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The main aim of this work is to propose a two-stage neuro-fuzzy approach as a Failure 
Detection and Identification (FDI) scheme in dynamic processes. The first stage of the 

scheme is responsible for failure detection and is implemented using a Neuro-Fuzzy (N-F) 

model. The second stage of the scheme is responsible for failure identification and 
classification. The second stage is built using a Hierarchical Structure of Multilayer 
Feedforward Neural Networks (HSMFNN). The proposed scheme is applied on highly 
nonlinear boiler-turbine process for detecting, identifying, and classifying failures of 
different sensors in the process. Simulation results of the proposed scheme prove validity 
and high accuracy.     

 ثط  وممايثط مموغفيوامم ايثعتتممص ي تيي مميي ت مم   يث  وممص يياج  مم ي ممشيثطتمموعصبيثط  ممو  تممفي مماياممحثيثطويممميتومم   ي     مم ي
شيثط تزث  مم ي ممايثط رتتمم  ثبنيتتعمم شيثط     مم يثط رت يمم ي ممشي مم يلت شنيترمم فيثط  يلمم يث  طممايوصرممتروص يث تممص ثبيثط ممصي  ي مم

ثط رتت  ثبيثط ختلف ي إ يث يث تص ثبيثط   ز يطيي مي و ي اي رتت  ي صيأ ي ج    ي مشيثط رتتم  ثبي مشيخمج ي ج   م ي
ترمم فيثط  يلمم يثطةص  مم يوصرممتروص يث تممص ثبي.   ممشيثطتمموعصبيثط  ممو  يثط ف لمم يوممصط  وايثط مموغفيتيممصعاي  مم يثط رتتمم  ثبيثط ختلفمم 

 غمصي مشيخمج يةمجمي رمت  صبي ت ثط م يي رمت   شي مشيثطتموعصبيثط  مو  ي ت ميي يثطوورمصبيثط صي  ي شيثط  يلم يث  طماي تت ص م ي 
وص تمص ثبيثطتمايتيميييثط رتتم  يثطتمصط ييث يي-أىيثط  يلم يثطةص  م يي–  رت ىيأخ  ي  ة ي تا ي و ىي لايثط  وايثط وغف(ي تـ ي صي

عمشيت م   ي م ليثط وم ي مشيخمج يث تمص ثبيثط مصي  ي ج    يثط رتت  ثبيثطتصطف ي ىييصط ي ج يي و يوأعة ي شي رتت  (ني  
طتتمخ  يأ ومص ي رتتم  ثبي  م حطي يوم يوخص  م يطت ط مييثطعغ ومص ي أةوتمبيي يم ثط رت شيثط  يل يثطةص   نيت بي يصعص يثط      ي

ي تصئجيثط يصعص ي جي  يثط      يثط رت ي يطلتوو اي يق ي تصئجغصنيييييي
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1. Introduction 

 

In dynamical processes, faults may be 

divided into two main classes: abrupt faults 
and incipient faults. Abrupt faults give rise to 

jumps in the process parameters, resulting in 

an appreciable deviation from normal system 

behaviors. On the other hand, incipient faults 

affect the process behavior slowly and may 

take a long time before being detected.  
 The use of Artificial Neural Networks 

(ANNs) for Failure Detection and Identification 

(FDI) purposes has received increasing 

attention in both  research  and application 

[1-7]. 

 Neuro-Fuzzy (NF) methods have also 
played an important role in FDI due to their 

capability to use simultaneously quantitative 

and qualitative knowledge and the ability to 

represent some kind of uncertainty present in 

real process [8, 9].    

 In the most FDI schemes two stages 

should be developed, namely; failure detection 
stage and failure identification stage. This 

paper proposes a scheme with failure ident-

ification stage formed by Hierarchical Struc-

ture of Multilayer Feedforward Neural Netw-

orks (HSMFNN) that has the advantages of the 

ability to learn. The proposed scheme is 
applied to detect, identify, and classify abrupt 

and incipient multiple sensor failures in highly 

non-linear boiler-turbine process.  

