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The main aim of this work is to propose a two-stage neuro-fuzzy approach as a Failure
Detection and Identification (FDI) scheme in dynamic processes. The first stage of the
scheme is responsible for failure detection and is implemented using a Neuro-Fuzzy (N-F)
model. The second stage of the scheme is responsible for failure identification and
classification. The second stage is built using a Hierarchical Structure of Multilayer
Feedforward Neural Networks (HSMFNN). The proposed scheme is applied on highly
nonlinear boiler-turbine process for detecting, identifying, and classifying failures of
different sensors in the process. Simulation results of the proposed scheme prove validity
and high accuracy.
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1. Introduction

In dynamical processes, faults may be
divided into two main classes: abrupt faults
and incipient faults. Abrupt faults give rise to
jumps in the process parameters, resulting in
an appreciable deviation from normal system
behaviors. On the other hand, incipient faults
affect the process behavior slowly and may
take a long time before being detected.

The wuse of Artificial Neural Networks
(ANNs) for Failure Detection and Identification
(FDI) purposes has received increasing
attention in both research and application
[1-7].

Neuro-Fuzzy (NF) methods have also
played an important role in FDI due to their
capability to use simultaneously quantitative
and qualitative knowledge and the ability to
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represent some kind of uncertainty present in
real process [8, 9].

In the most FDI schemes two stages
should be developed, namely; failure detection
stage and failure identification stage. This
paper proposes a scheme with failure ident-
ification stage formed by Hierarchical Struc-
ture of Multilayer Feedforward Neural Netw-
orks (HSMFNN) that has the advantages of the
ability to learn. The proposed scheme is
applied to detect, identify, and classify abrupt
and incipient multiple sensor failures in highly
non-linear boiler-turbine process.

The paper is organized as follows: section
2 introduces the description of the failure
detection stage. Section 3 provides the descri-
ption of failure identification stage. Section 4
addresses the dynamic behavior of the boiler-
turbine process as a case study. Section 5
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presents the simulation of failures of sensory
system of the case study and the response of
the proposed scheme. Finally in section 6
some concluding remarks are given.

2. Proposed failures detection stage

The proposed failures detection stage is
implemented using the idea of model based
failure detection which considers the comp-
arison of the model output with the real
values measured from the process, thereby
generating the residuals which are failure
indicators [10, 11].

The proposed failure detection approach
utilizes an Adaptive Neuro-Fuzzy Inference
System (ANFIS) to model the different sensors
for the given process. ANFIS as addressed in
[12] is a feedforward network structure consi-
sting of nodes, some of these nodes are adap-
tive, which means each output of these nodes
depends on the parameter (s) pertaining to
them. ANFIS receives a group of pairs of data
and use numerical hybrid iterative procedures
to update the nodes parameters. ANFIS having
two inputs X, Y and one output F with two
fuzzy if-then rules is shown in fig. 1.

Suppose that the rule base of the ANFIS
shown in figure 1 contains the following rules:

Rule 1:
IfXis Aiand Yis Bithen Fi =p1 X+ q1 Y+ ni

Rule 2:
If Xis Asand Yis Bothen o =po X+ qp Y+ 1

The output of different layers can be described
as follows:

Layer 1: every node i in this layer has the
following functio

O; (X)=p5: (%), (1)

Layer 1 Lay.er 2 Layer 3 Layer 4 Layer 5

Fig. 1. ANFIS architecture.

where;

X is the input to the node i

Ai is the linguistic label (small, large ...
etc.), and

Mai (X) is the membership function; such that;

(2)

Hai (X):

where; {a;, b;, c;}are the premise parameters.

Layer 2: every node in this layer multiplies the
incoming signals and sends the product out.

