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This paper introduces a novel neural network named Auto Regressive eXogenous Local 

Model (ARX-LM) network. It basically adopt the philosophy of forming a process be modeled 
with a set of fuzzy-wavelet submodels. Each submodel comprises a Takagi-Sugeno-Kang 

(TSK) fuzzy model fertilized by a wavelet function. The outputs of these submodels are 

weighted and summed to produce the final output. The main feature of the proposed LM 

network is that its structure is an ARX model that inherits the simplicity of the conventional 

linear and non-linear control systems, the learning capabilities of neural networks, the 
transparency of fuzzy systems and the locality of wavelet networks. The former means that 

the Lyapunove’s direct method can be employed to check the stability of the proposed ARX-

LM network. The latter three features make the proposed network, powerful, transparent, 

and plastic. The plastic feature signifies that a new pattern can be assigned to uncommitted 

cluster if this pattern does not match previously stored fuzzy models. It is inherited from 
employing the fuzzy Adaptive Resonance Theory (ART) to form that local submodel. The 

parameters of the proposed network are adapted using the Recursive Least Square (RLS) 

algorithm.  The soundness of the proposed ARX- LM network is tested in modeling and 

controlling non-linear dynamical systems. The proposed ARX-LM network is employed to 
develop a long range predictive control scheme for SISO and MIMO time varying medical 

systems. 

تتبنى هذه الشبكة بشكل اساسى فلسفة نمذجة الانظمة الديناميكية بمجموعة . ARX-LMيقدم هذا البحث شبكة عصبية جديدة تسمى 

مطعم بدالة   (TSK)حيث يشتمل كل نموذج فرعى على نموذج غيمى. من النماذج الفرعيه الغيميه المخصبة بدوال المويجة
ان السمة الاساسية لهذه الشبكة المقترحة .  وبوزن و تجميع خروج النماذج الفرعية يتم الحصول على الخرج النهائى للشبكة. مويجه

, المقدرة التعليمية للشبكات العصبية,  الذى يرث بساطة نظم التحكم الخطية و الاخطية التقليدية ARXهى ان هيكلها من النموذج

  يمكن توظيفها لفحص اتزان الشبكة  Lyapunoveيعنى الاول ان طريقة. شفافية النظم الغيمية و محدودية الشبكات المويجية 
حيث تعنى الاخيرة انه تتقبل الشبكة الزيادة فى . تمددية, شفافة, قوية, أما الثلاث خصائص الاخيرة تجعل الشبكة  المقدمة . المقدمة

هذه الخاصية اكتسبت من توظيف .  هيكلها و ذلك فى حالة وجود عينة من الدخل لايمكن تسكينها فى النماذج الغيمية المخزنة مسبقا

ARTكذلك تكييف متغيرات الشبكة المقترحة باستخدام خوارزم .  الغيمى والذى استخدم لتشكيل هذه النماذج الفرعيةRLS .  قوة
بالاضافة الى ذلك تم بناء نظم تحكم تنبائى ليس فقط . الشبكة المقترحة  تم اختبارها فىالنمذجة من خلال انظمه ديناميكية لا خطية

ويمكن تلخيص  .للنظم الطبية الديناميكية أحادية الدخل و الخرج و لكن ايضا للنظم  الطبية الديناميكية متعددة الدخل و الخرج

  لبناء وتعليم ART , RLS تتوظيف خوارزما*  .ARX-LMبناء شبكة عصبية جديدة تسمى  *  :اسهامات هذا البحث كالاتى

بناء نظم تحكم تنبائى يعتمد على الشبكة .* Lyapunoveاختبار مدى اتزان الشبكة المقترحة باستخدام طريقة .* الشبكة المقترحة
 .المقترحة
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1. Introduction 

 

Fuzzy neural schemes mainly divided into 

two models, Mamadani [1] and TSK [2]. The 

latter replaced the linguistic expression of the 

consequent in the former by a set of linear 

equations. A self-constructing fuzzy interface 

network with an on-line learning ability was 

introduced based on the TSK model [3]. Lee 

and Tang proposed fuzzy neural network 

based on the TSK model [4]. Despite these 

modifications, the TSK model still lacks the 

plasticity feature and thus will forget previ-

ously learned information when presented 

with sustained sequences of new data. A set of 

neural networks are structured based on the 

concepts of the wavelet [5-8]. There are two 

kinds of Wavelet Neural Networks (WNNs), one 

with fixed dilation and translation parameters, 

and the other with adjustable dilation and 
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translation parameters. Both of the two types 

have adjustable weights at the output layer. A 

set of researches have been conducted to im-

prove the capabilities of these networks for 

function approximation and control purposes 

[9-11]. Daniel et al. developed a fuzzy wavelet 

neural network (FWN) inspired by the theory 

of multi resolution analysis and TSK fuzzy 

model [12].  The proposed network comprises 

a set of TSK fuzzy rules and WNNs. The former 

determines the contributions of the latter. The 

output of these sub-models are weighted and 

summed to provide the final output. Although 

this structure succeeded in modeling pur-

poses compared with WNN [5] and Adaptive 

Network based-Fuzzy Inference Systems (AN-

FIS) [13], it suffers from a set of limitations. 