 The paper is organized as follows: section 

2 introduces the description of the failure 

detection stage. Section 3 provides the descri-
ption of failure identification stage. Section 4 

addresses the dynamic behavior of the boiler-

turbine process as a case study. Section 5 
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presents the simulation of failures of sensory 

system of the case study and the response of 

the proposed scheme. Finally in section 6 
some concluding remarks are given.  

 

2. Proposed failures detection stage 

  

 The proposed failures detection stage is 

implemented using the idea of model based 
failure detection which considers the comp-

arison of the model output with the real 

values measured from the process, thereby 

generating the residuals which are failure 

indicators [10, 11].   
 The proposed failure detection approach 

utilizes an Adaptive Neuro-Fuzzy Inference 

System (ANFIS) to model the different sensors 

for the given process. ANFIS as addressed in 

[12] is a feedforward network structure consi-

sting of nodes, some of these nodes are adap-
tive, which means each output of these nodes 

depends on the parameter (s) pertaining to 

them. ANFIS receives a group of pairs of data 

and use numerical hybrid iterative procedures 

to update the nodes parameters. ANFIS having 
two inputs X, Y and one output F with two 

fuzzy if-then rules is shown in fig. 1.  

Suppose that the rule base of the ANFIS 

shown in figure 1 contains the following rules:   

 

Rule 1: 
If X is A1 and Y is B1 then F1 = p1 X+ q1 Y + r1  

 

Rule 2:  
If X is A2 and Y is B2 then F2 = p2 X + q2 Y + r2  

 

The output of different layers can be described 
as follows:  

Layer 1: every node i in this layer has the 

following functio 

 

   ,XXO Aii 1          (1) 

 

 

Fig. 1. ANFIS architecture. 

where;  
X  is the input to the node i  

Ai  is the linguistic label (small, large …  

  etc.), and 
µAi (X) is the membership function; such that; 

 

  ,

a

cX

X
bi

i

i

Ai



























 



2

1

1
        (2) 

 

where;  iii c,b,a are the premise parameters.   

Layer 2: every node in this layer multiplies the 

incoming signals and sends the product out. 

 

    .YXwO BiAiii  2        (3)                                                       

 

Layer 3: the i-th node in this layer calculates 

the ratio of the i-th rule firing strength to the 

sum of all rules firing strengths:  
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Layer 4: every node i in this layer has the 

following function:  

 

    ;rYqXpwFwXO iiiiiii 4        (5) 

 

where;  iii r,q,p are consequent parameters 

Layer 5: the single node in this layer computes 

the overall output as the summation of all 

incoming signals, i.e,  
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 It is noted that, only layer 1 and layer 4 

contain modifiable parameters. Learning or 

adjusting of these parameters is a two step 
process. First, while holding the premise para-

meters fixed, the information is propagated 

forward in the network until layer 4 where the 

consequent parameters are identified based on 

least squares estimate. Then, in the backward 
path the consequent parameters are held fixed 

while the error is propagated and the premise 
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parameters are calculated using gradient 

descent algorithm.  

For process containing n sensors, a num-
ber of n ANFISs are required to model all exis-

ting sensors. 

 

3. Proposed failure identification and 

classification stage 

 
 The HSMFNN is proposed to identify and 

classify multiple simultaneous faults. The 

hierarchical structure has three levels; namely 

lower level, medium level, and upper level [13]. 

Fuzzy operators are used within the HSMFNN, 
n neuro-fuzzy ANDs connect between lower 

level neural network and medium level neural 

networks and n neuro-fuzzy ORs constitute 

the upper level. Figure 2 depicts a HSMFNN 

with m input residuals – n output failure 

classifiers.  
The lower level with m input – n output 

feedforward multilayer neural network FFMNN 

receives residual signals ( mR,...,R,R 21 ) and 

produces signals ( nY,...,Y,Y 21 ), Yi has a value 

ranging from 0 to 1, where; i = 1, 2, …  n.   

