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Tubular structures are used extensively in offshore structures, which are installed to 

facilitate offshore oil and gas production. Some members subjected to damage in the form of 

perforation due to environmental loading conditions. Perforated damage leads to 

deterioration of ultimate strength and shortening of life-time of the tubular members. The 

aim of this paper is to demonstrate and develop the ultimate strength analysis of tubular 

structures with perforated damages and subjected to combined compression and bending. 

The ultimate strength is calculated using a non-linear finite element system and a new 

simplified equation. In order to investigate a general applicability of the present equation, 

cylindrical tubes with different perforated damages and subjected to combined loads are 

analyzed. Results of analysis demonstrate considerable accuracy of the new equation and 

good agreements with those calculated by non-linear finite element method.  

بية بكثرة فى منشآت ما وراء الشواطئ للتنقيب واستخراج الغاز والبترول. بعض هذه المنشآت البترولية تستحدم المنشآت الأنبو
معرضة للتآكل والثقوب نتيجة تعرضها للأحمال البيئية. وجود مثل هذه الثقوب سوف يؤدى إلى تقليل المقاومة القصوى وكذلك طول 

وتحليل المقاومة القصوى لهذه المنشآت الأنبوبية المثقوبة عند تعرضها لحمل  عمر هذه المنشآت الأنبوبية. فى هذا البحث تم عرض
ضغط وانحناء معا. تم اقتراح معادلة بسيطة لحساب هذه المقاومة لعدة منشآت أنبوبية ذات خواص مختلفة وقورنت النتائج بمثيلاتها 

 بطريقة الوحدة المنتهية وكانت نتيجة المقارنة جيدة.
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1. Introduction 
 

Tubular members of jacket structures 
such as braces and columns are subjected to 
severe environmental and loading conditions. 
These tubular structures may contain large 
cracks and corrosion due to extreme loading 
conditions. Very little information is available 
about the residual strength of these damaged 
tubular structures [1, 2]. It becomes important 
to estimate the residual strength of these 
members with a higher degree of safety be-
cause of the deterioration of their ultimate 
strength and shortening of their lifetime.  
However, predicting ultimate strength of cylin-
drical tubes is not so easy because the effects 
of buckling and plasticity should be consid-
ered. This paper deals with the ultimate 
strength of cylindrical tubes with perforated 
damages throughout the tube length and 
subjected to combined compression and 
bending. Using the non-linear Finite Element 
Method (FEM) was time-consuming in the 

past. However, due to improvement of com-
puter speed and capacity, it is easy to calcu-
late the ultimate strength in a few minutes by 
using FEM [3]. In this work, the ultimate 
strength is calculated using simplified equa-
tions and the non-linear finite element 
method.  Okada. et al. [1] developed a simpli-
fied equation by applying the Carlsen’s 
method.  The simplified equation had shown 
good agreements with FEM analysis for perfo-
rated tube subjected to axial compression [4].  
However, it is seen that the simplified equa-
tion predicted higher ultimate strength than 
those analyzed by FEM for perforated tubes 
subjected to combined compression and 
bending loads. The differences between results 
become large for cases of cylindrical tubes 

with higher ratio of D/t and large perforation 

sizes.  Inaccuracy of the results has been 
investigated and a new equation is suggested 
to take into account this effect in the ultimate 
strength calculation.  In order to investigate 
the applicability of the present equation, 
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cylindrical tubes with different geometrical 
properties and different degree of perforated 
damages are analyzed. Results of analysis are 
presented and compared with those calculated 
by non-linear finite element method. The 
comparison shows good agreements. 
 
2. Prediction of ultimate strength using 
    non-linear finite element system 
 

Different numerical methods are available 
to analyze the behavior of structures until 
their ultimate strength is reached. The 
nonlinear Finite Element Method (FEM) is the 
most powerful method for analyzing compli-
cated behavior until ultimate strength and it 
has a wide application in various structural 
fields. In this study, a non-linear finite ele-
ment system is applied for calculating the ul-
timate strength of a cylindrical tube. Four-
node isoparametric shell elements are used 
[5]. The developed finite element system is 
constructed by using the principle of virtual 
work for each incremental step and taking into 
account both geometrical and material nonlin-
earities of the shell elements.  It is capable to 
analyze elastic- plastic behavior until and be-
yond the ultimate strength state. The Newton-
Raphson method and the arc-length method 
are used to get converged solutions for each 

incremental step. The element can be used to 
accurately analyze a plate with an initial 
deflection and residual stresses. Different 
boundary and loading conditions can also be 
considered. Based on this system a source 
code (ULTSTRUCT) is used in the following 
analyses [6]. 
 