First, using a set of WNNs, increase the 

complexity of the network. Second, its stability 

has not yet been analyzed mathematically. 

Third, having a computation demand algo-

rithm, limits the network application in 

modeling single input single output (SISO) 

processes. Hybrid fuzzy WNNs were proposed 

[14, 15] to simplify that network; however, 

their stability has not yet been proved mathe-

matically. 

This paper introduces an ARX local model 

network. It consists of a set of TSK fuzzy rules 

fertilized by wavelet functions. Each wavelet 

determines the contribution of the corre-

sponding TSK fuzzy model. These sub-models 

are merged to provide the final output of the 

proposed network. Learning of the proposed 

LMN comprises two phases, structure learning 

and parameter learning. In the former, the 

fuzzy ART algorithm [16] is used to assign a 

new pattern to an uncommitted cluster if this 

pattern does not well match the generated 

sub-models. Using the fuzzy ART algorithm, 

makes the proposed network is a plastic 

network.  The proposed network is an ARX 

model, which enables us to analyses the 

stability of the network using the Lyapunove’s 

direct method with ease. Fertilizing the pro-

posed network with the wavelet function 

makes it very useful for function approxima-

tion purposes. Finally, the RLS identification 

method is used to identify the parameters of 

the proposed network.  

The motivations of this paper can be con-

cluded as follows: 

 Development a novel version of local model 

network named ARX-LM network. 

 Employing the ART and the RLS 

algorithms to self-organize and learn the 

proposed network. 

 Testing the stability of the proposed 

network using Lyapunove method. 

 Development a model-based predictive 

control scheme based on the proposed 

network, named ARX-LM–based predictive 

control. 

This paper can be organized as follows. 

Section II develops the proposed ARX local 

model network. It describes the network 

structure, stability, and its application for 

function approximation. Section III employs 

the proposed network for control purposes. 

Section V concludes the topics discussed in 

this paper. 

 

2. The ARX- LM network 

 

This section briefly reviews the proposed 

ARX-LM network. This network is applied to 

simulate nonlinear plants.  

 
2.1. The structure of the ARX-LM network 

 

Fig. 1 depicts the structure of the 

proposed ARX-LM network. It consists of five 

layers that are described as follows: 
Layer -1: A node at this layer just transmits 

the input values to the next layer. 
Layer -2: This layer consists of two groups, 

universes of discourse of the input fuzzy vari-

ables and their wavelets. The former cover the 

universes of discourse of the input variables 

by a set of triangular-shipped function )( iA
xi

j
 . 

That is: 

 

ij

iji

iA

cx

xi
j 







2

1)( ,        (1) 

 
where Aji is the jth fuzzy set of the ith input 

variable xi , and cij , and ij are the center and  

width of this fuzzy set. 



H.A. Awad, T.A. Mahmoud / A novel ARX-local model network 

                                                Alexandria Engineering Journal, Vol. 45, No. 1, January 2006                  69        

The latter is a wavelet function generated 

by dilating and translating the mother wavelet 

function )
2

exp()1()(
2

2 x
xxh  . That is: 
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where
k jk

jk
jk

x m
Z

d


 , n is the number of their 

inputs, m and d are the translation and di-

lation parameters respectively. 
Layer -3: The firing strength can be obtained 

using Larsen’s product [17] as follows: 
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where, its normalized value is: 
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Layer -4: A node at this layer is a submodel 

that merges the normalized firing strength of a 

TSK fuzzy rule with a wavelet. That is: 

 
i

ii
wXy )(4  .         (5) 

 
Layer -5: Based on the approximate Center Of 

Area (COA) defuzzification method, the crisp 

output ym can be deduced. That is: 

 

)()(
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XΦXfy ii
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
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The network described above performs the 

following rule: 
 
Ri: IF x1 is A1

i   and … and   xn is Ani  THEN 

yi = fi(X) * )(Xi .        (7) 

where, )(Xf i is a linear function of the TSK 

model. That is: 

 

1 1 2 2 1
i i i

i nf ( X ) w x w x . . . w x       ,  (8) 

 

and, )(XΦi is the wavelet function defined in 

(2). 

Reforming (8), results an ARX-LM defined 

below: 

 

1 1i i
i u urf ( X ) w u(k ) ... w u(k r )        

1 1i i
y ysw y(k ) ... w y(k s)       .  (9)  

 

Substituting (9) in (6), results: 

 

1 1m ry (k) b u(k ) ... b u(k r )      

1 1 sa y(k ) ... a y(k s)       ,      (10) 

 

where,  
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q
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uii Xwb  )(

1
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

 ,  i=1,2,…,r 

j
q

j
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yhh Xwa  )(

1




 ,   h=1,2,…,s      (11)          

 
q is the number of rules generated, and r and 

s are the orders of the plant input and output  

respectively. Eq. (10) represents the proposed 

ARX-LM with the input and output vectors 

defined below: 

X = [u (k-1) u (k-2) . . . u (k-r) y (k-1) y (k-2) . . 

.,  .y (k- s)] T  

Y=[y (k)] T                                                                           

 

At this stage the ARX-LM network is developed 

for modeling and controlling dynamic proc-

esses. This is our first motivation. 