 The medium level consists of n-FFMNNs, 

each is identical to the lower level neural 
network. The number n is equal to the 

number of sensors considered. The inputs to 

each neural network of the medium level are 

the residuals fuzzy ANDed with each output of 

the lower level neural network and can be 

written as:  
 
min (R1, Y1), min (R2, Y1), … , min (Rm, Y1), 

min (R1, Y2), min (R2, Y2), … , min (Rm, Y2), 

           

           
min (R1, Yn), min (R2, Yn), … , min (Rm, Yn). (7) 

 

Based on fuzzy AND operator, the value of 

any input to any neural network of the med-

ium level is ranging from 0 to 1.   
The outputs of each medium layer neural 

network are ( nZ,.....,Z,Z 21 ) and also each 

output is ranging from 0 to 1.   
 Fuzzy OR operators constituting the upper 

level are used to produce the final signals that 

specify the faulty sensor (sensors) with class-

ification of the failure type. Based on the fuzzy 

OR operator, the outputs of upper level can be 

written as:       
 
F1 = max (Z1 of NN1, Z1 of NN2, … , Z1 of NNn), 

F2 = max (Z2 of NN1, Z2 of NN2, … , Z2 of NNn), 

           

           
Fn = max (Zn of NN1, Zn of NN2, …, Zn of NNn). (8) 

 
 

Fig. 2. The hierarchical structure of multilayer feedforward neural network.. 
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4. Case study 

 

 In this section, the boiler-turbine process 
is introduced as a case study. The sensory 

system of the boiler-turbine process is sele-

cted to test the proposed neuro-fuzzy scheme. 

The mathematical model proposed by Astrom 

et al. to solve the non-linear dynamics of the 

boiler-turbine was given in [14] as:    
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where; 4321 uandu,u,u are process inputs, 

such that:  

:u1 is the fuel flow, :u2 is the steam flow, 

:u3 is the feed water flow, :u4 is the air flow. 

4321 and x x,xx , are process states, such 

that, :x1 is the steam pressure state, :x2 is 

the generated electric power state, :x3 is the 

fluid density state,  :x4 is the oxygen level 

state, ecs qa and are two additional param-

eters, such that, :acs is the steam quality, 

:qe is the evaporation rate, 4321 andyy,y,y  

are the process outputs, such that, :y1 is the 

steam pressure, :y2 is the generated electric 

power, :y3 is the drum water level, :y4 is the 

oxygen level, All inputs 4321 anduu,u,u  are 

normalized, such that:  

10 4321  u,u,u,u .  

The configuration of boiler-turbine is 

shown in fig. 3.   
The sensory system of the boiler-turbine 

process contains four sensors; namely: steam 

pressure sensor, generated electric power 

sensor, water level sensor, and oxygen level 

sensor.  

 Based on the pressure sensor description 
in [15], the pressure sensor input-output 

relationship can be derived as:  

 

,S.V pressuresteam volts1020518 3     (12) 

 
where; S: is the steam pressure in kg / cm2 . 

 Based on the optical fiber current sensor 

description in [16], the current sensor input-

output relationship can be derived as:  
 

,I.V phcurrent volts102232 2       (13) 

 

where; PhI : is the phase current in Amps.  

 Based on the fluid level sensor description 

in [17], the water level sensor input-output 

relationship can be derived as:  

 

 
,

.
pC.

pC.
.

leveldrum
V volts

50])214
105332(610[

610911
7913







                   (14) 
 

where; pC : is the probe capacitance in Farad.  

 Based on the high temperature oxygen 

sensor description in [18], the oxygen level 
sensor input-output relationship can be 

derived as:  

,
O

O
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5. Simulation and results 

 

 The case study is simulated by MATLAB 
Simulink using eqs. (9-11). The proposed 

failures detection stage is simulated for four 

ANFISs to model the different sensors based 

on the relations defined in eqs. (12-15). The 

input-output training data for different 

ANFISs are illustrated in tables 1- 4. 

The proposed ANFIS structure for mode-
ling the different sensors is shown in fig. 4. 

