              Else 

     If (aspiration(s) = TRUE) 

      X = Apply Transition(X, s, Transition); 

      C(X) = Compute Cost of X; 

      found suitable neighbor = TRUE; 

     End If; 
               End If; 

        End While; 

        If (minimization problem and C(X) < Best_cost) 

        Best_cost = C(X); 

End While; 
Output Best_cost; 

End. 

 
Pseudo code of an iterative meta-heuristic search algorithm [26] 

 

X = Generate Initial Feasible Solution 
C(X) = Compute initial cost of X; 

While   stopping criterion not met) 

  Transition = Select a Transition from Neighborhood (X); 

 X’ = Apply transition Operator(X, Transition); 

 ΔC = Compute Change in Cost (X, X’, Transition); 
 If (accept) 

     X = X’; 

     C(X) = C(X) + ΔC; 

 End If; 

 If (minimization problem and C(X) < Cbest)  

Cbest = C (X); 
End While; 

Output Cbest; 

End. 
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A pseudo code of the Scatter Search [30] 

 

Procedure Scatter Search; 
Begin 

Repeat 

Create Population (InitP op,InitP opSize); 

Repeat 

Generate Reference Set (RefSet,RefSetSize); 

Repeat 
Select Subset (SubSet,SubSetSize); 

Combine Solutions (SubSet, CurSol); 

Improve Solution (CurSol, ImpSol); 

Until (Stopping Criterion1); 

Update Reference Set (RefSet); 
Until (Stopping Criterion2); 

Until (StoppingCriterion3); 

End. 
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