Oi2 =W; = Hai (X) X Hpi (Y) - ()

Layer 3: the i-th node in this layer calculates
the ratio of the i-th rule firing strength to the
sum of all rules firing strengths:

0} =w,=—— Y. i=1,2, ... (4)

Layer 4: every node i in this layer has the
following function:

Oi4 (X):wiFi:lT)i (piX+qu+ri); )

where; { Di>q;, ri}are consequent parameters

Layer 5: the single node in this layer computes
the overall output as the summation of all
incoming signals, i.e,

> wF,
O?(X):ZV_\li Fi =—— (6)

. Zi:wi '

It is noted that, only layer 1 and layer 4

contain modifiable parameters. Learning or
adjusting of these parameters is a two step
process. First, while holding the premise para-
meters fixed, the information is propagated
forward in the network until layer 4 where the
consequent parameters are identified based on
least squares estimate. Then, in the backward
path the consequent parameters are held fixed
while the error is propagated and the premise
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parameters are calculated wusing gradient
descent algorithm.

For process containing n sensors, a num-
ber of n ANFISs are required to model all exis-
ting sensors.

3. Proposed failure identification and
classification stage

The HSMFNN is proposed to identify and
classify multiple simultaneous faults. The
hierarchical structure has three levels; namely
lower level, medium level, and upper level [13].
Fuzzy operators are used within the HSMFNN,
n neuro-fuzzy ANDs connect between lower
level neural network and medium level neural
networks and n neuro-fuzzy ORs constitute
the upper level. Figure 2 depicts a HSMFNN
with m input residuals — n output failure
classifiers.

The lower level with m input — n output
feedforward multilayer neural network FFMNN

receives residual signals (R,, R, ,...,R,,) and

produces signals (Y;, Y, ,...,Y, ), Yihas a value
ranging from O to 1, where; i= 1, 2, ... n.

The medium level consists of n-FFMNNSs,
each is identical to the lower level neural
network. The number n is equal to the
number of sensors considered. The inputs to
each neural network of the medium level are

the residuals fuzzy ANDed with each output of
the lower level neural network and can be
written as:

min (R, Y1), min (R, Y1), ... , min (Rm, Y1),
min (Ri, Y2), min (Ry, Y2), ... , min (Rm, Y2),

[ ) [ ) [ ]

[ ) [ ) [ ]
min (R, Yn), min (Re, Yn), ... , min (Rm, Yn). (7)

Based on fuzzy AND operator, the value of
any input to any neural network of the med-
ium level is ranging from O to 1.

The outputs of each medium layer neural
network are (Z;,Z,,..... ,Z,) and also each

output is ranging from O to 1.

Fuzzy OR operators constituting the upper
level are used to produce the final signals that
specify the faulty sensor (sensors) with class-
ification of the failure type. Based on the fuzzy
OR operator, the outputs of upper level can be
written as:

F1 = max (Z1 of NN1, Z1 of NNQ, ee Z1 of NNn),
F> = max (Z, of NNi1, Z> of NN, ... , Z> of NNy),
[ ] [ ] [ ]

Fn = max (Zn of NN1, Zn of NNy, ..., Zn of NNp).(8)

| : Z,
: Neuro- [—> +
—— > T
: ® ;ur:loy. 9 NN e
T
1
° } ;) . ! ko
1
R, L) | / : (0]
|
R, 24 ’f/ Neuro- 69 I[
NNo Y2 fuzzy NNZ 1
¢ o N 2] om, | | ® —> Fi
R T : \J : Neuro > F
| -fuzzy °
: [ ORs —>
| | n
i 1
" I
| |
I ! F )
! |
\ I Z
i |
! Neuro- [—2 :
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Fig. 2. The hierarchical structure of multilayer feedforward neural network..
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4. Case study

In this section, the boiler-turbine process
is introduced as a case study. The sensory
system of the boiler-turbine process is sele-
cted to test the proposed neuro-fuzzy scheme.
The mathematical model proposed by Astrom
et al. to solve the non-linear dynamics of the
boiler-turbine was given in [14] as:

x1=0.9u; —0.0018 u, x7® —~0.15u; ,

[(0.73u, —0.16)x})/® —x, ]

X2 = , 5
10 9)
[141ug —(1.1uy —0.19)x; ]
X3 = ,
85

x4 =

~0.154 x4 + 103.5462 u, —107.48 u; —1.9515 u; x4 .