 
2.2. Structure/parameter learning of the  

 ARX-LM network 

 

Learning of the proposed ARX-LM network 

consists of two phases, structure learning and 

parameter learning. The former structure is 

the corner stone to develop an optimal ARX-

LM network. It should determine the optimal 

number of the following seeds   

 Fuzzy clusters of each fuzzy variable. 

 Wavelet nodes 



H.A. Awad, T.A. Mahmoud / A novel ARX-local model network 

70                                 Alexandria Engineering Journal, Vol. 45, No. 1, January 2006 

 Fuzzy rules 

The fuzzy ART algorithm [16] is employed to 

determine the above three seeds. Basically, 

the fuzzy ART was introduced to finding the 

parameters of an input membership function 

(the center “cji” and the width “ji”). This is 

equivalent to forming the proper fuzzy hyper-

boxes clusters in the input space, which de-

fines the number of fuzzy rules and wavelet 

nodes. Forming these clusters requires the ini-

tial values of their centers and widths. Deter-

mining the parameters of a fuzzy cluster (a 

fuzzy set), includes the parameters of the 

corresponding wavelet function. That is 

 

jijijiji vdcm  21 ,  ,       (12)         

 
where j =1,2, … q (number of wavelet func-

tions), i=1,2, . . . n (number of input vari-

ables), cji, ji are the center and the width of 

the jth fuzzy set of the ith input , and 21,  are 

scaling factors. 

The fuzzy ART algorithm is employed in 

this paper to self-organize the proposed ARX-

LM. It can be summarized as follows [16]:  
Input vector: Each input X is n dimensional 

vector (x1, …, xn), where each component xi is 

in the interval [0, 1]. 
Weight vector: Each category (j) corresponds to 

a vector Wj = (wj1, wj2, …, wjn) of adaptive 

weights. The number of potential categories 
N= (j = 1, …, N) is arbitrary. Where the weight 

vector is defined by ).,..,,( 21 jnjjj cccW   

Initially 

 

1 1j jnw ... w   ,           (13)   

 

and each category is said to be uncommitted. 
Alternatively, initial weights wji may be taken 

greater than one. Larger weight wji bias the 

system against selection of uncommitted 

nodes, leading to deeper searches of previ-

ously coded categories.  

After a category is selected for coding it be-

comes committed. 
Parameters: Fuzzy ART dynamics are deter-

mined by a choice parameter 0 ; a learning 

rate parameter [0,1] ;  

and a vigilance parameter ]1,0[ . 

Category choice: For each input X and cate-

gory j, the choice function Tj is defined by: 
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where the fuzzy and operator ^ is defined by 

 

),min()( iii yx yx ,              (15) 

 

and where the norm |.|  is defined by 
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The category choice is indexed by J, where 

 

),...1:max( NjTT j J .                 (17) 

 

If more than one Tj is maximal, the category j 

with the smallest index is chosen. In particu-
lar, nodes become committed in order j=1, 2, 

3, . . . 
Resonance or rest: Resonance occurs if the 

match function of the chosen category meets 

the vigilance criterion. That is: 

 






j

j

X

WX
.                                            (18) 

       

Learning then ensues, as defined in (20). Mis-

match rest, on other hand, occurs if  

 






j

j

X

WX
 .                                        (19) 

 

Then the value of choice function is rest to 

zero for the duration of the input presentation 

to prevent its persistent selection during 

search.  
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Fig. 1. The structure of the proposed ARX-LM network. 

 

A new index J is chosen, by (17). The 

search process continues until the chosen 

category J satisfies (18) 
Learning: The weight vector WJ is update ac-

cording to the equation 

 
old
J

old
J

new
J WWXW ) 1( .         (20) 

 
Fast learning corresponds to setting  =1. 

Fast –Commit slow-record option: For efficient 

coding of noisy input sets, it is useful to set 
 =1 when J is an uncommitted code, and 

then to take 1 after the category is commit-

ted. Then XWnew
J  the first time category J 

becomes active. 
Input normalization option: A category prolif-

eration problem can occur in some analog ART 

systems when a large number of inputs erode 

the norm of weight vectors. Proliferation of 

categories is avoided in fuzzy ART if inputs are 

normalized; that is, for some 0 , 

X ,                (21) 

 

for all inputs X. Normalization can be achieved 

by preprocessing each incoming vector x, for 

example setting   

 

x
x

X .                            (22) 

 

An alternative normalization rule, called 

complement coding, achieves normalization 

while preserving amplitude information. 

