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The objective of the present investigation is to study the laminar natural heat and mass 
transfer in a symmetrical trapezoidal enclosure. The base and ceiling are isothermal and 
isoconcentration surfaces, while the lateral walls are considered adiabatic and impermeable. A 
mathematical model is constructed and solved numerically.  Both aiding and opposing 

buoyancy forces have been studied. The investigation is made for wide range of buoyancy 
ratio N, -1≤N≤10, inclination angle φ, 0o≤φ≤18.44o, Lewis number Le, 1≤Le≤5 and thermal 
Grashof number GrT, 2x103<GrT<5x106 with fixed aspect ratio A, at A=3, and Prandtl 
number Pr, at Pr=0.7.  The effect of Le, N and GrT on both local and average Nu and Sh are 

studied as well as the average Nusselt and Sherwood numbers are correlated in terms of 
buoyancy ratio and Lewis number. A comparison is made with the previous experimental 
and numerical results. The comparison shows a maximum deviation from –5% to +12.8%. 

البحث يحتوى على دراسه عددية للحمل الرقائقى الحر ثنائى الانتشار )انتقال الحرارة والكتلة( فى حيز على شكل شبه منحرف 
متماثل لاستخدام هذا الشكل فى العديد من التطبيقات الهندسية كالتقطير الشمسى والبيوت الخضراء وتكييف الهواء, وقد فرض ثبات 

من ارضية وسقف الحيز بينما الجدران الرأسية معزولة حراريا وغير نفاذة. وقد تم استنباط نموذج  درجة الحرارة والتركيز لكل
رياضى وتم حلة عدديا, وقد تم دراسة كل من حالة اتحاد وتضاد اتجاة قوي الطفو وقد غطى هذا البحث مدى واسعا للنسبة بين 

11×2ورقم جراشوف الحرارى من  11الى  1–قوتى الطفومن 
3 

11×5ى ال
6

وزاوية ميل سقف الحيز  5الى  1ورقم لويس من  
عندما تكون  17.1درجة )حيز مثلث( بينما اجرى البحث عند قيمة ثابتة لرقم براندل عند 14,11من صفر )حيز مستطيل( الى 

ر النسبه بين قوة الطفو والذى تم اختيارة فى البحث, وقد تم دراسة تأثي  3النسبة بين نصف طول القاعدة والارتفاع الاقصى للحيز 
ورقم لويس وزاوية الميل على كل من خطوط السريان وخطوط ثبات درجة الحرارة وثبات التركيزداخل الحيز وتأثيرهم ايضا على 
كل من رقم نوسلت ورقم شيروود الموضعى والمتوسط وقد عقدت مقارنة مع الابحاث السابقة وقد اظهرت المقارنة توافق مقبول 

 .النشورة مع الابحاث
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1. Introduction 

 

Natural convection in enclosed spaces of 

various forms occupies a large portion of heat 

transfer literature. The square, rectangle and 
cylindrical cavities geometry have been 

considered in many researches. A few 

numbers of studies have considered the 

trapezoidal geometry, which is encountered in 

several practical engineering applications, 

such as greenhouses, sun drying crops, water 
desalination plants and attic spaces in 

buildings. 

Early studies of the combined heat and 

mass transfer in rectangular enclosures were 

reported by Hu and EL-Wakil [1], Ostrach [2- 4] 

and Lee et al. [5].  Bejan et al. [6, 7] conducted 
an analytical and numerical study of the 

combined heat and mass transfer in a vertical 

rectangular enclosure with uniform heat and 

mass fluxes along the vertical sides. They 

studied the effect of Lewis number by using a 

similarity solution. Viskanta et al. [8] examined 
the effect of combined lateral temperature and 

concentration gradients on natural convection 

in a two-dimensional square cavity filled with a 

binary gas. Numerical work on double-diffusive 

natural convection in a square cavity was more 

reported by Beghein et al. [9]. They correlated 
the heat and mass transfer rate in terms of 

Lewis, solutal Rayleigh and Schmidt numbers 

for heat or mass driven flows.  Han and Kuehn 

[10, 11] studied experimentally and numerically 

the double-diffusive natural convection in a 

vertical rectangular enclosure. They presented a 
flow map showing the single and multi cell 
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regions as a function of Lewis number and 

buoyancy ratio.  