29.04 uy +1.834 y,

and;

(1-0.001538 x;)(0.8 x; —25.6)

a,. = s 10
® x4(1.0394-0.0012304 x; ) (19)
q.=(0.854u, —0.147)x; +45.59 u,
~-2.514 uy —2.096 .
and;
h=%X,
Yy=X3 (11)

y3=0.05 {0.13073 x3 +100 ags +[%@j } - 67.975 ,

Ya=Xq .

where; u; , u, , uzandu, are
such that:

u, :is the fuel flow, u, :is the steam flow,

process inputs,

us :is the feed water flow, u, :is the air flow.

X; X5, Xxzand x,are process states, such
that, x; :is the steam pressure state, x, :is
the generated electric power state, xj; :is the

fluid density state, x, :is the oxygen level

state,a, and g, are two additional param-
eters, such that, a,:is the steam quality,
q. :is the evaporation rate, y;, Yy, , Yz andy,
are the process outputs, such that, y,:is the

steam pressure, Yy, :is the generated electric

power, y;:is the drum water level, y,: is the
oxygen level, All inputs u,;, u,, uzandu, are

normalized, such that:
O<uy, uy, uz, us <1.

The configuration of boiler-turbine is
shown in fig. 3.

The sensory system of the boiler-turbine
process contains four sensors; namely: steam
pressure sensor, generated electric power
sensor, water level sensor, and oxygen level
sensor.

Based on the pressure sensor description
in [15], the pressure sensor input-output
relationship can be derived as:

1% =18.205x10 3 xS

Steam pressure VOltS’ (12)
where; S: is the steam pressure in kg / cm?.

Based on the optical fiber current sensor
description in [16], the current sensor input-
output relationship can be derived as:

V.

current

=2.223x107% xI volts, (13)
where; Ip, : is the phase current in Amps.

Based on the fluid level sensor description
in [17], the water level sensor input-output
relationship can be derived as:

1.91><10_6/Cp

=3.791 volts,

drum level [106+(2.533x10714/ CIQO)]O'S

(14)

where; C,: is the probe capacitance in Farad.

Based on the high temperature oxygen
sensor description in [18], the oxygen level

sensor input-output relationship can be
derived as:
0]
Vipeygentevel =0-0215x873 xin —LLIE ot
2 process
(15)
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5. Simulation and results

The case study is simulated by MATLAB
Simulink wusing eqs. (9-11). The proposed
failures detection stage is simulated for four
ANFISs to model the different sensors based
on the relations defined in eqs. (12-15). The

uz: feedwater flow

input-output

training data

for different

ANFISs are illustrated in tables 1- 4.
The proposed ANFIS structure for mode-
ling the different sensors is shown in fig. 4.
The outputs of different ANFISs as sensor
models at no failure case are shown in figs. 5-

8.

¥1. steam pressure

y3 - water level

;. fuel flow

Steam
drum

uz. steam flow

-]
il

v4: oxygen level

uy: air flow

Fig. 3. Boiler-turbine configuration.

ya: electric power

Turbine

Table 1
data used to train ANFIS to model steam pressure sensor at no failure
Pressure Kg/Cm? 0 20 40 60 80 100 120
Sensor out (volt) 0 0.364 0.728 1.092 1.456 1.821 2.185
Pressure Kg/Cm? 140 160 180 200 220 240 260
Sensor out (volt) 2.549 2.913 3.277 3.641 4.005 4.369 4.7333
Table 2
Data used to train ANFIS to model current sensor at no failure
Ipn (amp) 0 20 40 60 80 100 120
Sensor out (volt) 0 0.445 0.889 1.334 1.779 2.223 2.668
Irn (amp) 140 160 180 200 220 240 260
Sensor out (volt) 3.112 3.557 4.002 4.446 4.906 5.336 5.78
Table 3
Data used to train ANFIS to model water level sensor at no failure
Water level 0 0.5 1 1.5 2 2.5 3
Sensor out (volt) 0 1.235 1.872 2.256 2.513 2.697 2.834
Water level 3.5 4 4.5 5 5.5 6
Sensor out (volt) 2.941 3.027 3.096 3.155 3.204 3.246