2.1. Boundary conditions and FEM  modeling 
 

Fig. 1 shows the assumed boundary and 
loading conditions of a cylindrical tube sub-
jected to combined uniaxial compression and 
bending loads. Simply supported hinges are 
assumed at both ends of the tube and a per-
forated damage is located at the mid-length of 
the tube. An initial deflection of a simple 
pattern is assumed along the entire length of 
the tube.  
 Fig. 2 shows the FEM model of the cylin-
drical tube.  Fine mesh divisions are applied 
near the perforated area at the middle of the 
tube, where higher stresses are developed 
while coarse mesh divisions are applied far 
away from the center of the tube. Rigid ele-
ments are assumed at both ends of the tube to 
prevent local failures near tube ends where 
external loads are acting. 

 
 
 
 
 
 

 
 
 
 

 

 

 

Fig. 1. Boundary and loading conditions of the perforated tube.  

 

 

 

 
 

Fig. 2-a. FEM model of the cylindrical tube. 
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Fig. 2-b. Mesh division around the perforation. 

 

 
 

Fig. 2-c. Depth of the perforated damage. 

2.2. Examples of numerical analyses 
 

2.2.1. Geometrical properties and loading 

      conditions 
 Cylindrical tubes with different geometrical 
properties modeled by the finite element 
method are analyzed. Several perforated dam-

ages such as Ks =0.0, 0.05, 0.1 and 0.2 in the 

middle of the tube length are considered.  

Initial deflection of a value equal L/1000 is 

assumed. As mentioned before the tube is 
assumed to be simply supported at both its 
ends and subjected to combined uniaxial 
compression and bending. The geometrical 
properties and loading combination factors are 
shown in tables 1 and 2. 
 
where, 

   is the (L/ r) (o /E).5, 

r    is the (I/A) .5, 

o    is the yield strength, N/mm2,  

L is the tube length,   

t is the tub thickness, mm, 

wo   is the initial deflection = L/1000, mm, 

Ks is the a/ D, the perforated damage ratio, 

a is the diameter of the hole, mm, 

D is the diameter of the tube, mm, 

F is the maximum acting load, N, 

Po  is the fully plastic compressive load, and 

Mo  is the fully plastic bending moment. 
Table. 1  

Geometrical properties of the models 

 

Damage-1 (Ks=0.0)    =0.5      =1.0      =1.5     =2.0 

 

Geometrical properties 

L     =8000 

D/ t =50 

o       =350 

L     =15000 

D/ t =50 

o       =350 

L     =24000 

D/ t =50 

o       =350 

L     =32000 

D/ t =50 

o       =350 

Damage -2 (Ks=0.05)      =0.47      =0.96      =1.41     =1.9 

 

Geometrical properties 

L     =2500 

D/ t =15.4 

o       =350 

L     =5000 

D/ t =15.4 

o       =350 

L     =7500 

D/ t =15.4 

o        =350 

L     =10000 

D/ t =15.4 

o       =350 

Damage -3 (Ks=0.05)      =0.52      =1.0       =1.6      =2.0 

 

Geometrical properties 

L     =8000 

D/ t =50 

o       =390 

L     =16000 

D/ t =50 

o       =390 

L      =24000 

D/ t  =50 

o        =390 

L     =30000 

D/ t =50 

o       =390 

Damage -4 (Ks=0.10)      =0.52      =1.0       =1.6      =2.0 

 

Geometrical properties 

L     =8000 

D/ t =50 

o       =390 

L     =16000 

D/ t =50 

o       =390 

L      =24000 

D/ t  =50 

o        =390 

L     =30000 

D/ t =50 

o       =390 

Damage -5 (Ks=0.20)      =0.52      =1.0       =1.6      =2.0 

 

Geometrical properties 

L     =8000 

D/ t =50 

o       =390 

L     =16000 

D/ t =50 

o       =390 

L      =24000 

D/ t  =50 

o        =390 

L     =30000 

D/ t =50 

o       =390 
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Table-2 

Combination load factors 

 

Combination load factors  C1 C2 C3 C4 C5 

Compression , Fc 0.03F 0.33F 0.50F 0.66F 1.0F 

Bending , Fb 0.97F 0.66F 0.50F 0.33F 0 

 

2.2.2. Impact of Perforation size  
 The most important effect on the 
deterioration of the ultimate strength is the 
size of the perforation. Figs. 3-4 show relation-

ships between the normalized load (P/Po) and 

normalized displacement (/o) for cylindrical 
tubes with different perforation sizes. Slender-

ness ratio such as  = 0.52 and  = 1.6 and 
the combination load factor of   case 4 (see 
table 2) are adopted. The corresponding rela-
tionships between the ultimate bending 
moments and displacements are also pre-
sented. It is observed from these figures that 
ultimate strength remarkably decreases as the 
perforation size increases even at cases of 
sturdy columns. The deterioration in the 
ultimate strength is drastically increased as 
the slenderness ratio increases. 
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Fig. 3-a.  P/Po  - /o  relationship. 
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Fig. 3-b.  M/Mo  - q/qo  relationship. 
 