Natural convection in trapezoidal 
enclosures have been presented by Poulikakos 

and Bejan [12], and Lam et al. [13]. Lee [14] 

studied natural convection in tilted 

nonrectangular enclosure numerically and 

experimentally. Salmun [15] studied the 

convective patterns in a triangle domain. 
Voropoulos et al. studied the trapezoidal 

geometry in the distillation of saline water in 

greenhouse type solar stills [16]. Few 

researchers have presented results on the 

associated flow and heat transfer problem, 
considering either symmetric as Rheinllnder 

[17] and Palacio et al. [18] or single-slope still 

geometries as studied by Djebedjian and Abou 

Rayan [l9]. Papanicolaou et al. [20] have pre-

sented numerical results for the flow and 

temperature fields in an asymmetric 
greenhouse-type solar still and explain the 

effect of physical and geometric parameters.  

Boussaid et al. [21] studied numerically the 

laminar-flow regime in an enclosure with a 

single inclined surface at the top. They studied 
various angles of inclination and Lewis 

numbers. The binary fluid was air/water 

vapor and numerical results were obtained for 

assisting buoyancy forces, the majority of 
which was at N= 1. For thermal Rayleigh 

numbers (based on height) Ra > 2x 105.  
The interesting phenomena occur when 

the two buoyancy forces, i.e., those due to 

thermal and solutal effects, oppose each other 

and the buoyancy ratio is negative. Such 

configurations, where the driving temperature 

and concentration gradients may be applied 
either in the horizontal or in the vertical 

direction, are prone to instabilities and 

bifurcation phenomena. Ghorayeb et al. [22 

and 23], have presented comprehensive 

results as for as the nature of the bifurcations 
and the respective critical values for their 

onset. The influence of the aspect ratio, Lewis 

number and angle of inclination have been 

investigated. However, oscillatory phenomena 

have been observed also for vertically imposed 

gradients in rectangular geometries by Mamou 
et al. [24]. Recently Papanicolaou and 

Bekssiotis [25]   studied    turbulent    natural  

convective heat and mass transfer in an 

asymmetric trapezoidal enclosure in the two 

dimensions numerically. They studied both 
aiding and opposing buoyancy forces –1<N<1. 

Their solutions yield a multi-cellular flow field, 

with the number of cells depending on the 

Rayleigh number for a fixed Lewis number and 

geometry.    

From the previous review, the effect of 
inclination angle of the symmetrical 

trapezoidal enclosures as well as the effect of 

Lewis number and the buoyancy ratio had a 

shortage of the predicted results and 

correlations to calculate the rate of heat 
transfer and mass transfer. Therefore, this 

research devoted to study these effects for a 

wide range for Lewis number and buoyancy 

ratio. The obtained results for average Nusselt 

and Sherwood numbers were correlated.  

 
2. Mathematical formulation 

 

Fig. 1 shows a schematic of the problem 

considered. A symmetric trapezoidal enclosure 

with flat horizontal base with length 2L, and 
inclined ceiling with an angle φ to the 

horizontals. The bottom and ceiling surfaces are 

considered isothermal and isoconcentration, 

while the vertical walls are considered adiabatic 

and impermeable. Qualitative description of the 

flow directions for both aiding and opposing 
buoyancy ratios were discussed by 

Papanicolaou et al. [20]. The flow in the cavity 

is considered to be steady and two-dimensional. 

Neglecting heat transfer by radiation and the 

fluid is assumed Newtonian and nearly 

incompressible and the viscous dissipation is 
neglected. By introducing the above 

assumptions into the conservation equations of 

mass, momentum, energy, and mass species in 

the Cartesian coordinates, using the Boussinsq 

approximation for the buoyancy term in the 
momentum equation given as; 

 

 )()( oSoTo cc  -  TT - 1  =    .   (1) 

 
And then introducing the following 

dimensionless groups for the governing 

equations,  
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a set of governing equations is obtained as: 
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With the boundary conditions: 
 
At Y=0, U=V=0, and θ=C=1.     (8) 

 
At Y= Hx/Ho, height of the top inclined ceiling, 

U=V=θ=C=0.         (9) 

 
At X= -A, and at X=A: 
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2.1. Nusselt number calculation     

 