Table 4

Data used to train ANFIS to model oxygen level sensor at no failure

Oxygen level 1 2 3 4 5 6 8 10 15 20

Sensor out (volt) 0 3.253 5.155 6.505 7.552 8.408 9.758 10.8 12.71 14.06
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+) Anfis Model Structure =[O/ x|
input inputmf rule: outputnt output
L { &

Fig. 4. ANFIS structure for modeling different sensors.
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Fig. 5. Steam pressure sensor model output in volts in no
failure case.
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Fig. 6. Current sensor model output in volts in no failure
case.
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Fig. 7. Water level sensor model output in volts in no
failure case.
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Fig. 8. Oxygen sensor model output in volts in no failure
case.

Abrupt and incipient failure simulations of
different sensors with their related residual
values are shown in figs. 9-16.

The proposed failure identification and
classification stage is simulated through the
development of lower, medium, and upper
levels as described in section 3. The lower
level is a FFMNN that receives four residual
signals (Ri1, Rz, R3, and R4) and produces
signals (Y1, Y2, Y3, and Y4), each ranging from
0 to 1 and classifies the failure type of faulty
sensor (sensors). The lower level FFMNN is
trained using Levenberg Marquardt algorithm,
the structure of such a network is shown in
fig. 17.
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Fig. 9. Simulation of abrupt and incipient failures for
steam pressure sensor at instant 1200.
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failures of steam pressure sensor.
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Fig. 11. Simulation of abrupt and incipient failures for
electric current sensor at instant 1200.
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Fig. 12. Residual "Ry" in case of abrupt and incipient
failures of electric current sensor.

A 4 T T T T T
£
-
£
g2
B n
g T Nl i
%1
E L T e St B
% [ P No failure |
& : :
E.-] I e e &—&—o—¢ Incipient failure | |
: | B BB ] ﬁlll"lllﬂfaﬂll.l"e
_2 1 1 1 1 1
1] A00 1000 1800 2000 2800 2000

Time in seconds

Fig. 13. Simulation of abrupt and incipient failures for
water level sensor at instant 1200
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Fig. 14. Residual "R3" in case of abrupt and incipient
failures of electric current sensor.
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Fig. 15. Simulation of abrupt and incipient failures for
oxygen level sensor at instant 1200.
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Fig. 16. Residual "R4" in case of abrupt and incipient
failures of oxygen level sensor.

Table 5
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Number of layers: 3
Number of input layer neurons: 4
Number of hidden layer neurons : 10

Number of cutput layer neurons: 4

Fig. 17. The structure of lower level FFMNN.

The maximum values of residuals of faulty
sensors don't exceed 5 volts, and the mini-
mum values of residuals at no failure cases
are not less than -0.5 volt therefore input trai-
ning data to the lower level of the proposed
HSMFNN is ranging from (-0.5 to 5). The
maximum values of residuals at no failure
case are not more than 0.5 volt therefore the
threshold value of failure occurrence is desig-
ned as 0.7 volt. Input-output training data
and failure classification of HSMFNN lower
level are summarized in table 5. The lower
level is trained on no failures as well as abrupt
and incipient failures of single and double
faulty sensor (sensors) using Levenberg Marqg-
uardt algorithm.

Input-output training data and failure classification of HSMFNN lower level

Input Output (target) Failure classification
-0.5< Ri<0.7 Yi=0 No failure
07 < R<15 05<Y,<009 Incipient failure
1.5SR<S5 09<Yv<1 Abrupt failure
Table 6
Inputs to FFMNNSs in the medium level
FFMNN Inputs
FFMNN; min (R;, Y1), min (Re, Y;), min (Rs3, Y1), min (R4, Yi)
FFMNN2 min (R;, Y2), min (R2, Y2), min (R3 Y2), min (R4, Y2)
FFMNN3 min (R;, Y3), min (R2, Y3), min (R3 Y3, min (R4, Y3)
FFMNN4 min (R], Y4), min (RQ, Y4], min (R3, Y4], min (R4, Y4)
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Detection, identification and classification of
failures accomplished by the lower level are
not enough; therefore HSMFNN is proposed.