 =1.6   Case load=4

0

0,2

0,4

0,6

0,8

0 0,2 0,4 0,6 0,8 1 1,2

P
/P

o

Ks=0.00

Ks=0.05

ks=0.10

ks=0.20

/ 



 
Fig. 4-a.  P/Po  - /o   relationship. 
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Fig. 4-b.  M/Mo  - q/qo   relationship. 

 

2.2.3. Effect of combination load factors  
 Figs. 5 and 6 examine the influence of 
different combination load factors on the 
deterioration of ultimate strength. Cylindrical 

tubes with perforated damages such as Ks=0.1 

and 0.2 and slenderness ratio of  =1.6 are 
adopted to demonstrate this effect. The figures 
clarify the tendency of degradation in 
compressive ultimate strength as the bending 
moment and size of perforated damage 
increase as shown in figs. 5-a and 6-a. The 
influence of the load combination factor and 
perforation size are the two most important 
parameters.  
 
3. Prediction of ultimate strength using 
    simplified methods 
 
 Different approaches for predicting the 
ultimate strength of columns subjected to 
combined loads are presented in many litera-
tures as in refs. [7 and 8]. Among those ap-
proaches, it is possible to estimate the 
ultimate strength of tubular structures with 
initial imperfection and subjected to combined 
compression and bending.  However, very little 
literatures are available about the residual 
strength of damaged tubular structures under 
combined loads. Okada and et.al developed an 
approximate simplified equation taking into 
account the effect of the perforated damage   
on the ultimate strength calculation. The 
simplified equation predicted higher ultimate 
strength   than  those  analyzed   by  FEM   for  
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Fig. 5-a. P/Po  - /o relationship. 
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Fig. 5-b. M/Mo  - q/qo  relationship. 
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Fig. 6-a.  P/Po  -/o relationship. 
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=1.6     Ks=0.20
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Fig. 6-b. M/Mo - q/qo relationship. 

    

perforated tubes with higher ratio of D/t and 

large perforation sizes. Differences of the 
results have been investigated and a new 
equation is suggested taking into account this 
effect in the ultimate strength calculation. The 
procedure of the present equation is presented 
as follows. 

 Yielding of the perforation region:  at the 
beginning, the axial compressive load 
transformed from intact tube section to the 
perforation region will cause compressive and 
bending stresses at the lower perforated 
region. Therefore, yielding starts at the 
perforation region until plastic hinges are 
developed. At this stage, the acting compres-
sive load on the tube is assumed as follows, 
 

P dp =  o A’,         (1) 

 
where,  
 

A’ = Dt  

 

 The ultimate strength stage: after 
plastifiaction has occurred at the perforation 
region, eccentricity due to an additional acting 

load P2 increases which develops overall 

moment acting on the tube. The lateral 
deflection is substantionally increased and 
yielding at the adjacent region to the 
perforated area starts and tube stiffness 

decreases rapidly. When the acting load P2 

reaches its maximum value,the ultimate 
strength is attained. The ultimate strength  
stage may be discussed as follows, 

 Assuming  the tube has an initial deflection 
expressed by Fourier series as follows, 
 

wo (x) = 


2

1i

 woi sin(ix/L),      (2) 

where,  

woi is the (ep+wo)Ai , 

ep is the shift in the natural axis = D sin / 

 ( -), see fig. 7, and 

wo  is the amplitude of the initial deflection. 

 The coefficient,  Ai  is given in ref. [1] 

Substituting wo in the following governing 

equation, and solving the equation, 
 

EIδ4(w-wo)/ δx4+ P2 δ2w/ δx2=0.    (3) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Perforated tube with initial deflection under combined loads. 
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The induced moment,  Mi  due to the load P2 is 

expressed by eq. (4) as follows, 
 

Mi =P2w=P2

2

1
oi

i

w


 sin(ic/L)/{1-(1/i2)( Pu/Pe)} ,

            (4) 
 
where, c is location of maximum perforation 
damage. The maximum moment ocurrs when 

coefficent woi of eq. (4) is maximum. It is 

assumed that  maximum deflection at x=L/2, 

(A1=1, A2=0). Hence,  Mi   may be expressed as 

follows.   
 

Mi =P2 2+Pdp 1,        (5) 

 
where, 

2 = (ep+wo) ,         1 = wo 

 = 1/(1-pu/pe) 

Pe = Euler buckling load = E2 I/L2 

Pu = ultimate compressive load. 