Equating the heat transfer by convection 

to the heat transfer by conduction at the 

bottom of the cavity gives:                         
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Introducing the dimensionless variables, 

defined in eq. (2), into eq. (11), gives: 
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The average Nusselt number is obtained by 

integrating the above local Nusselt number 
over the base surface: 
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2.2. Sherwood number calculation  

 

Equating the extracted mass transfer by 

convection to the added mass transfer to the 

cavity gives: 
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Introducing the dimensionless variables, 
defined in eq. (2), into eq. (14), gives: 

 

0















Y

i
Y

C
Sh .           (15) 

 

The average Sherwood number is obtained by 

integrating the above local Sherwood number 

over the base surface: 
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Fig. 1. Geometry of the trapezoidal cavity with boundary 

conditions. 
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3. Solution proccedure 

 

The cavity is symmetric about the 
centerline, Y-axis. Therefore, only the right 

half was solved by introducing the following 
boundary conditions at X=0. 
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Firstly, the number of nodes used was 
checked. Through out this study, the number 

of grids (84   102) was used. The 102-grid 

points in the vertical direction are enough to 

resolve the thin boundary layer near both the 
upper and bottom surfaces sufficiently. Finite 

volume technique developed by Patankar [26] 

was used, which is based on the discretization 

of the governing equations using the central 

differencing in space. A uniform grid was 

taken in the horizontal direction. On the other 
hand non-uniform grid was taken in the 

vertical direction. The control volume height 

was fine at the external boundaries with short 

height and thick at the cavity center to achieve 

the angle of inclination. The ratio between the 
heights of the control volume at outer 

boundaries and at center of the cavity 

depended on ceiling inclination angle. Fig. 2 

shows a sample for grid lines and control 

volumes. The discretization equations were 

solved by the Gauss-seidel method. The 
iteration method used in this program is a 

line-by-line procedure, which is a combination 

of the direct method and the resulting Tri 

Diagonal Matrix Algorithm (TDMA). The 

accuracy was defined by the change in the 
average Nusselt number through one hundred 

iterations to be less than 0.01 % from its 

value. The check showed that 4000 iterations 

were enough for all of the investigated values. 
 
 
 

 
Fig. 2. Geometry of the enclosure with shape of grids in 

the dimensionless form. 

4. Results and discussions 

 
4.1. Hydrodynamic flow results and discussions 
 

In this investigation, the Prandtl number, 

Pr is kept constant at Pr = 0.7, and aspect 

ratio, A=3.  The base case in this study is 
made with φ=10o. It is found that, for -1 ≤ N < 

0, there is a very weak flow due to competition 
between two forces opposing each other. The 

first one is the thermal buoyancy force due to 

the heat transfer and thermal expansion, 

which acts to the upward direction. The 

second one is the buoyancy force, due to the 

mass transfer, which acts to direction of 
downward and opposes the thermal force. 

Samples of streamlines, isotherms, and 

isoconcentration are shown in figs. 3 to 5. Fig. 

3 represents the streamlines, and isotherms 

when Le=1 with different N. For Lewis number 
equals one, the isothermal lines distributions 

are congruent with the isoconcentration lines. 

Therefore, the isothermal lines are enough to 

show the distribution of both isothermal and 

isoconcentration lines. For N=0. Fig. 3-a, as 

an example, it is observed that, the flow field 
is characterized by four recirculating cells in 

each portion of the cavity. As N is increased, 

the characteristics of the flow field don’t 

change but the flow becomes stronger. 

As Le is increased, as shown in fig. 4 for 
Le=3, and fig. 5 for Le=5, and the value of the 

thermal Grashof number in the two figures is 

kept constant, GrT=105. It can be observed the 
same characteristics when Le=1. As N is 

increased, for N>1, a transition of the flow 

field from four cells to three cells in each 

portion is noticed. With further increase in N, 
a transition from three cells pattern to two 

cells pattern in each portion of the cavity is 

occurred. With further increase of N, the two 

cells in the middle of the cavity become very 

weak, and the other two cells in the corners 
become stronger due to the increasing of the 

circulation.     
The effect of the inclination angle, φ can be 

seen in fig. 6 for Le=1, and buoyancy ratio 

N=1. It is noticed that, for φ = 0o (rectangular 

cavity), the flow field is characterized by four 

strong recirculating cells in each portion of the 
cavity. With increasing the inclination angle φ, 

it is noticed that, there is a transition of flow 

Y 
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field from four cells to three cells in each 

portion of the cavity. As seen in fig. 6-e, for 

maximum inclination angle for the 
investigated range for aspect ratio A, at A=3 (φ 

= 18.44o). At this inclination angle the cavity 

will be triangular cavity. In this cavity, the 

enclosure is very narrow at the two edges. 

