Dynamic voltage stability analysis in HVDC systems
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This paper presents a novel analysis of voltage stability at both converter and inverter buses
in HVDC systems. The dynamics of DC systems and controllers at different operating
conditions are thoroughly considered. The small signal stability model was applied and used
to identify the stability margin. The sensitivity of AC and DC system variables is computed
at different Short Circuit Ratios (SCR) to illustrate the effect on AC-DC system stability. The
results obtained are validated using nonlinear simulation.
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1. Introduction

The available AC systems are being
increasingly operated outside their linear
domain such that nonlinearities influence
system behavior significantly. The Short-
Circuit Ratio (SCR) - defined as the ratio of
short circuit power at converter bus to the
rated DC power - is used to measure the
strength of the converter bus. Low SCR values
define a weak system where voltage instability
is liable to occur. System voltage instability
has been widely studied from a nonlinear
dynamical system perspective [1]. The power
system is thus viewed as a parameter
dependent system of Differential-Algebraic
Equations (DAE) which defines its underlying
qualitative dynamical structure. The system
undergoes bifurcations and loss of system
stability locally or globally [1, 2]. Several
researchers [4, 5, 6] analyzed the problem
using static analysis. Nevertheless, voltage
instability is a dynamic phenomenon which
requires dynamic analysis for accurate
prediction [1, 3, 7, 8].

In this paper, the analysis of voltage
instability has been carried out considering
the dynamics of the DC system using the
Eigenvalue analysis and the system response
to short circuit ratio variations. The results
are compared with that of static analysis. Also
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the results of small signal stability model are
validated using nonlinear simulation.

2. System model

A general rectifier side HVDC system is
shown in fig. 1. The HVDC system was consid-
ered as an asynchronous interconnection
between two or several unconnected AC
systems. The ac system was represented by
it’s thevenin’s equivalent at fundamental
frequency viewed from the converter bus.

The Voltage Sensitivity (stability) Factor
(VSF) is calculated from the relation for a
general form HVDC as follows [3]:

AU =[VSFAQ; . (1)

Where VSF,; is the partial derivative of the ith
converter bus voltage w.r.t. reactive power
supply at the jth converter bus.

2.1. DC system model

The DC system consists of converters,
controllers, smoothing reactors and DC lines.
The following sets of static equations are used
for representing the rectifier and inverter sides
respectively [3, 9-11].
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Fig. 1. Complete HVDC system for stability analysis.
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2.2. DC network model

The DC network includes converters
(rectifier and inverter), smoothing reactors and
DC transmission line. The DC transmission
line is represented by its n—equivalent. The DC
network is shown in the middle of fig. 1. It is
represented by the following differential

equations:

Igy = (Bor = Realay = Van) / Ln (4)
Var =(Ias = 11)/C: - (5)
Vd2 =L -1/ Cy. (6)
jL =V =Ry I, —Va)/ Ly - (7)
jdz =(Vaa —Replao —Eop)/ Ly (8)

Where
and Eoz = k;a;U; cos f;

Eo1 = kija,U, cosa

Lr and L; are the sum of smoothing reactor
and converter transformer inductances at the
rectifier and inverter side respectively.

2.3. DC system controllers

The DC system controller consists of either
a current, power, voltage or constant delay
angle controller at rectifier side. The inverter
controller consists of either a current, power,
voltage, constant extinction angle or constant
advance angle controller. The differential
equations of a PI current controller at rectifier
side can be written as follows [1, 3]:

XcR :kIR(Idl_Iol)' 9)
g =X +Keg (Igy — 1) - (10)

2.4. AC system model

The active and reactive power flow through
AC lines in both rectifier and inverter can be
written as follows:

P.. =V,Y, cos 6, +V E,Y,; cos(f,. —J,,)
P.., =V7Y, cos @, +V ,E,Y,. C08(6,c —0,,)
Q.. =-V,’Y,sin@, -V E,Y,. sin(0, —,)

Q.., =-V.7Y,sing, -V ,E,Y,. sin(f,c —35,,)- (11)

\
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Where

Y, =1/Z, + jBe =Y, 46, and
Yy =1/Zy + jBey = Y, 20,
Yig=1/Z, =Y,z £0,5, and
?IE = 1/21 =Yg L0

Z, =R, + jX, =Z,£6,and
Zy=Ry+ X, =2,70,

2.5. Small signal stability model

The system differential equations can be
linearized to obtain the state space model:

Xpe = A Xpc+Bupe - (12)

The system algebraic equations can be
written as follows:

Pr+Pr=0
Py —P,; =0. (13)

Qacr +Qar =0
Qua +Qq =0. (14)

By linearizing eqgs. (13 and 14), the state
space form of algebraic equations is obtained:

Where “C”’, and “D” are the
submatrices.