 

3.1. Ultimate strength interaction equation 
 
 When the perforated tube is subjected to 

combined compression load Pu and bending 

moment Mu, the maximum moment may be 

expressed as follows;  
 

Mmax = Mu/cos{(/2)√( Pu/Pe)}+P2 (ep+wo)  + 

        Pdp wo .        (6) 

 

The above equation is approximated as 
follows, 
 

Mmax = { Mu + P2 (wo+ ep ) +Pdp wo } .   (7) 

 

 Assuming the stress distribution acting on 
the tube at the perforation region is as shown 
in fig. 8, the interaction equation of the 
ultimate strength of the perforated tube 

subjected to combined compression load Pu 

and bending moment Mu is expressed as: 

 

{ Mu + Pu (wo+ ep )+ Pdp wo)} / Mp\+ pu/po =1, (8) 

 
where, 
 

Mp\ = Mp {sin(½  [P1-Pu]/ Pp) – sin  } .   (9)

  

From eqs. (8) and (9), Mu is expressed as 

follows 

 

Mu =(1- pu/po) Mp\ / - P2 (wo+ ep ) - Pdp wo ,  (10) 

 
where,     

 

P1 =o Dt (-) +o Dt        

  

Mp = o D2t  ,Po = o  Dt 
 
Finally, from eq. (4), the ultimate compressive 

strength Pu (u A ) is given as follows [1], 

  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 8. Stress distribution at the ultimate strength stage through cross section. 
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u /o =[{(/qa)(1+2)+ A(ep+wo)/Z}- 

            ({(/qa)(1+2)+ A(ep+wo)/Z}2 -42)1/2] 

  /(2(/qa) 2).          (10) 

 
4. Applications 
 
 In order to investigate the applicability of 
the present equation, several cylindrical tubes 
are analyzed and results are compared with 
FEM results. Figs. 9 to 12 illustrate ultimate 
strength calculations for cylindrical tubes sub-
jected to combined compression and bending 

loads. Perforation sizes such as Ks = 0.05, 0.1 

and 0.2 are adopted with a tube slenderness 
ratio equals 1.0. It is seen that the results 
based on the simplified equation of ref. [1] 
have a considerable agreement with those by 

FEM for cases of sturdy columns (D/t=15.4). 

However, a difference in the ultimate strength 
is observed for cases of cylindrical tubes with 

higher D/t ratio as shown in figs. 11 and 12.  

It is noticed that the present equation shows 
adequate agreement with results based on 
FEM. Figs. 13 to 16 investigate variations of 
slenderness ratios on the ultimate strength of 
perforated tubes. Also, the results based on 
the present equation are compared with FEM 
results. It is shown that results based on the 
present equation show good satisfaction with 
those based on FEM analysis. However, some 
results show lower estimation of ultimate 
strength than those analyzed by FEM when 
the acting combined load is a dominant 
bending as shown in fig. 16. The difference is 
due to simulation difficulties of a pure bending 
moment behavior using FEM. 
 
5. Conclusions 
 
 This paper has demonstrated the degrada-
tion of the ultimate strength of cylindrical 
tubes with perforated damages and subjected 
to combined compression and bending mo-
ment.  The residual ultimate strength is esti-
mated based on a simplified equation and a 
non-linear finite element method. Several 
examples are performed on perforated tubes 
with different geometrical properties. From the 
results of analyses, the following conclusions 
may be deduced: 
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Fig. 9.  Ultimate strength under combined  loads. 

 

Ultimate strength (Ks=0.05  =1.0  D/t=50)
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Fig. 10.  Ultimate strength under combined loads. 

 
Ultimate strength (Ks=0.1  =1.0, D/t=50)
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Fig. 11. ltimate strength under combined  loads. 
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Ultimate strength (Ks=0.2  =1.0  D/t=50)
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Fig. 12. Ultimate strength under combined loads. 
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Fig. 13. Ultimate strength under combined  loads. 
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Fig. 14. Ultimate strength under combined loads. 
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 Fig. 15. Ultimate strength under combined  loads. 

      
Ultimate strength (Ks=0.2    D/t=50)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Pu/Po

M
u
/M

o
Present

FEM,

Present

FEM,

Present

FEM,

Present

FEM,

















 
Fig. 16. Ultimate strength under combined loads. 

 

1. The influences of D/t and perforation size 

on the degradation of the ultimate strength are 
the two most important parameters. 
2. The results based on the present method 
show considerable satisfaction with those 
based on FEM. 
3. When the combined load is a dominant 
bending moment, the present equation 
predicts lower estimation of ultimate strength 
than that based on the FEM. 
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