Therefore a high resistance for recirculating 

flow occurred. The figure shows, two strong 
cells at the middle of the cavity followed by 

four very weak cells, two in each portion of the 

cavity. 
 

4.2. Heat and mass transfer results and 
discussion 

 

Samples of the characteristics of isotherms 

and isoconcentration lines are presented in figs. 

from 3 to 6. Through these figures, the thermal 

Grashof number is kept constant and equal to 
105, while both Lewis number and buoyancy 

ratio are changed. As shown in fig. 3, for Lewis 
number Le=1, and buoyancy ratio N=1, the 

isothermal field is characterised by a big 

upward thermal plume in the middle of the 

cavity followed by two downwards thermal 
plumes, one in each portion of the cavity,  

followed by another two upwards thermal 

plumes. It is noticed that, there are a transition 

in direction of the thermal plumes guided by 
the thermal plume in the middle of the cavity. 

With increasing N, however, it can be seen that, 

the thermal plumes are still in their directions, 

but stratified in some of it and becomes sharp. 

As Lewis number is increased, figs. 4 and 5, for 
Le=3, and Le=5, it can be seen a similar 
characteristics with those for Le=1, when N=0. 

Conversely, with further increase of buoyancy 

ratio N, the thermal plumes directions are 

reversed, and reduced to two plumes, one in 

each portion of the cavity. However, with further 
increase of N, the thermal plumes directions are 

reversed again, and are stratified. It is noticed 
that, the isothermal plumes at high Lewis 

number, and high buoyancy ratio, are stratified 

and consist of a stratified plume in the middle 

of the portion tilted downwards, followed by two 

stratified plumes, one in each portion of the 
cavity, tilted upwards. Also, it can be seen from 

these figures as the Lewis number increases, 

the isoconcentration lines at the cavity base 

become closer than the isothermal lines. This is 

due to the diffusion of mass is higher than the 

diffusion of heat. 
 

 
Streamlines     Isotherms 

 
Fig. 3. Streamlines and Isotherms for A=3, Le=1, φ=10o, and GrT=105. 
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Fig. 4. Streamlines, isotherms, and concentration for A=3, Le=3, φ=10o, and GrT=105 a) N=0, b) N=1, c) N=3, d) N=5, e) 

N=8, and f) N=10. 

 

 

 

 

 

 
 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 
 

 

 
Fig. 5. Streamlines, isotherms, and concentration for A=3, Le=5, φ=10o, and GrT=105, a)N=0, b) N=1, c) N=3, d) N=5, e) 

N=8, and f) N=10. 
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Streamlines    Isotherms 

 
Fig. 6. Effect of inclination angle (φ) on Streamlines, and Isotherms for A=3, Le=1, N=1, and GrT=105. 

 

Fig. 6 shows the effect of the ceiling 

inclination angle φ, on the streamlines. As the 

inclination angle is increased, the streamlines 
at the corners of the cavity become stratified. At 

these zones, the conduction is dominated. 

Therefore, both heat and mass are transferred 

mainly by conduction in these zones.  

Figs. 7 and 8 plot the local Nusselt and 

Sherwood numbers for different Lewis number 
respectively. Both local Nusselt and Sherwood 

look like the saw tooth. This phenomena was 

observed by Boussaid et al. [21] and 

Papanicolaou and Belessiotis [25]. Both local 

Nusselt and Sherwood numbers have peak 
values when the flow cells are coming towards 

the cavity base and have minimum values 

when the flow cells depart from the cavity 

base. This can be also detected from 

isothermal and isoconcentration lines. These 

lines are very close at the positions of the peak 
values and far apart from each other at the 

position of minimum local values. 

 
Fig. 7. Effect of Lewis number on local Nusselt number. 
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Fig. 8. Effect of Lewis number on local Sherwood number. 

