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In this work, the control method required to fly autoguided aircraft along predetermined 
trajectories by using neural network technique is presented. Three control algorithms are 
analyzed: Off-line trained neural network, modified neural network with feedback on the 
network itself and Modified neural network with linear quadratic feedback on the system. 
Four motions in vertical plane and in three dimensions were studied: Climbing rising, 
vertical zigzag, circular loop and approximated elliptical loop maneuver. The robustness of 

neural network performance is tested by adding uncertainties in the model. The results 
indicate that the three-layer network is reliable and strong enough to represent the inverse 
dynamic of the aircraft. It can execute the desired trajectories with an error less than 2%. 

ثلييحتمة ريية  عصي ة  شيي م  .ثلاث رتد يدذ  ذلثييا   قيح دل  لثايي    لثطي ر ل  ليحتمة فيي  رايي رل  ثفي  ذييال لث تي  ريية طرلقي      يي    

 حغا ي  ر  ةعةي   ش م  عص ة  رعدثي   ذأخة ل   حغا   رجعة  عل  نفاه   : ش م  عص ة  رة رم  نه  را   ،  ش م  عص ة  رعدث لخحة رذ 

لررفي    :ذذي  ع ي رع عي   رف ذضي  في  لثمايحال لث أقي  ذ ثيلاث راي رل  رف ذضي  في  لثفي ل  رل  راي  رة طرلق  أر عي  .خطة 

 عيد لثيا رية لخح ي ر أطل   . ني ق   عطذرلن ف  راحاى رأق  ف  شمل قطيذ رأق  ، لررف   رأق  رحع ج، طذرلن ف  راحاى رأق  

  شي م  عصي ة  رماني  ري  ثيلاث    ي   لل  راث ةي  ذقيدر  رج أن لقيح دلع       عمل  خطأ ف  لثنظ  . ذث د  أظه   لثنحي لثش م 

  %.2ثعمل نمالج عما  ثلط ر ع. ذ مم  لثتصال عل  لثما ر لثمطلاب ف  حدذط خطأ لا  ز د ع  
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1. Introduction 

 

A wide range of autopilot and guidance 
systems has been designed to perform 

prescribed maneuvers within close tolerances. 

The objective of control commands, derived 

from error signals via a guidance algorithm, is 

to decrease the differences between the 

measured and the desired flight conditions. As 
a consequence, the assumed trajectory or 

maneuver can be realized more or less 

precisely. 

An alternative approach known as inverse 

simulation is adopted to determine the control 
actions required by the modeled vehicle to fly 

a specified maneuver [1, 2]. This approach is 

recently receiving wide interest, particularly in 

its application to the solution of aerospace 

problems involving precision maneuvering. 

The requirements imposed on motion are 
treated as program constraints on the system 

and from a program of motion. Consequently, 

the resultant motion of the aircraft is 

considered as a constrained motion (or 

program motion) of the controlled system       
[3, 4]. The neural network approach is applied  

for modeling and control of dynamic problem 

[5-7]. Also neural network is applied for 

system identification for flight modeling and 
control [8-11]. 

 The purpose of this study is to investigate 

the implementation of neural network 

technique to solve the inverse problem of the 

dynamic of flying vehicles. The desired neural 

network should be capable to produce the 
control actions of the aircraft precisely and to 

perform any predefined maneuvers. 

 

2. Aircraft model 

 
The model for the longitudinal motion can 

be written as.     

 

)()()( tButAxtx 


.      (1) 

 
The coefficient of the state matrix A are the 

aerodynamic stability derivatives, referred to 

airplane body axes, in concise form. The 
coefficients of the input matrix B are the 

control derivatives also in concise form.                                                                                          
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Where u is axial velocity, w is normal velocity, 

q is pitch rate, θ is pitch angle, η is elevator 

angle and τ is thrust. The output equation is 

 

)()( tCxty  .         (3) 

                                    
Where C is the identity matrix. 

Eqs. (2 and 3) represent the longitudinal 
small perturbation motion of the aeroplane in 

state space form. 

The lateral equation for small perturba-

tion, referred to body axes, may be treated in 

exactly the same way to obtain the lateral 

state equations as given in eq. (1) 
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Where C is the identity matrix, v is lateral 

velocity, p is roll rate, r is yaw rate,    is roll 

angle, ξ  is aileron angle and ζ is rudder angle. 