The outputs of different ANFISs as sensor 

models at no failure case are shown in figs. 5-

8.
 

 
 

Fig. 3. Boiler-turbine configuration. 

 
Table 1 
data used to train ANFIS to model steam pressure sensor at no failure 

 

Pressure Kg/Cm2 0 20 40 60 80 100 120 

Sensor out (volt) 0 0.364 0.728 1.092 1.456 1.821 2.185 
Pressure Kg/Cm2 140 160 180 200 220 240 260 

Sensor out (volt) 2.549 2.913 3.277 3.641 4.005 4.369 4.7333 

 
Table 2 
Data used to train ANFIS to model current sensor at no failure 

 

IPh (amp) 0 20 40 60 80 100 120 

Sensor out (volt) 0 0.445 0.889 1.334 1.779 2.223 2.668 
IPh (amp) 140 160 180 200 220 240 260 
Sensor out (volt) 3.112 3.557 4.002 4.446 4.906 5.336 5.78 

 
Table 3 
Data used to train ANFIS to model water level sensor at no failure 
 

Water level 0 0.5 1 1.5 2 2.5 3 

Sensor out (volt) 0 1.235 1.872 2.256 2.513 2.697 2.834 
Water level  3.5 4 4.5 5 5.5 6  

Sensor out (volt) 2.941 3.027 3.096 3.155 3.204 3.246  

 
Table 4 

Data used to train ANFIS to model oxygen level sensor at no failure 
 

Oxygen level 1 2 3 4 5 6 8 10 15 20 

Sensor out (volt) 0 3.253 5.155 6.505 7.552 8.408 9.758 10.8 12.71 14.06 
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Fig. 4. ANFIS structure for modeling different sensors. 

 
 

 
 

Fig. 5. Steam pressure sensor model output in volts in no 
failure case. 

 
 

 
 
Fig. 6. Current sensor model output in volts in no failure 

case. 

 

 
 

Fig. 7. Water level sensor model output in volts in no 
failure case. 

    

 
 
Fig. 8. Oxygen sensor model output  in volts in no failure 

case. 
 

Abrupt and incipient failure simulations of 

different sensors with their related residual 

values are shown in figs. 9-16.  

 The proposed failure identification and 
classification stage is simulated through the 

development of lower, medium, and upper 

levels as described in section 3. The lower 

level is a FFMNN that receives four residual 
signals (R1, R2, R3, and R4) and produces 

signals (Y1, Y2, Y3, and Y4), each ranging from 

0 to 1 and classifies the failure type of faulty 
sensor (sensors). The lower level FFMNN is 

trained using Levenberg Marquardt algorithm, 

the structure of such a network is shown in 

fig. 17.    
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Fig. 9. Simulation of abrupt and incipient failures for 
steam pressure sensor at instant 1200. 

 

 
 

Fig. 10. Residual "R1" in case of abrupt and incipient 

failures of steam pressure sensor. 
 

 
 

Fig. 11. Simulation of abrupt and incipient failures for 
electric current sensor at instant 1200. 

 
 

Fig. 12. Residual "R2" in case of abrupt and incipient 
failures of electric current sensor. 

 

 
 

Fig. 13. Simulation of abrupt and incipient failures for 
water level sensor at instant 1200 

 

  
Fig. 14. Residual "R3" in case of abrupt and incipient 

failures of electric current sensor. 
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Fig. 15. Simulation of abrupt and incipient failures for 
oxygen level sensor at instant 1200. 

 
Fig. 16. Residual "R4" in case of abrupt and incipient 

failures of oxygen level sensor. 

 

 

 
Fig. 17. The structure of lower level FFMNN. 

 
 The maximum values of residuals of faulty 

sensors don't exceed 5 volts, and the mini-

mum values of residuals at no failure cases 

are not less than -0.5 volt therefore input trai-

ning data to the lower level of the proposed 
HSMFNN is ranging from (-0.5 to 5). The 

maximum values of residuals at no failure 

case are not more than 0.5 volt therefore the 

threshold value of failure occurrence is desig-

ned as 0.7 volt. Input-output training data 

and failure classification of HSMFNN lower 
level are summarized in table 5. The lower 

level is trained on no failures as well as abrupt 

and incipient failures of single and double 

faulty sensor (sensors) using Levenberg Marq-

uardt algorithm.  