 

The average Nusselt number is calculated 

by using eq. (13). The relation between the 

average Nusselt and buoyancy ratio for different 
Lewis numbers is plotted in fig. 9 for GrT =105, A 

=3, and φ = 10o. For small buoyancy ratio, -1 ≤ 

N ≤ 0, there is no effect of increasing Lewis 

number on the value of the average Nusselt, so 
the average Nu has nearly a constant value 

which depends only on the buoyancy ratio. For 

0 < N <2.0, the average Nusselt is decreased 

slowly with the Lewis number. As the effect of 
the driven force by mass is increased, for 2 < N 

≤ 10, the circulation of the flow tends to stratify 

the temperature field. With further increase of 

N, the average Nusselt is increased for Le=1 due 

to the increasing of circulation of the flow field 

which increases the heat transfer. For 3 < N ≤ 
5, and Le >1, the average Nusselt is decreased 

rapidly as the buoyancey ratio. After this 

decrease, the average Nusselt returned to 

increase with the buoyancy ratio. The rapaid 

decreasing in average Nu curves is due to the 

transition of the flow field from four pair of 
cells to three pair of cells, or a transition from 

three pair to two pair of cells.  

The values of average Nusselt nmber for 

the investigated range of both Lewis number 

and buoyancy ratio are correlated as function 
of N, and Le, in the following forms: 
                                                    

188.00294.0358.6  LeNNu .        (18)     

The above correlation is valid for: 
2.0  ≤   N  ≤  10,  2  ≤   Le ≤   5, and  GrT = 105, 

when A =3, and φ=10o.  

The standard deviation for the above 
correlation is 0.048, and the maximum error 

within  +7%.    

A relationship between the average Nusselt 

number, and the buoyancy ratio for different 
ceiling inclination angle φ when GrT =105, A =3, 

Le = 1 is presented in fig. 10. As it is seen, for 

small buoyancy ratio, as the buoyancy ratio is 
increased, the values of the average Nusselt 

number don’t depend on the inclination angle. 

The average Nusselt number is increased 
rapidly for -1 ≤ N ≤ 3 for all investigated φ. 

However, as the buoyancy ratio is increased, 

the average Nusselt number increases slightly 
for high inclination angles. It is also seen that 

in the investigated range for buoyancy ratio, 
for 0 ≤ φ < 10o, there is a rapid decreas 

followed by an icrease in the average Nu in the 

middle of the curves due to the transition of 
the flow fields. For rectangular cavity with φ 

equals zero, the transition in the average 

Nusselt number occurs at buoyancy ratio 

equals to three. The value of buoyancy ratio at 

the transition is increased as the ceiling 

inclination angle is increased. 

                                                                                               
          

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 
 

 

 

 
 

Fig. 9. Average Nu as a function of buoyancy ratio for A=3, 
φ=10o, and GrT=105. 
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Fig. 10. Average Nu as a function of N for A=3, Le=1, and 

GrT=105. 

        

The average Sherwood number is calculated 

by using eq. (16). The relationship between the 
average Sherwood number and buoyancy ratio 
for different Lewis number, with A=3, φ = 10o, 

and GrT = 105 is plotted in fig. 11. Generally, it 

is noticed that, as Lewis number is increased, 

the average Sherwood number is increased due 

to the diffusion increase with mass transfer 
except for N = -1, the average Sherwood has a 

constant value for different values for Le. At this 

value of buoyancy ratio N=1, the flow is 

stagnant and both heat and mass are 

transferred by pure conduction. For N ≥ 3, it 

can be seen that a rapid decrease in the curves 
of the average Sherwood number is due to the 

transition of the flow fields.    

The values of the average Sherwood 

number for the investigated range of both 

Lewis number and buoyancy ratio were 
correlated. The correlated result is in the 

following form: 
                                                                                       

1303.00227.0561.6 LeNSh  .        (19)  

 

The above correlation is valid for: 
2.0  ≤   N  ≤  10,  2  ≤   Le ≤   5, and  GrT = 105, 
when A =3, and φ=10o. 

The standard deviation for the above 

correlation is 0.053, and the maximum error 

within  8.3%. 