Complement coding represents both on-re-

sponse and off-response to x. to define this 

operation in its simplest form, let x itself 

represent the on-response. The complement of 

x, denoted by xc, represents the off-response, 

where 

 

i
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The complement coded input X to the 

recognition system is the 2n-dimensional 

vector  

).,..,,.,..,(),(
11

c
n

c
n xxxxX  cxx .      (24) 

 

Note that 

 

nxnxX

n

i

c
i
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i

i  
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)(),(

11

cxx ,              (25)      

 

so inputs preprocessed into complement cod-

ing form are automatically normalized. Where 

complement coding is used, the initial condi-

tion (13) is replaced by 

 

1... 21  njj ww .            (26)               

 

Basically, training the proposed ARX-LM net-

work is a nonlinear optimization problem. Re-

search has been conducted in nonlinear 

optimization methods; however, the best 

known method is the RLS method. This 

method can be summarized as follows. Sup-

pose the weight and the input/output vectors 

are:   

 

Tj
n

jj
www ]...[

21
j , 

 

Tj
jj skykyrkuku )](...)1()(...)([   Φ , 

 

and  

 

j
j

jj   ,            (27) 

 

where 
j  is the normalized value of the firing 

strength defined in  (4), j  is the wavelet 

function defined in (2), and  j =1,2, . . . , q 

Reforming (26), results: 

 

].,..,, q21[ Θ  

 

].,.., q1,[  2B                   

 

That leads to: 

 

Θ Bkym )( .                (28) 

 

The linear parameters Θ  are recursively esti-

mated as defined below: 

)()()1()1()( kekBkkk  ΘΘ                     

 

)()1()(1

)1()()()1(
)1()(

kBkkB

kkBkBk
kk

T

T









 , (29) 

 

where e(k) is the error between the desired 

and the actual outputs respectively. That is: 

 

))()(()( kYkdYke  .                    (30)     

 

Employing the ART and the RLS algorithms to 

develop the proposed ARX-LM network, 

results a simple self-organizing network for 

modeling and control dynamic systems. This 

is our second motivation. 

 
2.3. Stability analysis of the ARX-LM network 

 

Forming the proposed local model network 

in the ARX model, investigates its stability 

using Lyapunove’s method with ease. This is 

our third motivation in this paper. The 

Lyapunove’s direct method is employed to 

investigate the stability of a fuzzy model 

mathematically [18-20]. In a similar manner, 

the stability of the proposed network is ana-

lyzed as follows: 
Definition (1): A matrix Q is positive definite 

matrix if all successive principle minors are 

positive 
Definition (2): A matrix Q is positive semi defi-

nite matrix if it is singular and all successive 

principle minors are nonnegative. 
Definition (3): A matrix Q is negative definite 

matrix if –Q is positive definite 

Theorem (1): The stability of a local model net-

work is globally asymptotically stable if there 

exists a common positive definite matrix Q for 

all the subsystems such that QQAA T ii  is 

negative definite for },...,2,1{ qi   

where Ai is the control canonical form of an 

individual local model and is defined as fol-

lows: 
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2.4. Modeling simulations 

 

In this section, two examples of nonlinear 

dynamical systems are tested to demonstrate 

the soundness of the proposed ARX-LM net-

work in the system modeling. It investigates 

also the stability of the proposed network for 

the two systems. 
Example one: Although the proposed ARX local 

network is aimed for modeling complex proc-

esses, it was first tested using a simple 

nonlinear system. The discrete time difference 

equation of the system is [8] is: 
 

)1(
30

)1(24
)( 
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 ky

ky
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)1(5.0)1(
)1(1
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The input and the output vectors are 

 

T
d

T

kyY

kukykyX

)]([

)]()2()1([



 .                       

 

The input training sequence consists of 

square pulses with random amplitude in the 

range [-5, 5] and with random frequencies. For 

comparison reasons, the following perform-
ance index (J1) is computed for the proposed 

ARX local model network and the WNN 

published in [8]. 
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The output of the network and the process 

is depicted in fig. 2. The performance index 

defined in (32) is computed for the two trained 

networks using the same test data. Table 1 

depicts the error values obtained and the 

number of wavelets used. Using the parame-

ters obtained from the proposed network re-

sults two local models and have two canonical 

control forms. Those are:  

 


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



 
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01

102.00516.0
1A , and  








 
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01

5618.0808.0
2A  

 

suppose a positive definite matrix,  Q  defined 

below: 

 


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








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73.082.0

82.01Q . 

 

To check the stability of the proposed 

network, the following two matrices are ob-

tained from the proposed ARX-LM. Those are: 

 









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0.7196-   0.9089   

0.9089    0.1827-QQAA 1
T
1 ,   

69.0QQAA 1
T
1  

 









0.4144-   0.8312  

0.8312    0.9420-QQAA 2
T
2 ,  

30.0QQAA 2
T
2 . 

 

It is clear that both the two matrices are 

negative definite. According to the Lyapunove’s 

method described above, the network is 

stable. 
Example two:  A more complex system is em-

ployed to assure the capabilities of the pro-

posed network in the dynamic systems model-

ing. The discrete time difference equation of 

the system is [12]: 

 

)2(2)1(21

)}(]1)2([*)1()2()1()({
)1(






kyky

kukykukykyky
ky . 

                (33) 
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Fig. 2.  The output of the system and the proposed ARX-
LM network (example one). 

 

Table 1 
Comparison between the proposed ARX-LM network 
with the WNN published in [8] (Example one) 

 

The two network The J1 error 
values 

Number of 
wavelets 

WNN 0.0302 5 

ARX-LMN 0.0200 2 

 

The training signal u(k) is defined below: 

 

)50/2sin(8.0)( kku  .                (34) 

 

The input and the output vectors are: 

 

T
d

T

kyY

kukykyX

)]1([

)]()1()([



 .                        

