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In this paper, a modified, easy to implement design method for 2-D linear-phase IIR digital
filter is represented. In this dominator of 2-D IIR filter function is chosen as a 2-D all-pass
function Q(z:, z2) which represents an approximately linear passband phase response. A
mirror image polynomial P(z) of degree N is obtained to approximate a corresponding 1-D
desired amplitude response. This polynomial P(z) is then transformed to 2-D function
P(z1, z2) by applying the Digital Spectral Transform (DST). This 2-D function P(zi, z2) is used
as the numerator of the overall 2-D transfer function H(zi, z2)= P(z1, 2z2)/ Q(z1, z2). The
resulting H(zi, z2) belongs to a 2-D IIR digital filter with linear phase passband and could
have circular, elliptical, or fan magnitude according to the proper selection of the only two
parameters in the DST. The resulting filters are shown to be stable via the application of the
one of the known stability test. The presented design method needs less computational

efforts since it requires only to determine the 1-D mirror image polynomial coefficients.
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1. Introduction

Recently many design methods have been
successfully applied to the design of 2-D IIR
filters with linear phase. Those methods unify
the approximations of both magnitude and
phase responses.
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The linear programming technique [1] is
one of those methods, essentially based on the
filter design approach presented in [2]. Al-
though, linear programming approach offers
many advantages over conventional all-pass
equalizer method, such as its drastic reduc-
tion of delay ripples. However, the linear pro-
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gramming approach is far from the optimal
design because of its stability constraint as
well as unnecessary weightings used in objec-
tive functions. Moreover, linear programming
involves intensive computation.

Alternatively, the design technique pro-
posed in [3] for 2-D IIR filters meets simulta-
neously the magnitude and group delay speci-
fication. A performance index has been chosen
as a linear combination of three error func-
tions for magnitude and group delays. That
index is then minimized iteratively to have the
desired specifications. This technique has the
advantage of always ensuring the filter stabil-
ity, whereas its encountered difficulties are
computational complexity and convergence.

Among the other methods for 2D IIR filters
designed with simultaneous approximation of
the desired magnitude and linear phase re-
sponses has been accomplished by consider-
ing a parallel connection of an all-pass subfil-
ters and cascaded delays as a basic section to
ensure approximately linear phase [4]. The
proposed filter can be designed directly in the
2-D, z1, z> domain to achieve 2-D IIR digital fil-
ters with circularly symmetric characteristics.
In addition to the simultaneous approximation
of the desired magnitude response and the
passband linear phase characteristics, the
structure obtained by this method requires
only few parameters to be designed and has a
very low sensitivity. A major drawback of this
proposed method is that the stability of de-
signed all-pass filters is not always guaranteed
because the unwrapped phase of the filter ob-
tained by this method is certainly continuous
and periodic. This is not a sufficient condition
for stability, but satisfies a necessary one.
Thus, in many cases this method leads to
unstable filters.

In [5] a new methodology was presented. It
based on considering an FIR model that repre-
sents the ideal filter response with linear
phase. A linear phase IIR filter is then synthe-
sized as an approximation of the ideal FIR fil-
ter. It is a computationally intensive because
of the use of computer-aided optimization
technique. However the stability of the result-
ing IIR filters guaranteed since the obtained
IIR filter are based on the FIR filter models.

Alternative computationally-efficient tech-
niques include those using transformation of

1-D filters (analog and/or digital). The
McClellan transformation [6,7] in its general-
ized form was applied separately to the
numerator and denominator polynomials of a
1-D IIR filter functions and then by the use of
several nonlinear optimization procedures a 2-
D IIR filter was achieved as presented in [8]
and later on in [9-12], where the design
philosophy is analogous to the equalizer
method, i-e the magnitude and phase approxi-
mations are handled separately. Although this
technique looks simple for a class of quadran-
tally symmetric 2-D filters. Nevertheless, the
computation complexity still remains for non-
quadrantally symmetric filters.