 

 

 
                                                                                    

 

 
 

 

 
 

 

 
 

 
 

 
 
 
 

 
 
 
 

Fig. 11. Average Sh as a function of buoyancy ratio for 
A=3, φ=10o, and GrT=105. 

 

To highlight the effect of thermal Grashof 
number on both average Nusselt and Sherwood 

numbers, the thermal Grashof number was 

varied from 2103 to 5106. The Lewis number 
was kept constant at Le=1, buoyancy ratio N=1, 

and inclination angle φ=10. The results are 

plotted in fig. 12. In general, the average 

Nusselt increases with the thermal Grashof 
number. A sudden drop in the value of Nu 

occurs at GrT=4105. To explore the reason of 

this drop, the streamlines for GrT=4105 and for 

GrT=6105 are plotted in fig. 13. The figure 

shows transition in the flow from four pair of 

cells at GrT=4105 to two pair of cells at 

GrT=6105. This transitions in flow drops the 

rate of heat and mass transfer. 
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Fig. 12 Effect of thermal Grashof number on both Average 
Nusselt and Sherwood numbers, Le=1, N=1 andφ=10o. 
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GrT=4x105    GrT=6x105 
 

Fig. 13. Streamlines Le=1, N=1 and φ=10o. 

 

5. Comparison of the nusselt number results 

 

A comparison of the present results for 

Nusselt with those published by Lam et al. [13], 
and Boussaid et al. [21] was made.  

 
5.1. Comparison 

 

A comparison was made at with Lam et al. 
[13] three values of φ equals 5o, 10o, and 15o. As 

illustrated in table 1, there is a wide agreement 

of data between Lam experimental results and 
the present result for φ=5o.  The present result 

is less than Lam’s result by about 4.9%. But for 
φ =15o, there is a departure in the curve 

obtained by Lam. The deviation reached 
approximately 12.48% as shown in the table. 

Lam correlated his experimental results in the 

following correlation:- 

 
















 


278.0

2

cos1
168.0


TRaNu   

199.0

max

max

coscos

cos1
                 



















.       (20) 

 

As shown in fig. 14, there is a big deviation 

between the experimental results of Lam, and 

the results obtained from his correlation. The 
average Nu obtained from the correlation is 

lower than those obtained from experimental 
results. The deviation between the two results is 
about 18% for φ=5o, and 21% for φ =15o.  
 

Table 1 

Comparison with Lam et al. [13] 
 

φ(Degree) 5 10 15 

Nu(Lam experimental 

results) 
4.5 4.3 3.8 

Nu(Lam eqn.) 3.676 3.475 2.99 

%Deviation between lam 
results and lam equation 

18.31 19.17 21.31 

Nu(Present work) 4.29 4.35 4.36 
%Deviation between 

present work and Lam 
experimental results 

-4.899 1.15 12.84 

Some of the obtained results were compared 

with the results published by Boussaid [21]. 
The comparison was made at two values of φ= 

5o, and 10o. Fig. 14 shows the comparison at        
GrT = 105, A = 3, and different inclination angle 

(φ). As shown from figure, there is a departure 

in the result obtained by Boussaid. The 

deviation reached approximately 12% as shown 

in the fourth row of table 2. As the inclination 
angle φ, is increased to 10o, a wide agreement 

can be found with deviation of approximately 
5% as shown in table 2. 

 

6. Conclusions 

 

The laminar natural heat and mass transfer 
in a symmetrical trapezoidal enclosure with 

vertical temperature and concentration 

gradients has been studied numerically for both 

aiding and opposing buoyancy forces. The 

bottom and ceiling  are  considered isothermal 
 

Table 2 
Comparison with Boussaid et al. [21] 

 

φ (Degree) 5 10 

Nu (Boussaid) 3.86 4.6 

Nu (Present work) 4.29 4.368 

%Deviation 10.023 -5.31 

 

 
 

Fig. 14. Comparison of average Nu results for A=3, φ=10o, 
and GrT=105 when Le=1. 
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and isoconcentration surfaces, while the 

vertical walls are assumed adiabatic and 

impermeable surfaces The investigation is made 
for wide range of buoyancy ratio N, -1 ≤ N ≤ 10, 
ceiling inclination angle φ, 0o ≤ φ ≤ 18.44o, (the 

two extremes 0o for rectangular cavity and 

18.44o for triangle cavity) and Lewis number Le, 
1 ≤ Le ≤ 5 with fixed aspect ratio A, at A=3, and 

thermal Grashof number GrT =105. The main 

investigation is made when φ=10o. The following 

remarks were concluded. 
1. For Lewis number equals one the isothermal 

and isoconcentration lines are congruent and 

both average Nusselt number and average 

Sherwood number are equal. 