Eqs. (2 to 4) are based on the following 

assumptions: The aeroplane is a rigid body 
and the axis system is co-located with the cg. 

In the body, the aeroplane is symmetric about 

oxz and the mass is uniformly distributed, the 

aeroplane is assumed to be flying in steady 

trimmed rectilinear flight (zero roll, side slip 

and yaw angles). Small perturbation and 
stable disturbed atmospheric are also 

assumed. The thrust is controlled by throttle 

lever angle.  

 

3. Case study 
 

Ling-Temco-Vought A-7A Corsair ΙΙ aircraft 

continuous longitudinal and lateral model is 

obtained from Taper (1969) (as shown in 

Cook, M.V.)[12]. Discrete model are generated 

every 0.05 second for both longitudinal and 

lateral equations of motion using Matlab 
program and Simulink technique. 

The main objective of the direct simulation 

is to obtain the input-output data pattern for 

different trajectories required to train the 

neural network. Selecting different elevators 

and rudder angles results in different aircraft 
trajectories. The inputs to the system are the 

selected elevator, rudder and bank angles. The 

outputs are the velocity and the displacements 

of the aircraft, which represent the output 

trajectory. The elevator may take the form of 
step input or sinusoidal input with different 

amplitudes and frequencies as illustrated in 

table 1. 

    

4. Application of neural network 

 
Artificial Neural Network (NN) can be 

applied to work as an inverse model for 

aircraft. A multi-layer feed-forward network 

trained off-line was used. Different training 

algorithm and number of neurons in hidden 
layer are also changed to obtain the optimum 

neural network structure (minimum training 

time with corresponding error). For the 

longitudinal motion, the input layer consists 

of tansigmoid threshold function with four 

neurons, the second layer is also tansigmoid 
and the number of neurons is varied from two 

to ten. The output layer consists mainly of 

single neuron to represent the output variable, 

which is the elevator deflection. For both 

longitudinal and lateral trajectories, the 
number of neurons in the input, hidden, and 

output layers are 4, 25 and 3, respectively. 

Using the Matlab program with Levemberg-

Marquardt    training    algorithm    trainlm   a 
 

Table 1 
Elevator range for longitudinal maneuvers 

 

Maneuver Input 
Amplitude 
(rad) 

Frequencies 
(rad/sec) 

Climbing  Step 0.0174532  
Vertical 
zigzag 

Sine 
wave 

0.05 0.01 

Straight 

loop 

Sine 

wave 
0.08 0.07 

Elliptical 
loop 

Sine 
wave 

0.115 0.15 
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suitable network are designed. First the 

network was trained to perform each 

maneuver separately. Finally it was trained to 
realize all the desired   maneuvers. In this 

case the data pattern lateral includes 8*8008 

inputs and 2*8008 outputs.  

 
4.1. Feed forward aircraft control with NN 

 
A feed forward control of the aircraft 

trajectories can be applied upon using the 

trained network as an inverse model. The 

inputs to the network are the desired 

trajectories. The trajectory is defined by the 
components of velocities and displacements x-

and z-directions.  The output of the network is 

the elevator deflection, which represents the 

control input to the system. The outputs of the 

aircraft dynamic model are the actual 

velocities and displacements of the aircraft in 
x-and z-directions as well as the pitch angle 

and pitch rate.    
 
4.2. Feedback model 
 

Two methods are suggested to modify the 

aircraft inverse model to sustain the abnormal 

conditions such as mach number change or 

model damage. 
 
4.3. Modified neural network model with 
      feedback on the network itself 

 

Neural network may be reconstructed 

such that the inputs to the network are the 

desired  trajectory,   aircraft   velocities  and  a 
Delayed output trajectory. Increasing the 

number   of   input   data   may   increase  the 

 
Fig.1. Neural network structure. 

 

strength of the network [13]. The new system 

block diagram during direct simulation such 

that the output trajectory and the delayed 

trajectory are stored in the output data file   
fig. 2 shows the block diagram of the aircraft 

as controlled with NN with feedback on the 

network.  