 
 Table 5 
 Input-output training data and failure classification of HSMFNN lower level 

 

Input Output (target) Failure classification 

-0.5  Ri < 0.7 Yi = 0 No failure 

0.7   Ri < 1.5 0.5   Yi < 0.9  Incipient failure 

1.5   Ri   5 0.9   Yi   1 Abrupt failure  

  
 

 Table 6 
 Inputs to FFMNNs in the medium level 

  

FFMNN Inputs 

FFMNN1 min (R1, Y1),   min (R2, Y1),   min (R3, Y1),   min (R4, Y1) 

FFMNN2 min (R1, Y2),   min (R2, Y2),   min (R3, Y2),   min (R4, Y2) 

FFMNN3 min (R1, Y3),   min (R2, Y3),   min (R3, Y3),   min (R4, Y3) 

FFMNN4 min (R1, Y4),   min (R2, Y4),   min (R3, Y4),   min (R4, Y4) 
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Detection, identification and classification of 

failures accomplished by the lower level are 

not enough; therefore HSMFNN is proposed.    
 The medium level contains four identical 

FFMNNs. Each medium level neural network 

is identical to the lower level FFMNN. Based 

on "fuzzy AND" operators between lower and 

medium levels, the inputs to different medium 

level neural networks are summarized in table 
6.   

Each FFMNN in the medium layer is 

trained on no failure as well as incipient and 

abrupt failures of single and double faulty 

sensor (sensors) using Levenberg Marquardt 
algorithm. The input-output training data for 

each FFMNN in the medium level is 

summarized in table 7; proposed failure 

classification is also given in table 7.  

 Four "fuzzy OR" operators are used as an 

upper level of the HSMFNN that specify the 
faulty sensor (sensors) and classify the failure 

(failures) type. If we assume the signals 

coming out from each FFMNN of the medium 
level are (Z1, Z2, Z3, and Z4) respectively, the 

four final outputs produced from the upper 

level are given by:    
F1 = Max (Z1 of FFMNN1, Z1 of FFMNN2, Z1 of 

FFMNN3, Z1 of FFMNN4)   
F2 = Max (Z2 of FFMNN1, Z2 of FFMNN2, Z2 of 

FFMNN3, Z2 of FFMNN4)         (16) 

F3 = Max (Z3 of FFMNN1, Z3 of FFMNN2, Z3 of 

FFMNN3, Z3 of FFMNN4) 

F4 = Max (Z4 of FFMNN1, Z4 of FFMNN2, Z4 of 

FFMNN3, Z4 of FFMNN4) 

The detailed MAT-LAB Simulink simul-

ation of HSMFNN for the case study is shown 
in fig. 18.  

 The simulation proved that the proposed 

scheme is very active in diagnosis and classif-

ication of single/double abrupt/incipient fail-

ure (s), to assess the performance of the 

proposed HSMFNN scheme, double abrupt, 
double incipient and double abrupt-incipient 

failures of sensors are simulated. Tables 8-10 

illustrate simulation results for some sample 

failures.  

 

 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 

Fig. 18. Detailed Simulation simulation of HSMFNN for the case study. 
 

 
Table 7 
Input-output training data for each neural network in the medium level 

 

Input Output (target) Failure classification 

From 0 to 0.4 0 No failure 

0.5 0.5 Incipient failure 
0.7 0.7 Incipient failure 
0..8 08 Incipient failure 
0.9 0.9 Abrupt failure  

1 1 Abrupt failure 



M. El-Adawy et al. / failures in sensors 

194           Alexandria Engineering Journal, Vol. 45, No. 2, March 2006  

Table 8 
HSMFNN outputs for double abrupt failures 

 