 
Two different test signals u1(k) and u2(k), 

are used to assure the modeling capabilities of 

the  proposed network. Those are [12]: 

 













500)25/2sin(2.0)250/2sin(8.0

500)250/2sin(
)(1

kkk

kk
ku




,      

               (35) 

 

)25/2sin(2.0)200/2sin(8.0)(2 kkku   .   (36) 

 

For the comparison reason, the following 

performance index is computed for the pro-

posed ARX-LM network and the FWN 

published in [12]: 

2

1

2

1
1

)ˆ)((

))()((

d

N

k

d

d

N

k

m

YkY

kYkY

J
t

t












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With 

 





tN

k

d
t

d kY
N

Y

1

)(
1ˆ .           (37) 

 
where Nt is the number of training data, and 

Ym(k) is the model output at the kth time step. 

The output of the network and the process us-

ing the two test signals defined in (35 and 36) 

is depicted in fig. 3 and 4 respectively. The 

performance index defined in (37) is computed 

for the two trained network using the test 

signals defined in (35 and 36). Table 2 depicts 

the error values obtained. Using the pa-

rameters obtained from the proposed network, 

results two local models that have two ca-

nonical control forms. Those are:  

 








 


01

123.0128.0
1A . 








 


01

0141.0229.0
2A . 

 

To check the stability of the proposed 

network, the following two matrices are ob-

tained from the proposed ARX-LM network by 
using the positive definite matrix Q used in 

the example one. Those are: 

 











0.7149-   0.9051   

0.9051    0.4635-QQAA 1
T
1 . 

44.0QQAA 1
T
1  











0.7283-   0.8443  

0.8443    0.5931-QQAA 2
T
2 .   

28.0QQAA 2
T
2  

 

The two matrices are negative definite that 

satisfies the Lyapunove’s condition and con-

firm the stability of the network.   
 



H.A. Awad, T.A. Mahmoud / A novel ARX-local model network 

                                                Alexandria Engineering Journal, Vol. 45, No. 1, January 2006                  75        

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

0 100 200 300 400 500 600 700 800 900 1000

samples

model system

 
Fig. 3. The output of the system and the ARX -LM  

network using the test signal u1. 
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Fig. 4. The output of the system and the ARX-LM  

network using the test signal u2. 

 
Table  2 

Comparison between the proposed ARX-LM network  
and the FWN published in [12] (Example two) 
    

The two networks The J2 error 
values 
using u1 

The  J2  error 
values   
using u2 

The FWN  0.0406 0.0449 

The proposed  
ARX-LM network 

0.03102 0.03757 

 

Investigation shows that best simulation 

results are obtained using the proposed ARX –

LM  network compared with the WNN pub-

lished in [8] and the FWN  published in [12], 

in the sense of the performance indexes 

defined in (32 and 37). Controlling dynamic 

systems using the proposed ARX-LM network 

is discussed in section III. 

 

3. ARX-LM -based predictive control  

 

Developing the proposed model in the form  

of ARX model helps the engineers to construct 

their model-based predictive control schemes 

with ease. This is our fourth motivation.  The 

methodology of Model Predictive Control (MPC) 

can generally 

Be summarized as follows [21, 22]. First, 

based on the model employed the future 

outputs for a specified prediction horizon are 
predicted at time k. Second, using an optimi-

zation scheme to minimize a cost function, the 

linear programming (LP) and nonlinear pro-

gramming (NLP) problems can be solved and 

hence a set of optimal control actions can be 

obtained. Third, from these possible actions, 
the control system at time k is selected and 

sent to the actual process and the rest of the 

actions are rejected based on the receding 

horizon strategy. The MPC comprises on-step 

ahead or multi-step ahead strategies. The 

former suffers from some limitations particu-

larly in controlling non-minimum phase 

systems. To overcome these shortcomings, the 

idea of using long-range predictive control has 

been developed. Since the early 1980s, a long-

range predictive control has gained its 

popularity in control field [21, 22].  A number 

of algorithms of predictive control based on 

fuzzy models have been proposed [23-25]. 

Also, a number of researchers have been 

conducted using neural networks or fuzzy 

neural network to develop a model-predictive 

control scheme [26- 29]. A nonlinear predictive 

control based on wavelet neural networks and 

fuzzy wavelet neural networks has been 

presented in [30, 14]. Linkens and Kandiah 

introduced a long range predictive control 

scheme based on TSK fuzzy model that has 

been applied for controlling a nonlinear SISO 

system [24].  This paper extends this scheme 

for controlling not only SISO systems but also 

for controlling MIMO systems using the 

proposed ARX-LM network. 

 
3.1. ARX-LM- based long range predictive 

 control 

 

First, consider a SISO discrete time system 

described by the proposed ARX local model 

network. The model prediction over the 
costing horizon n2 is given by: 
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yp(t + 1) = a1y(t ) +. . .+as y(t+1-s ) +   b1 u(t ) + 

.  . .   +br u( t-r+1) +err(t ) 

                       . 

                       . 