The medium level contains four identical
FFMNNs. Each medium level neural network
is identical to the lower level FFMNN. Based
on "fuzzy AND" operators between lower and
medium levels, the inputs to different medium
level neural networks are summarized in table
0.

Each FFMNN in the medium layer is
trained on no failure as well as incipient and
abrupt failures of single and double faulty
sensor (sensors) using Levenberg Marquardt
algorithm. The input-output training data for
each FFMNN in the medium level is
summarized in table 7; proposed failure
classification is also given in table 7.

Four "fuzzy OR" operators are used as an
upper level of the HSMFNN that specify the
faulty sensor (sensors) and classify the failure
(failures) type. If we assume the signals
coming out from each FFMNN of the medium
level are (Z:, Z2, Zs, and Z4) respectively, the

four final outputs produced from the upper
level are given by:

F; = Max (Z: of FFMNN;i, Z; of FFMNN, Z; of
FFMNN3, Z: of FEFMNNy)

F>= Max (Z20of FFMNNj, Z2 of FFMNN2, Z> of
FFMNN3, Z2of FEMNNy) (16)
F3= Max (Z3of FFMNN, Z3 of FFMNNz, Z3 of
FFMNN3, Zs of FFMNN4)

Fs= Max (Z+of FFMNN, Zs of FFMNNz, Zs of
FFMNN3, Zsof FEFMNN4)

The detailed MAT-LAB Simulink simul-
ation of HSMFNN for the case study is shown
in fig. 18.

The simulation proved that the proposed
scheme is very active in diagnosis and classif-
ication of single/double abrupt/incipient fail-
ure (s), to assess the performance of the
proposed HSMFNN scheme, double abrupt,
double incipient and double abrupt-incipient
failures of sensors are simulated. Tables 8-10
illustrate simulation results for some sample
failures.

§

s

8

MNIN2
R4 1
MNI¥o j

NI

F. ANDs

Fuzzy OR

Display

Fig. 18. Detailed Simulation simulation of HSMFNN for the case study.

Table 7

Input-output training data for each neural network in the medium level

Input Output (target) Failure classification
From O to 0.4 0 No failure

0.5 0.5 Incipient failure

0.7 0.7 Incipient failure

0..8 08 Incipient failure

0.9 0.9 Abrupt failure

1 1 Abrupt failure
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Table 8
HSMFNN outputs for double abrupt failures