Double 

abrupt 
failures 

Lower level 
outputs 

Middle level outputs Upper 

Level 
outputs 

Class- 
ification FFMNN 

1 
FFMNN 
2 

FFMNN 
3 

FFMNN 
4 

R1 = 3 
R2 = 4 

R3 = 0 
R4 = 0 

Y1 =0.9741 
Y2= 1 

Y3= 0 
Y4= 0 

Z1=0.9994 
Z2=0.9969 

Z3= 0 
Z4= 0 

Z1=0.9956 
Z2=0.9953 

Z3= 0 
Z4= 0 

Z1= 0 
Z2= 0 

Z3= 0 
Z4= 0 

Z1= 0 
Z2= 0 

Z3= 0 
Z4= 0 

F1=0.9994 
F2=0.9969 

F3 = 0 
F4 = 0 

2 / 2 

R1 = 3 

R2 = 0 
R3 = 4 
R4 = 0 

Y1=0.9972 

Y2= 0 
Y3= 1 
Y4= 0 

Z1= 1 

Z2= 0 
Z3=0.9995 
Z4= 0 

Z1= 0 

Z2= 0  
Z3= 0 
Z4= 0 

Z1=0.9994 

Z2= 0 
Z3=0.9999 
Z4= 0 

Z1= 0 

Z2= 0 
Z3= 0 
Z4= 0 

F1= 1 

F2 = 0 
F3=0.9999 
F4 = 0 

2 / 2 

R1 = 3 

R2 = 0 
R3 = 0 
R4 = 4 

Y1= 0 

Y2= 0 
Y3= 0 
Y4=0.9931 

Z1= 0 

Z2= 0 
Z3= 0 
Z4= 0 

Z1= 0 

Z2= 0 
Z3= 0 
Z4= 0 

Z1= 0 

Z2= 0 
Z3= 0 
Z4= 0 

Z1=0.9995 

Z2= 0 
Z3= 0 
Z4=0.9997 

F1=0.9995 

F2 = 0 
F3 = 0 
F4=0.9997 

2 / 2 

R1 = 0 

R2 = 3 
R3 = 4 

R4 = 0 

Y1= 0 
Y2= 0.07 
Y3= 1 

Y4= 0 

Z1= 0 
Z2= 0 
Z3= 0 

Z4= 0 

Z1 = 0  
Z2 = 0 
Z3 = 0 

Z4 = 0 

Z1= 0 
Z2=0.9994 
Z3=0.9999 

Z4= 0 

Z1= 0 
Z2= 0 
Z3= 0 

Z4= 0 

F1 = 0 
F2=0.9994  
F3=0.9999  

F4 = 0 

2 / 2 

R1 = 0 
R2 = 3 

R3 = 0 
R4 = 4 

Y1= 0 
Y2=0.9928 

Y3= 0 
Y4= 1 

Z1= 0 
Z2= 0 

Z3= 0 
Z4= 0 

Z1= 0 
Z2=0.9954 

Z3= 0 
Z4=0.9968 

Z1= 0 
Z2= 0 

Z3= 0 
Z4= 0 

Z1= 0 
Z2=0.9998 

Z3= 0 
Z4= 1 

F1 = 0 
F2=0.9998 

F3 = 0 
F4= 1 

2 / 2 

R1 = 0 

R2 = 0 
R3 = 3 
R4 = 4 

Y1= 0 

Y2= 0 
Y3=0.9992 
Y4=0.9996 

Z1= 0 

Z2= 0 
Z3= 0 
Z4= 0 

Z1= 0 

Z2= 0 
Z3= 0 
Z4= 0 

Z1=0 

Z2=0 
Z3=0.9993 
Z4=0.9999 

Z1= 0 

Z2= 0 
Z3=0.9998 
Z4=0.9998 

F1 = 0 

F2 = 0 
F3=0.9998 
F4=0.9998 

2 / 2 

 
Table 9 
HSMFNN outputs for double incipient failures 

 