Assuming that D remains nonsingular
along system trajectories as the system
parameters vary, then egs. (12 and 15) are
reduced to:

Jacobian

Where A'= A-BD!C.

Eq. (16) represents the small signal
stability model of DAE suitable for HVDC
system. Voltage stability analysis is carried
out by computing Eigenvalues of system state
matrix A'.

3. Solution methodology

This paper proposes an exact analysis that
incorporates load flow using Newton-Raphson
method at each operating condition defined by
an SCR value. The integration of power flow in
the analysis is needed to cope with the
changes in the AC system leading to a change
in the short circuit ratio. Otherwise, the
results will not be justified. The methodology

is illustrated in fig. 2.

Insert system data
>y
»
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L
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B

v
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equations (4-10 and 13-14)
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[ No
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determine system stability

Print system results

Fig. 2. Solution methodology flow-chart.
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4. Case study

The data of the HVDC system used to
implement the proposed technique is given in
table 1.

Fig. 3-a shows the change of line voltages
at both rectifier and inverter buses as a
function of SCRiuy (reduced from an initial
value of 3.0). The rectifier is on CC and the
inverter is on Cy control. The line voltage at
inverter side is found to be more sensitive to
the decrease of SCR compared with that of the
rectifier side. Hopf bifurcation occurs when
SCRuyy is decreased to 1.97122.

Fig. 3-b shows the phase shift at both
rectifier and inverter bus as a function of
SCRmv. The increase of phase shift at inverter
bus with SCR decrease is greater than that at
the rectifier bus. The outcomes of figs. 3-a, 3-b
are consistent and furthermore demonstrate
the deterioration of stability at low SCR
values.

Fig. 3-c shows the change of DC line
voltages at both rectifier and inverter as a
function of SCRuvy. DC voltages decrease
subsequently as a result of the decrease of AC
line voltage.

Fig. 3-d demonstrates the change of VSF
at inverter as a function of SCRiy. The VSFiy
is increased with the decreasing of SCRy, but
it remains positive which means the system is
still stable until SCRiv equals 1.392176 from
static analysis perspective. Nevertheless,
dynamic analysis shows that instability is
reached at 1.97122 (Hopf bifurcation).

Fig. 3-e demonstrates a sensitivity analysis
without power flow of VSF,, as a function of
SCRmv. Accordingly, the system’s loss of
stability will not occur until SCRmuy is
decreased to 0.6268 from static analysis
perspective and 1.604364 (Hopf bifurcation)
from dynamic analysis perspective. Both
optimistic outcomes demonstrate the
importance of incorporating load flow for
accurate stability analysis.

Fig. 4-a shows the change of line voltages
at both rectifier and inverter buses as a
function of SCRrgect. The rectifier is on CDA
and the inverter is on CC control. The line
voltage at rectifier side is found to be more
sensitive to the decrease of SCR compared
with that of the inverter side. Saddle node
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Table 1
AC and DC lines data (p.u.)

AC line data (p.u.)

Terminal E Rc L X Bce
Rectifier 1.1 0.115 0.0052 0.2857 0.4
Inverter 1.1 0.115 0.0052 0.3333 0.6
DC line data (p.u.)
Ru(p.u.) Lo Ci Ca
0.04462 0.0008235 0.000272 0.000272
1.1 r r r r r r r
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deactivated after initialization.

Fig. 3. System variables for CC/Cy control mode.
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bifurcation occurs when SCRy,y is decreased to
1.942879.

Fig. 4-b shows the phase shift at both
rectifier and inverter bus as a function of
SCRgect- The increase of phase shift at rectifier
bus with SCR decrease is greater than that at
the inverter bus. The outcomes of figs. (4a,
4.b) are consistent and furthermore
demonstrate the deterioration of stability at
low SCR values.