Double Middle level outputs Upper

abrupt Lower level Level .Class.—
failures outputs Ii‘FMNN gFMNN gFMNN ZFMNN outputs ification
R/ =3 Y:=0.9741 Z;=0.9994 Z;=0.9956 Z;=0 Z1=0 F;=0.9994
R2=4 Yo=1 Z2=0.9969  Z,=0.9953 Z»=0 Z>=0 F2=0.9969 2/2
R3=0 Ys=0 Z3=0 Z3=0 Z3=0 Z3=0 F3=0
Rs=0 Y+=0 Zs=0 Zs=0 Zs=0 Z4=0 Fs=0
R =3 Y:=0.9972 Z=1 Z=0 Z:=0.9994 Z;=0 Fi=1
R2=0 Y=0 Z>=0 Z>=0 Z>=0 Z>=0 F2=0 2/2
R;=4 Ys=1 Z5=0.9995 Z:=0 Z3=0.9999 Z;=0 F35=0.9999
R:=0 Y~=0 Z+~=0 Z+~=0 Z+~=0 Z4+=0 Fs=0
R/ =3 Yi=0 Z1=0 Z1=0 Z1=0 Z;=0.9995 F;=0.9995
R2=O Y2=0 Zz=0 Zz=0 Zz=0 ZZ=0 F2=0 2 / 2
R3=0 Ys=0 Z3=0 Z3=0 Z3=0 Z3=0 F3=0
Rs=4 Y+=0.9931 Z4=0 Z4=0 Z4=0 Z4~0.9997 F4+=0.9997
R;=0 Yi=0 Z1=0 Z1=0 Z1=0 Z=0 Fi1=0
R2=3 Y= 0.07 Z>=0 Z2=0 Z>=0.9994 Z>=0 F2=0.9994 2/2
R3=4 Y=1 Z3=0 Z3=0 Z3=0.9999 Z:=0 F3=0.9999
Rs=0 Y+~=0 Z4=0 Zs=0 Z4=0 Z4=0 Fs=0
R =0 Yi=0 Z=0 Z=0 Z=0 Z=0 F:=0
R2=3 Y2>=0.9928 Z>=0 Z>=0.9954 Z>=0 Z>=0.9998  F»=0.9998 2/2
R3=0 Ys=0 Z=0 Z=0 Z3=0 Z3=0 F3=0
Ri=4 Y=1 Z4=0 Z+~0.9968 Z+~=0 Zs=1 Fs=1
R;=0 Yi=0 Z1=0 Z1=0 Z1=0 Z=0 Fi1=0
Rg =0 Y2= 0 Zz= 0 Zz= 0 Zz=0 Zz= 0 F2 =0 2 / 2
R3=3 Y3=0.9992 Z3=0 Z3=0 Z3=0.9993 Z3=0.9998 F3=0.9998
Rs=4 Y+=0.9996 Z4= 0 Z4= 0 Z4=0.9999 Z;,=0.9998 F+=0.9998
Table 9
HSMFNN outputs for double incipient failures
Double Middle level outputs Upper
o Lower level . .
incipient outputs FEMNN FEMNN FEMNN pep— level Classification
failures 1 9 3 4 outputs
R;=0.85 Y:;=0.5681 Z:=0.5995 Z;=0.6908 Z:;=0 Z=0 F;=0.6908
R2=0.9 Y>=0.6891 »=0.5994  Z»=0.6907 Z>=0 Z>=0 F>=0.6907 2/2
R3 =0 Y3= 0 Zs= 0 Zs= 0 Zs= 0 Zs= 0 Fs =0
Rs=0 Ys=0 Zs=0 Zs~=0 Zs~=0 Zs=0 Fs=0
R;=0.85 Y= 0.588 Z:=0.5989 Zi= 0 Z;=0.592 Z=0 F;=0.5989
R2=0 Y=0 Z>=0 Z>=0 Z>=0 Z>=0 F2=0 2/ 0
R3=0.9 Y3=0.5846 Z3=0.5982 Zz=0 Z3=0.5923 Z>=0 F3=0.5982 /
Rs=0 Ys=0 Zs=0 Zs=0 Zs=0 Zs=0 Fs=0
R;=0.9 Y:=0.5997 Z:=0.5998 Z:i=0 Z=0 Z;=0.6005  F;=0.6005
Rz =0 Y2=0 Zz= 0 ZQ= 0 ZQ= 0 ZQ= 0 F2 =0 2 2
R3=0 Ys=0 Z3=0 Zz=0 Zz=0 Z=0 F3=0 /
R;=0.9 Y+=0.6006 Z4~0.5998 Z+~=0 Zs=0 Z+~0.6005 F+=0.6005
R;=0 Yi=0 Z=0 Z=0 Z=0 Z=0 F1=0
R2=0.85 Y>=0.4613 Z>=0 Z>=0.4293  Z»=0.6527 Z»=0 F2>=0.6527 2/2
R3=0.9 Y3=0.679 Z3=0 Z3=0.4293 Z3=0.6373 Zs=0 F3=0.6373
Rs=0 Ys=0 Zs=0 Z4= Zs~=0 Zs=0 Fs=0
R;=0 Yi=0 Z=0 Z=0 Z=0 Z=0 F1=0
R>=0.85 Y>=0.5181 Z>=0 Z>=0.5165 Z>=0 Z>=0.6249  F»=0.6249 272
R3=0 Ys=0 Z3=0 Zz=0 Zz=0 Z=0 F3=0
Rs~=0.9 Y+=0.6266 Zs=0 Z4+~0.5185 Z+&=0 Z4=0.6253 F+=0.6253
R;=0 Yi=0 Z=0 Z=0 Z=0 Z=0 F;=0
R2=O Y2=O Zz=0 ZQ=O ZQ=O Zz=0 F2=0 2 / 2
R3=0.85 Y3=0.5837 Z3=0 Zz=0 Z3=0.5909 Z>=0 F3=0.5909
R;=0.9 Y4+=0.3528 Z4=0 Z+=0 Z+~0.5892 Z+=0 F4=0.5892
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Table 10
HSMFNN outputs for double abrupt-incipient failures