Double 
incipient 

failures 

Lower level 
outputs 

Middle level outputs Upper 
level 

outputs 

Classification 
FFMNN 
1 

FFMNN 
2 

FFMNN 
3 

FFMNN 
4 

R1= 0.85 
R2 = 0.9 
R3 = 0 
R4 = 0 

Y1=0.5681 
Y2=0.6891 
Y3= 0 
Y4= 0 

Z1=0.5995 
Z2=0.5994 
Z3= 0 
Z4= 0 

Z1=0.6908 
Z2=0.6907 
Z3= 0 
Z4= 0 

Z1= 0 
Z2= 0 
Z3= 0 
Z4= 0 

Z1= 0 
Z2= 0 
Z3= 0 
Z4= 0 

F1=0.6908 
F2=0.6907 
F3 = 0 
F4 = 0 

2 / 2 

R1 = 0.85 
R2 = 0 
R3 = 0.9 
R4 = 0 

Y1= 0.588 
Y2= 0 
Y3=0.5846 
Y4= 0 

Z1=0.5989 
Z2= 0 
Z3=0.5982 
Z4= 0 

Z1=  0 
Z2= 0 
Z3= 0 
Z4= 0 

Z1=0.592 
Z2= 0 
Z3=0.5923 

Z4= 0 

Z1= 0 
Z2= 0 
Z3= 0 
Z4= 0 

F1=0.5989 
F2 = 0 
F3=0.5982 
F4 = 0 

2 / 2 

R1 = 0.9 
R2 = 0 
R3 = 0 
R4 = 0.9 

Y1=0.5997 
Y2=0 
Y3=0 
Y4=0.6006 

Z1=0.5998 
Z2= 0 

Z3= 0 
Z4=0.5998 

Z1= 0 
Z2= 0 
Z3= 0 
Z4= 0 

Z1= 0 
Z2= 0 
Z3= 0 
Z4= 0 

Z1=0.6005 
Z2= 0 
Z3= 0 
Z4=0.6005 

F1=0.6005 
F2 = 0 
F3 = 0 
F4=0.6005 

2 / 2 

R1 = 0 

R2 = 0.85 
R3 = 0.9 
R4 = 0 

Y1= 0 

Y2=0.4613 
Y3=0.679 
Y4= 0 

Z1= 0 
Z2= 0 
Z3= 0 
Z4= 0 

Z1= 0 
Z2=0.4293 
Z3=0.4293 
Z4= 

Z1= 0 

Z2=0.6527 
Z3=0.6373 
Z4= 0 

Z1= 0 
Z2= 0 
Z3= 0 
Z4= 0 

F1 = 0 

F2=0.6527  
F3=0.6373  
F4 = 0 

2 / 2 

R1 = 0 
R2= 0.85 
R3 = 0 

R4= 0.9 

Y1= 0 
Y2=0.5181 
Y3= 0 

Y4=0.6266 

Z1= 0 
Z2= 0 
Z3= 0 
Z4= 0 

Z1= 0 
Z2=0.5165 
Z3= 0 
Z4=0.5185 

Z1= 0 
Z2= 0 
Z3= 0 
Z4= 0 

Z1= 0 
Z2=0.6249 
Z3= 0 
Z4=0.6253 

F1 = 0 
F2=0.6249 
F3 = 0 
F4=0.6253 

2 / 2 

R1 = 0 
R2 = 0 

R3 = 0.85 
R4 = 0.9 

Y1= 0 
Y2= 0 
Y3=0.5837 
Y4=0.3528 

Z1= 0 
Z2= 0 
Z3= 0 
Z4= 0 

Z1= 0 
Z2= 0 
Z3= 0 
Z4= 0 

Z1= 0 
Z2= 0 
Z3=0.5909 
Z4=0.5892 

Z1= 0 
Z2= 0 
Z3= 0 
Z4= 0 

F1 = 0 
F2 = 0 
F3=0.5909  
F4=0.5892 

2 / 2 
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Table 10 
HSMFNN outputs for double abrupt-incipient failures 

 