                       . 

 
yp(t + i) = a1y(t+i-1) +. . .+ as y(t+i-s ) +  

b1 u( t+i )  + .  . .  +br u( t+i-r ) + err(t),          (38) 

                       . 

                       .                                                       

                       . 
yp(t + n2) = a1y( t + n2-1) +. . .+ as y( t+n2-s)+  

b1  u(t+n2-1) +.  . .  + br u(t-r+n2)+ err(t)    

 
where err(t) represents the modeling error, and 

 yp(t + i) is the ith predicted output. It has been 

assumed that the modeling error is constant 

over the entire prediction horizon and the 

values of  
u(t+ m-1) is equal zero over the control hori-

zon..  

Accordingly, the above equations can be 

reformed as follows:  

 
Y(t)=P X(t)+Q U( t )+R err(t),               (39) 

 
where, Y(t)=[yp(t+1) . . . yp(t+n2)]T, denotes a 

vector of the model predicted outputs over the 

prediction horizon, X(t)=[y(t)  y(t-1) . . . y(t+1-s) 

u(t -1)  . . .  u(t+1 -r)]T is a vector of the past 

plant and controller outputs, and U(t )=[u(t )… 

u(t +m-1)]T, is  a vector of the future outputs of  

the controller. The matrices P, Q, and R are 

given below 
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The general aim of the MPC scheme is that 

the future outputs on the considered horizon 

should follow a pre-determined reference tra-

jectory and, at the same time, the necessary 

control effort should be minimized. A typical 

cost function includes increments of the con-

trol signal, the control signal itself or neither 

of them. Accordingly, it can be defined as 

follows [24]:     

 





2

1
)]()([ 2

n

i
itdyityprJ p

,           (40) 

 

where )(tyd  is the reference trajectory used 

over the prediction horizon. The optimal con-

troller output is found by minimizing the 

above cost function such that.               

 

0




u

prJ
.                                               (41)   

  

Differentiating the cost function defined in 

(40), leads to the following optimal solution: 

 

)](Re)()([][)( 1 trrtPXtWQQQtU TT    .            (42)                                         

 

The above scheme can be extended to 

MIMO systems. Consider a MIMO system with 

two inputs and two outputs is described by 

the folowing nonlinear discrete time differnce 

equation. 

 

1 1( 1) [ ( ), ( 1),..., ( ), ( ), ( 1)y t F y t y t y t s u t u t    
   

       

1 2 2 2,..., ( 1), ( ), ( 1),..., ( 2]Tu t m u t u t u t m   ,   (43) 

 

Where  
T

tytyty )()()( 21


, the index s  indi-

cates the   previus values of y


, and m1, and  

m2 are the number of the  previous values of 

u1’s and u2’s respectively. This system can be 

modeled by the proposed ARX-LM network  as 

follows:  

 

)()()1( tuBtyAty p  ,                       (44) 

 

 



H.A. Awad, T.A. Mahmoud / A novel ARX-local model network 

                                                Alexandria Engineering Journal, Vol. 45, No. 1, January 2006                  77        

where 
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The model prediction over a costing horizon of 
n2 time steps is given by: 

 

(t)rer(t)u(t)yA1)(tpy


 B  

       . 

       . 

       . 
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      . 

(t)rer1)-(tu1)-(tyA)(tpy 22


 nn Bn2 ,(45) 

 
where err(t) is  the vector of the estimation of 

the modeling errors. As in the case of SISO 

system, the above equations can be trans-

formed into the following forms using the 

back-substitutions: 
 
Y1(t)=P1 X(t)+Q1 U(t)+R1 err1(t)                        
Y2(t)=P2 X(t)+Q2 U(t)+R2 err2(t),             (46)                     

 
where Y1(t)=[yp1(t+1) . . . yp1(t+n2)]T,  and 

Y2(t)=[yp2(t+1) . . . yp2(t+n2)]T denote  the pre-

dicted values of both  the first  and the second 

output of the model over the prediction hori-

zon, is a vector of the past plant and controller 

outputs,  

T
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U(t)= [ u1( t ), . . .,u1( t +m1-1),  
 
u2 (t), . . ., u2 (t +m2-1)]T, is a vector of future 

outputs of the controller. The matrices Pi, Qi, 

and Ri are defined below. 
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In order to show how the process outputs 

tracks the desired responses, the cost function 

defined in (40) is modified as follows: 

    


 



2

1 1

2
2

))()((

j i
jdpjm

n

ityityJ                                              

1 1 1 1

1 1 1 1

2 2 2 2

( ( ) ( ) 1( ) ( ))

( ( ) ( ) 1( ) ( ))

( ( ) ( ) 2( ) ( ))

T

T

P X t Q U t R err t D t

P X t Q U t R err t D t

P X t Q U t R err t D t
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   

  

 

2 2 2 2( ( ) ( ) 2( ) ( ))P X t Q U t R err t D t   ,            (47)   

    
where ydj(t) is a vector of the desired responses 

of the jth output over the prediction horizon. 