Double .
Middle level output
abrupt- Lower level iddle level outputs Upper . .
RIS level Classification
incipient outputs  FFMNN FFMNN FFMNN FFMNN tout
failures 1 2 3 4 outputs
R:1=3 Yi=1 Zi=1 Z=0 Z=0 Z1=0 Fr=1
R2=0.75 Y=0 Z:=0.7654 Z>=0 Z>=0 Z>=0 F>=0.7654 2/2
R3=0 Ys=0 Zz=0 Zz=0 Zz=0 Z3=0 F3=0
R+=0 Ys=0 Z+~=0 Z+~=0 Z+~=0 Z+=0 Fs=0
R;=3 Y:=0.9834 Z=1 Z=0 Z=0 Z=0 Fi=1
R2=0 Y=0 Z>=0 Z>=0 Z>=0 Z>=0 F>=0 279
R3=0.75 Ys=0 Z3=0.4754 Z+=0 Zs=0 Zs=0 F3=0.4754 /
R+=0 Y=0 Z+=0 Z+=0 Z+=0 Z+=0 Fs=0
R =3 Yi=1 Zi=1 Z=0 Z=0 Z1=0 Fr=1
R2=0 Y=0 Z>=0 Z>=0 Z>=0 Z>=0 F>=0 1/2
R;=0 Ys=0 Z3=0 Z3=0 Z3=0 Z3=0 F3=0
R+=0.75 Y~=0 Z+~0.9977 Zs=0 Z+=0 Z+=0 F4+~=0.9977
Ri=0 Yi=0 Z=0 Z=0 Z=0 Z=0 Fi1=0
R2=3 Yo=1 Z>=0 Z2=0.9969 Z>=0 Z>=0 F>=0.9969 1/02
R3=0.75 Ys=0 Zs=0 Z3=0.9044 Z>=0 Zs=0 F3=0.9044 /
R+=0 Y+~=0.1566 Z+~=0 Z+~=0 Z+~=0 Z+~=0 F4s=0
R:=0 Y=0 Zi=0 Zi=0 Zi=0 Z=0 F:=0
R>=3 Y=1 Z>=0 Z2=0.9942 Z>=0 Z2=0.9955  F2>=0.9955 2/ 0
R3=0 Y>=0 Z3=0 Z3=0 Z3=0 Z3=0 F3=0 /
R+=0.75 Y,=0.9987 Z+=0 Z+#=0.3935 Zs=0 Z+=0.751 F+=0.751
R:=0 Y:=0.9983 Z;=0 Z=0 Z1=0 Z1=0 F;1=0
R2=0 Y=0 Z>=0 Z>=0 Z>=0 Z>=0 F>=0 1/2
R;=3 Ys=1 Z3=0.2948 Zs=0 Z3=0.9957  Z5=0.9528  F3=0.9957
R4+=0.75 Y,=0.9997 Z+=0 Z+=0 Z4=0.9975 Z4,=0.7068 F4+=0.9975
6. Conclusions [3] W. Son, O. Kwon, and M.E. Lee, "Fault-
Tolerant Model Based Predictive Control
Simulation results of applying the with Application to Boiler Systems", In:
proposed HSMFNN to the case study prove its IFAC Symposium on Fault Detection
validity, feasibility and high accuracy. Al- Supervision and Safety for Technical
though the proposed technique considers Processes, Kingston upon Hull, Vol. 2,
training for single and double failures of the pp. 1240-1245 (1997).
same type it achieves superior performance in [4] Y. Yang, Y.Z. Lu, "Sensor Fault Tolerant
detecting, identifying and classifying failures Control and Its Application", In: IFAC
of different types. Symposium on Fault Detection
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