Fig. 4-c shows the change of DC line
voltages at both rectifier and inverter as a
function of SCRgect. DC voltages decrease
subsequently as a result of the decrease of AC
line voltage.

Fig. 4-d demonstrates the change of
VSFrect at rectifier as a function of SCRgect. The
VSFrRret. is increased with the decreasing of
SCRRgect but it remains positive which means
the system is still stable until SCRgect equals
1.247349 from static analysis perspective.
Nevertheless, dynamic analysis shows that
instability is reached at 1.942879 (Saddle
node bifurcation).

Fig. 4-e demonstrates a sensitivity analysis
without power flow of VSFre. as a function of
SCRRgect.. Accordingly, the system’s loss of
stability will not occur until SCRgec. is
decreased to 0.27385 from static analysis

perspective and 1.183852 (Saddle node
bifurcation) from dynamic analysis
perspective. Both  optimistic = outcomes

demonstrate the importance of incorporating
load flow for accurate stability analysis.

Fig. 5 corresponds to a stable case (SCRiny
= 3.0), the rectifier is on CC control while the
inverter is on CB control. Fig. 5-a shows the
time response of DC line current at both
rectifier and inverter. A small change will
occur in inverter current due to CC in inverter
side while a large change occurs in rectifier
side current which reaches steady state after
0.2 sec.

Fig 5-b shows the phase plane of DC line
voltage against DC line current at the inverter
side. The figure illustrates that both DC
voltages reach a stable node point.
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Fig. 4. System variables for CDA/CC mode.
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Fig. 5-a. Response of dc currents due to step change in
inverter current order from 1.0 to 1.01 p.u.
att = 0.5 sec. (SCR = 3.0).
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Fig. 5-b. phase plane of Va2 and 42 due to step
change in inverter current order from 1.0 to 1.01 p.u. att
= 0.5 sec.

Fig. 6 corresponds to an unstable case;
SCRiy. = 2.529724 (Hopf Bifurcation). The
rectifier is on CC control while the inverter is
on CpB control. Fig. 6-a shows the time
response of DC line current at both rectifier
and inverter. A small change occurs in
inverter current due to CC controller in
inverter side while a large change occurs in
rectifier current which oscillates around an
unstable node. Fig. 6-b shows the phase plane
of DC line voltage against DC line current
which illustrates that they oscillate around
unstable node point. Fig. 6-c shows the phase
plane of AC line voltage against DC line
voltage which illustrates that they oscillate
around unstable node point.

Tables 2 and 3 demonstrate the dynamic
and static analysis instability boundaries of
different control modes of HVDC system with
and without power flow implementation.

5. Stability improvement

The system stability can be improved
through control mode selection and / or
reactive power injection at converter bus.

Fig. 7 shows the effect of inserting 0.1 p.u.
reactive power at rectifier bus for the case of
CDA/CC control. The system was found to
maintain its stability until SCR,y is decreased
to 1.796300 instead of 1.942879.

Table 2
Critical SCR (Incorporating power flow)

Control Dynamie Static analysis

mode analysis

CDA/CC 1.942879 (SN) (SCR>= 1.247349)

CDA/CP 2.558700 (SN) 2.5587

CC/Cy 1.971220 (HP) (SCR>= 1.392176)
Stable until power flow

CC/Cp  2:529724 (HP)  foi1ed at 0.965904
Stable until power flow

CDV/ CC  1.942879 (SN)  foiled at 1.247349
Stable until power flow

CP/CP 2443196 (HP)  foiled at 1.461300
Stable until power flow

CDV/CP  2.613013 (SN)  gi1eq at 2.559500

Table 3

Critical SCR (without power flow)

Control . . . .

mode Dynamic analysis Static analysis

CDA/CC 1.183852 (SN) 0.273850

CDA/CP 1.371742 (SN) 1.371742

CC/Cy 1.604364 (HP) 0.626800

CC/CB 2.292001 (HP) 0.336780

CDV/ CC 1.190902 (SN) Stable for all SCR

CP/CB 2.201189 (HP) 0.826240

CDV/CP 1.190902 (SN) Stable for all SCR

Id1
1.0015
; 1.001
;1.0005 F H
1 ]