Double 

abrupt-
incipient 
failures 

Lower level 
outputs 

Middle level outputs Upper 

level 
outputs 

Classification 
FFMNN 
1 

FFMNN 
2 

FFMNN 
3 

FFMNN 
4 

R1 = 3 
R2 = 0.75 

R3 = 0 
R4 = 0 

Y1= 1 
Y2= 0 

Y3= 0 
Y4= 0 

Z1= 1 
Z2=0.7654 

Z3= 0 
Z4= 0 

Z1= 0 
Z2= 0 

Z3= 0 
Z4= 0 

Z1= 0 
Z2= 0 

Z3= 0 
Z4= 0 

Z1= 0 
Z2= 0 
Z3= 0 
Z4= 0 

F1= 1 
F2=0.7654 
F3 = 0 
F4 = 0 

2 / 2 

R1 = 3 

R2 = 0 
R3 = 0.75 
R4 = 0 

Y1=0.9834 

Y2= 0 
Y3= 0 
Y4= 0 

Z1= 1 

Z2= 0 
Z3=0.4754 
Z4= 0 

Z1= 0 

Z2= 0 
Z3= 0 
Z4= 0 

Z1= 0 

Z2= 0 
Z3= 0 
Z4= 0 

Z1= 0 
Z2= 0 
Z3= 0 
Z4= 0 

F1= 1 

F2 = 0 
F3=0.4754 
F4 = 0 

2 / 2 

R1 = 3 

R2 = 0 
R3 = 0 
R4 = 0.75 

Y1= 1 

Y2= 0 
Y3= 0 
Y4= 0 

Z1= 1 

Z2= 0 
Z3= 0 
Z4=0.9977 

Z1= 0 

Z2= 0 
Z3= 0 
Z4= 0 

Z1= 0 

Z2= 0 
Z3= 0 
Z4= 0 

Z1= 0 

Z2= 0 
Z3= 0 
Z4= 0 

F1= 1 

F2 = 0 
F3 = 0 
F4=0.9977 

1 / 2 

R1 = 0 
R2 = 3 
R3 = 0.75 

R4 = 0 

Y1= 0 
Y2= 1 
Y3= 0 

Y4=0.1566 

Z1= 0 
Z2= 0 
Z3= 0 

Z4= 0 

Z1= 0 
Z2=0.9969 
Z3=0.9044 

Z4= 0 

Z1= 0 
Z2= 0 
Z3= 0 

Z4= 0 

Z1= 0 
Z2= 0 
Z3= 0 

Z4= 0 

F1 = 0 
F2=0.9969  
F3=0.9044  
F4 = 0 

1 / 2 

R1 = 0 
R2 = 3 

R3 = 0 
R4 = 0.75 

Y1= 0 
Y2= 1 

Y3= 0 
Y4=0.9987 

Z1= 0 
Z2= 0 

Z3= 0 
Z4= 0 

Z1= 0 
Z2=0.9942 

Z3= 0 
Z4=0.3935 

Z1= 0 
Z2= 0 

Z3= 0 
Z4= 0 

Z1= 0 
Z2=0.9955 
Z3= 0 
Z4=0.751 

F1 = 0 
F2=0.9955 
F3 = 0 
F4=0.751 

2 / 2 

R1 = 0 

R2 = 0 
R3 = 3 
R4 = 0.75 

Y1=0.9983 

Y2= 0 
Y3= 1 
Y4=0.9997 

Z1= 0 

Z2= 0 
Z3=0.2948 
Z4= 0 

Z1= 0 

Z2= 0 
Z3= 0 
Z4= 0 

Z1= 0 

Z2= 0 
Z3=0.9957 
Z4=0.9975 

Z1= 0 
Z2= 0 
Z3=0.9528 
Z4=0.7068 

F1 = 0 
F2 = 0 
F3=0.9957  
F4=0.9975 

1 / 2 

 

 

6. Conclusions  

 
 Simulation results of applying the 

proposed HSMFNN to the case study prove its 

validity, feasibility and high accuracy. Al-

though the proposed technique considers 

training for single and double failures of the 

same type it achieves superior performance in 
detecting, identifying and classifying failures 

of different types. 
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