Differentiating the cost function defined in (47) 

leads to the following optimal solution: 
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3.2. Simulation results  

 

The long range predictive control scheme 

based on the ARX-LM network is evaluated 

using two cases study, one is SISO and the 

other is MIMO.  These cases have time varying 

parameters, dead time, and non-minimum 

phase behavior. The first case is the mean 

arterial blood pressure control system using a 

typical vasoactive drug. The second is the 

regulation of the mean arterial blood pressure 

and the cardiac output using two typical 

drugs, one is a vasoactive drug and the second 

is an inotropic drug.  

 
3.2.1. SISO Case 

The model of the Mean Arterial Blood 

Pressure (MABP) of a patient under the 

influence of sodium nitroprusside (SNP) 

described in Slate and Sheppard [31] is: 

 

)()()()( 0 tPtVtPPtP c  ,                     (49) 

 
where P(t) is the mean arterial blood pressure 

(mmHg), Po is  the initial blood pressure, )(tP  

is the change in pressure due to infusion of 
SNP, Pc (t) is the change of pressure due to 

renin reflex action which is the body’s  

reaction  to  the  use  of  a  vasodilator  drug,   
V(t) is a stochastic noise which associated with 

disease, treatment drugs or liquids adminis-

tered, pain , and  recovery from anesthesia. 

The transfer function that describes the 

relation between the change in the blood pres-
sure and drug infusion rate U, is: 
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where U is the drug infusion rate (ml/h), K is 

the drug sensitivity,  is the recirculation con-

stant, Ti is the initial transport delay time 

(second), Tc is the recirculation delay time 

(second), T1 is the response time constant 

(second). Disregarding the effect of renin 

reflex, the corresponding ARMA model of 

MABP under the influence of SNP is:                          
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,              (51)                                                                              

 

where (t) is a broadband random sequence, 

and C(z-1) is a stable polynomial. The nominal 

values of the parameters in model (51) are 

(a1=0.741, bo=0.187, bm =0.075, d =3, m=3) at 

sampling period T= 15 sec [32]. The parameter 

values of different patients including the sys-

tem time delay are drastically changed. More-

over a patient’s characteristics usually vary 

during the course of operation. The time con-

stant and gains of the system change in an 

exponential manner. The time constant and 

gains of the system change in an exponential 

manner. The variation of parameters is mod-

eled as follows [33]: 

 

par(k)=par(0)+(par()-par(0))(1- )/k
e


.       (52)            

 

The control objective was to decrease the 

blood pressure from an initial large value (e.g., 
Po=150 mmHg) to a desired level (e.g., Pd =100 

mmHg) within 5 ~ 20 min, and to maintain 

this level within ± 15 mmHg. 

The performance of the controller scheme 

was tested, using four cases summarized as 

follows: The first case:  The plant parameters 
are set to the nominal values (a1=0.741, 

bo=0.187, bm=0.075, d=3, and m=3). The 

second case: The patient has variable gain 
"sensitivity" such that the value of bo is set to 

0.187 and then varies exponentially with time 

as defined in (52) and the other parameters 

are kept constants at the nominal values  
(b0=0.187, bm=0.075, d=3, and m=3). The third 

case: The patient has variable time constant 
such that the value of (a1) is initially set to 

0.741 and then varies exponentially with time 

as defined in (52), and the other parameters 

are kept constants at the nominal values. The 

fourth case: The patient with variable delay 

time such that the delay time is abruptly 

increased from d=3, m=3 to d=5, m=5 at 60 
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minute mark, and the other parameters are 

set to nominal values. 

Figs. 5 and 6 show the response of the 

blood pressure system to the control signal of 

the proposed scheme when the second and 

the third case are presented. The steady state 

error, overshoots, and undershoots of the 

blood pressure shown in the figures are ac-

ceptable compared with the results shown in 

[32, 33]. Compared the ARX-LM network-

based long range predictive control with the 

hybrid  wavelet  fuzzy neural network 

(HWFNN)- based predictive control scheme 

[14], in the sense of the Root Mean Squares 

(RMS) error defined in (53) , the former is 

superior to the latter as depicted in table 3.  
 





N

t
tytdy

N
RMS

1

2))()((
1 ,                     (53) 

 
where N is the number of samples, yd is the 

desired output of the system and y is its ac-

tual output.   
 
3.2.2. MIMO case 

Clinically, it is required to regulate 

simultaneously the cardiac output (CO) and 

the mean arterial pressure (MAP) of a patient 

in hospital intensive care using various drugs. 

Two typical drugs used are dopamine (DOP), 

which is an inotropic drug, and sodium 

nitroprusside (SNP), which is a vasoactive 

drug. For the purpose of the simulation study 

Linkens and Nie adopt the same model used 

in [34, 35] which is given by [36]:   
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Fig. 5. The mean arterial blood pressure response of the 
ARX-LM- based long range predictive control (case two). 
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Fig. 6. The mean arterial blood pressure response of the 
ARX-LM-based long rang predictive control (case three). 