2. Multy cells were observed in the stream lines, 
these cells were strong in the middle of the 

cavity and weak near the cavity wall. 

3. The local Nusselt and local Sherwood 

numbers look like the saw tooth distribution 

over the cavity base. 

4. The Lewis number has a minor effects on the 
average Nusselt number. The Nusselt number is 

slightly decreased as the Lewis is increased. 

5. The buoyancy ratio has a major effect on the 

average Nusselt and Sherwood numbers. They 

are increased as the buoyancy ratio is 
increased. 

6. The average Nusselt and Sherwood numbers 

are slightly increased as the ceiling inclination 

angle is increased. 

7. A transition of the flow field from four cells to 

three cells and then to two cells occurred as 
both Le, and N is increased. A rapid decreasing 

in both average Nu and average Sh is noticed 

when the transition of flow field occurred. As 
inclination angle is increased, both average Nu 

and average Sh are increased.  

Both Nusselt number and Sherwood number 

can be correlated as follows:     
188.00294.0358.6  LeNNu    

1303.00227.0561.6 LeNSh    

 

Nomenclature 

 
A  is the aspect ratio, L/Ho 

c  is the vapour concentration 

C is the dimensionless vapour 
concentration, C=(c-ci)/(co –ci) 

co, ci  is the concentrations at the bottom, and 

the ceiling of the cavity, respectively 
D  is the mass diffusivity, m2/s  

g  is the acceleration of gravity, m/s2 

GrS  is the solutal Grashof number based on 

the half width of the cavity, GrS = gβ(ci -
co)Ho3/ γ 2 

GrT  is the thermal Grashof number based 

on the half width of the cavity, GrT = 
gβ(Ti -To)Ho3/ γ 2 

h   is the heat transfer coefficient , W/m2K 

hs    is the solutal transfer coefficient, m/s 

Ho   is the maximum height of the cavity, m 

k is the fluid thermal conductivity, W/m K 

L   is the half cavity width, m 

Le   is the Lewis number, Le= α/D=Sc/Pr 

N is the Buoyancy ratio, TCN S   / , 

or N=RaS/RaT 

Nu is the average Nusselt number, 

k

hH
Nu o . 

Nui  is the local Nusselt number, 

0















Y
i

Y
Nu


 

p  is the pressure, N / m2    

P  is the dimensionless pressure,   

 P = pHo2/ρo α 2 

Pr  is the Prandtl number, Pr= γ / 

RaS  is the solutal Rayleigh number,    
  RaS = GrS * Pr 
RaT   is the thermal Rayleigh number,   

  RaT= GrT * Pr 
Sc   is the Schmidt number, Sc= γ/D 

Sh  is the Average Sherwood number, 

D

Hh
Sh oS  

Shi  is the  local Sherwood number, 

0















Y

i
Y

C
Sh  

T    is the local temperature, K 

To, Ti  is the temperatures at the bottom and 

upper cavity surfaces respectively, K 

T    is the temperature difference,    
  ( To – Ti ), K 

u , v    is the velocity components in the x and 

y directions respectively, m/s 

U , V is the dimensionless velocity 

components in the X and Y directions 

respectively, (U= uHo/ and V= vHo/ ) 

x, y  is the dimensional coordinates, m and 

X,Y is the dimensionless coordinates, 

X=x/Ho and Y=y/Ho.  
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Greek symbols 

 

 T is the coefficient of thermal expansion, K-1 

S  is the coefficient of solutal expansion, kg-1 

  is the thermal diffusivity, m2/s 

   is the dimensionless temperature,   

 ( T – Ti ) / ( To –Ti ) 

  is the kinematic viscosity, m2/s 

   is the local fluid density, kg/m3 

o  is the fluid density at the bottom surfaces, 

kg/m3  
φ is the angle of inclination, and 

μ  is the dynamic viscosity, kg/m.s. 
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