 
4.4. Modified neural model with linear 

 quadratic feedback on the system 
 

A second alternative modification is 

suggested by using state feedback on the 

aircraft system. The feedback gain matrix "K" 

is designed based on linear quadratic optimal 
control  (riccati equation) as shown in fig. 3. 

 

5. Results 

 

The network with different number of 
neurons in the hidden layer is trained to 

attain certain error target represented by the 

sum squared error. The number of epochs 

that satisfies the target error is directly 

proportionally to the computer time needed for 

training   processing.  Table 2  represents   the  

 

 

 

 

 

 

 

 

 
 

Fig. 2. Control of aircraft trajectory using NN model with a feedback on the network itself. 
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relation between the sum square error (from 

10% to 1%), the number of neurons in  hidden 

layers (from 2 to 10) and the corresponding 
training time i.e. numbers of epochs. From 

table 2, it can be noticed that the optimum 

number of neurons in hidden layer lies 

between four to six for sum square error 

between 10% to 1%. The decrease in the sum 

of squared error increases the training time. 
Although the best network structure, for 1% 

sum squared error may include four or six 

neurons in the hidden layer, but larger 

number of neurons is useful to increase the 

strength of the network. 
Simulation conducted using the off-line 

trained network shows that the aircraft can 

execute the predetermined trajectories 

successfully especially for climbing and 

vertical-zigzag as shown in figs. 4 - 6. The 

maximum error in tracking both the vertical 
circular is less than 2% as long as the loops 

are performed within the trained zone. The 

feedback on the neural network itself has 

adverse effects on the results. The maximum 

error increases to 6% for straight-rising 
maneuver, 10% for vertical zigzag maneuvers 

and not recommended for the other 

maneuvers because the output results are out 

of maneuvers range. The linear quadratic 

feedback on the system improves the tracking 

of the desired maneuvers. 

The second main object in this work is 
helping the aircraft to sustain the abnormal 

flight condition such as mach number change 

or model damage. When an error was imposed 

in the model and upon implementing the off-

line trained network, the elliptical loop 

maneuvers is insignificantly affected.  
Meanwhile, for vertical rising and vertical 

zigzag motion the network renders maximum 

errors of 3% and 4.5% as the modeling errors 

increases from 10% to 40%.  Errors are 
included in the B matrix of aircraft model and 

the results are depicted in figs. 7 to 9. 
 

Table 2 
Number of epochs needed for certain number of 

neurons in the hidden layer to attain a predefined error 
 

Sum 
square 

errors 

No. of neurons 

S2 =2 S2 =4 S2 =6 S2 =8 S2 =10 

0.1 20 18 16 22 21 

0.05 22 20 18 24 23 

0.02 28 25 25 29 30 

0.015 31 28 31 31 32 

0.01 200 180 180 600 800 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3. NN Feed-forward control and quadratic optimal feed back control. 
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Fig. 4. Vertical-rising maneuver with modified model. 
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Fig. 5. Vertical –zigzag maneuver with modified model. 
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Fig. 6. The vertical-loop maneuver with modified model. 
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Fig. 7. Climbing maneuver with different modeling error. 
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Fig. 8. Vertical loop maneuver with different modeling 
error. 
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Fig. 9. Elliptical loop maneuver with different modeling 
errors. 
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Fig. 10. Climbing 3-D maneuver with 30% modeling error. 

 

 
 

Fig. 11. Vertical-loop 3-D tested maneuver. 

 
The time elapsed in training the neural 

network for 3-D maneuvers is longer than the 

training time for 2-D maneuvers, assuming 

the same sum of the squared error. During 

recall mode the output results for 3-D looping, 
are in good agreement with the desired 

trajectories.  

 

6. Conclusions 

 

It can be concluded that the three-layer 
network is reliable and strong enough to 

represent the inverse dynamics of the aircraft. 

The number of neurons in the hidden layer is 

the most important factor that affects the sum 

of the squared error and the training time. The 
off-line trained network was able to execute 

the predescribed trajectories successfully. The 

linear quadratic feedback on the system 

improves the tracking of the desired 

maneuvers. Meanwhile the feedback on the 
neural network itself has adverse effects. The 

found to be implementation of neural network 

is feasible in the presence of model 

uncertainties. 
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