 
Table 3 
Comparison between the proposed ARX-LM- based and 
the HWFNN-based [14] long range predictive control 
schemes 

 

 
 
System cases 

The RMS error values 
The proposed 
ARX-LM-based 
long range pre-
dictive control 

The HWFNN-
based  long 
range pre-
dictive control  

Case one 1.411 1.935 

Case two 1.496 2.350 

Case three 1.460 2.302 

Case four 1.653 1.935 
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where CO (ml/s) is the change in cardiac 

output to U1 and U2 ; MAP (mmHg) is the 

change in mean arterial pressure due to U1 

and U2 ; U1 ( min)//Kgg is the infusion rate 

of dopamine; U2 (ml/h) is the  infusion  rate  of 

sodium nitroprusside ; K11, K12, K21, and K22 

are steady state-gains with nominal values of 
8.44, 5.275, -0.09 and -0.15 respectively ; τ1 

and τ2 represent two time delays with nominal 

values of τ1= 60 s and τ2= 30 s; and T1 and T2  

are time constants with nominal values  of 

84.1 s and 58.75 s respectively. It is evident 

that the model is characterized by strong in-



H.A. Awad, T.A. Mahmoud / A novel ARX-local model network 

80                                 Alexandria Engineering Journal, Vol. 45, No. 1, January 2006 

teraction between the variables and large time 

delays in control.  Through this work, the fol-

lowing values are used. The sampling time is 
30 s.  Set- points for CO and MAP was set to 

be 20 ml/s and -10 mmHg changing from 

nominal values of 100ml/s and 120 mmHg 

respectively [37]. This paper employs this 

MIMO system to test the soundness of the 

proposed ARX-LM-based long range predictive 

control scheme. To investigate the effective-

ness of the proposed scheme, four cases of the 

system parameters are performed; these cases 

are listed as follows [37]: The first case: The 
plant parameters (K11, K12, K21, K22 ,τ1, τ2, T1 

and T2 ) are set to the nominal values. The 

second case: The plant parameters (K21, K22, 

τ1, τ2, T1 and T2) are set to the nominal values 

and the two parameters K11, K12 were abrupt 

changed by 10% from their nominal values. 

The third case: The plant parameters (K11, K12, 

τ1, τ2, T1 and T2 ) are set to the nominal  values 

and the two parameters K21, K22 were abrupt 

changed by 10% from their nominal values.  

The fourth case: The plant parameters 
(K11, K12, K21, K22, τ1 and τ2) are set to the 

nominal values and the two parameters T1 and 

T2 were abrupt changed by 10% from their 

nominal values.  Fig. 7 shows the response of 

the process using the proposed predictive 

scheme when the first case of the system 

parameters is presented. These dynamics are 

acceptable according to the results published 

in [37].  The RMS errors values defined in (55) 

of the proposed ARX-LM –based predictive 

control scheme are computed and shown in 

table 4.  

 

 


N

t

COdCO
N

RMS
1

2))(
1

1      

 


N

t

MAPdMAP
N

RMS
1

2))(
1

2  .            (55)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 
 
 
 
 
 

Fig. 7. The changes for both cardiac output and blood pressure using ARX-LM- based long range predictive 
control (case one).  

 



H.A. Awad, T.A. Mahmoud / A novel ARX-local model network 

                                                Alexandria Engineering Journal, Vol. 45, No. 1, January 2006                  81        

Table 4   
The RMS errors obtained using the proposed ARX-LM- 
based predictive control scheme 
 

System case The RMS error-1 The RMS error-2 

Case one 0.34827 0.23922 

Case two 0.57250 0.60371 

Case three 0.43903 0.89736 

Case four 0.34825 0.24143 

 

where N is the number of samples, dCO , 

dMAP  are the desired changes of CO and 

MAP respectively. From the time responses 

and the performance indexes, the developed 

scheme has the ability to regulate the multi-

variable with ease.  

 

4. Conclusions 

 

This paper introduces a new  local model 

network named ARX-LM network. This net-

work mergs the locality feature of the TSK 

fuzzy model and the wavelets that are very 

useful for function appoximation.  

It basically adopts the philosophy of 

forming a process be modeled with a set of 

fuzzy-wavelet submodels. Each sub-model 

comprises a TSK fuzzy model fertilized by a 

wavelet function. The output of these sub-

models are weighted and summed to produce 

the final output. Developing of the proposed 

network, requires two phases structure and 

recall. The former comprises structure learn-

ing using the fuzzy ART algorithm and 

parametrs learning using the RLS algorithm. 

The latter used unseened data to test the 

identifiability, generaly, and plastisty featuery 

of the network. The main two notable points of 

the proposed network are that its structure is 

an ARX  

form and its computational demand is 

relatively  small. The former means that  the 

conventional linear and nonlinear control 

systems e.g. laypunove’s method can be ap-

plied with ease. The latter is enherits from 

using few TSK and fuzzy rules and wavelets 

that makes the proposed ARX-LM network is 

promising in modeling and controlling real 

time systems. Modeling simulationd results 

show that best results have been acheived 

using the proposed ARX-LM network 

compered with the WNN and the FWN. The 

proposed ARX-LM network was employed to 

develop a long range predictive control scheme 

for SISO and MIMO systems. The proposed 

ARX-LM-based predictive control scheme was 

applied to control the MABP with ease. Results 

show that better results have been achived 

using the proposed ARX-LM-based long range 

predictive control scheme compared with 

HWENN-based long range predictive control.  
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