0.4 0.45 0.5 0.55 0.6 0.65 0.7
Time in sec

Fig. 6-a. Time response of la1 and a2 due to step change
in inverter current order from 1.0 to 1.001 p.u.
at t=1.0 sec at a SCR of 2.529.
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Fig. 6-b. phase plane of Va2 and li2 due to step change
in inverter current order from 1.0 to 1.01 p.u.
att =1.0 sec at a SCR of 2.529.
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inverter current order from 1.0 to 1.001 p.u.
att=1.0 sec at a SCR of 2.529.
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Fig. 7. Effect of reactive power injection.
6. Conclusions

A novel voltage stability analysis for HVDC
systems is proposed. The procedure considers
both of the dynamics of DC systems and
controllers at different operating conditions.

The incorporation of a load flow module
resulted in truly defined stability boundaries.
This in turn facilitates control -corrective
actions in case of system topology changes
during faults and / or switching operations.

The procedure was applied with different
control modes at both rectifier and inverter
sides. The results revealed the importance of
the technique to HVDC system planners and
operators.

Symbols

Pai1, Qd1, Pz are the rectifier and inverter DC

and Qa2 active and reactive power
respectively,

Paci, Qaci, are the active and reactive

Pacz, and power in AC lines in both

Qac2 rectifier and inverter
respectively,

QOs is the reactive power injected at
converter bus,

a, fand y are the rectifier delay angle and
inverter advance and extinction
angle respectively,

cos¢r and are the rectifier and inverter

cos¢y power factors,

ki and ko are the rectifier and inverter
constant,

CC, Cy, CB,  are the constant current,

CDA,CP,CD aconstant gamma, constant

and V beta, constant delay angle,

constant power and constant
DC voltage controllers
respectively,

are the represent the mismatch
of system state variables and
DC system inputs,

xpc and upc

Rrand L are the DC line resistance and
reactance,

dn and dy, are the rectifier and inverter bus
phase angles,

Land X are the commutation inductance
and AC transmission line
reactance respectively,

kirand ker  are the integral and proportional
current controller gain
respectively,

XeR is the output of integral
controller branch, and

SN and HP is the saddle node and Hopf
bifurcations.

Appendix

A B
AC-DC Jacobian = { }
C D
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Do 0 Dy, O Dy c23 Y d2
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Sin(xcl + kp] * (idl - iref]))]
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Cap=
\/(Cos(xd +kp(igr - irefl)) -Reilar/ (k1a;V1)) - Vagiar/ (1- (cos(xc 1+ ki (ia; - trep1)) - Relar/ (kia;V; ))2
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- cos(xg; +kp; ¥ (igr - irep1)) - Reslar/ (kia;Vy)

Cus = Van(V1- (cOS(B) + Rugip/ (kyasVy )2 ) /\[cOS(B) + Regigo/ (ksasVy )/ (1- (coS(B) + Riipy/ (k2a202)) ]
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Dy; = 2V,y€08(0,1) + E Y €0S(thy; - d,,;)

D3 = ViE 1Y ;S0

1- dvl))

Doy =2V,Y5¢08(0c ) + EoY ez COS(thys - d,yn)
Doy =-V3E Yeer SN0, - d,n))

D31 = -2V1yc13i”(9c1) - ElyceISin(gcel

- dv]))

-dy;) - Ud1i2d1/\/(1 - (cos (X + kp; * (id1- irefl)) - Rejigr/ (kia,V,))?) x

\/(1 - (cos(xcl+ k™ (ig; - trer i) - Rclidl/(klalvl))Q) X (coS(Xy; + Kpy(tag - brer 1)) - Rchdz/(kJ‘leJQ)
D33 =ViE1Ye1€0S(0

Dyy = -2VoyoSinf0 ) + EolYeenSinf-Opn + dyp) + iZdQUdz/\/(l - (cos(0,) + RQidz/(kzazvz))Z) X
Rep/ (kya®2)) + 2a20go(1- (08(6) + Repign/ ((kyaqw)) / (c08(6,) + Repign/ (Kyagry )}’ Rep/ (epav°2)
Dyy =VoE Y eenC08(-Opn +d,,0))
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