Unlike the above cited methods, the Digital
Spectral Transformation (DST) first proposed
in [13] was used for designing 2-D IIR filters,
simultaneously approximating the prescribed
magnitude response and constant group delay
in the passband.

This design method needs less computa-
tional efforts since it requires only to deter-
mine the 1-D mirror image polynomial coeffi-
cients.

The origin of the DST and its analogy with
the 2-D reactance function in addition to its
properties are briefly indicated in section 2.
The design method is represented in section 3.
Section 4 includes design examples verifying
this method. It also includes a comparative
study between this method and others previ-
ously presented in the literature. Stability and
realization conditions are treated in section 5.

2. The DST and its origin

It is well known that, a 2-D digital filter
can really be designed from a 1-D analogue
prototype after applying a bivariate reactance
transformation followed by a Double BilLinear
Transformation (DBLT) [13] and [14]. This
technique is used here to find a stable direct
1-D to 2-D DST.

Consider the following bivariate reactance
function as a General Analogue Transforma-
tion (GAT) from 1-D to 2-D case.

GAT AR+B P

PR BT "
1-2

where A, B and C are positive constants. It is
known that the application of the bivariate
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reactance function g, (P, B,) leads to Bounded

Input-Bounded Output (BIBO) stable digital
filters which are free of nonessential singulari-
ties of the second kind [15 and 16]. Further-
more, C can suitably chosen to achieve a lo-
cal-type preservation on

1
Ql:{wl,wg N COIZ 0,6322 0, W Wy < }
(¢

choosing o—-1-% p_1-band C=AB
l+a 1+b

with a and b as constants. Applying the DBLT,

yields:
[1—zllJ 1-2;
+
1 -1
1+z 1+z
DBLT 1 2
9a(PL,Py) I 1
1—z1_ 1—22
1+AB - %
1+z1 1+z2
-1 -1
~ a+z; b+z2
-1 -1
_ l1+a z; 1+bz2 )
a+z1_1 b+z51
1+ . .
1+az1 1+bz2

Thus, from (1) and (2), we obtain
1- a+z1’1 b+z§1
GAT + DBLT l+a 7" 1+b 7'

a+zf1 b+z§1
1+ =] =]
l+az 1+Db 2z

(3)

P

However, it is well known that a bilinear
transformation (BLT) is given by:

B l—z_1

P - )
1+z

comparing (3) and (4), it can be seen that, the

GAT of (1) may easily be met by applying the
following direct DST:

-1 -1
! DST [a+zl 1] [b+z2 J’ (5-a)

l+az 1+bz§1

or equivalently

2 DST z1+a z0+b
l+az 1+bzy

= fi(z1) fa(z2)- (5-b)

Thus, the equivalence of bivariate ana-
logue reactance functions and the product of
two 1-D 1st-order all-pass digital functions
(one in each dimension) is proved.

It is worth to mention, here, that the
above DST is similar to that proposed by [17
and 18], but neither they specified its origin,
nor pointed out its stability property due to its
equivalency to the bivariate analogue reac-
tance functions. The DST in (5) has some
interesting properties, which are:

1. It is known that this DST is a stable trans-
formation for la <1 and \b\<1 [17 and 18].

Thus, applying such DST to a stable 1-D
prototype IIR filter leads to a stable 2-D IIR fil-
ter, although it is not separable.

2. The DST is a product of two 1-D 1lst-order
all-pass functions which possess some nonlin-
earity witho, and wj, where:

-1
a+z
wg=Jj In|——L |, (6-a)
1+azl_1
and
. b+z§1
wp =7j In — | (6-b)
1+b zy

With j = vJ—1. Thus, the resulting 2-D
filter will not have boundaries that are straight
lines. This in turn provides the flexibility of
the design according to some optimal value of
the parameters a and b in the 1-D to 2-D
mapping relationship which can easily be de-
rived from (5);
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2
= Z(&)i—zei); (7)
i=1
where
6; = tan-1[_ % SN @i ) ®)
1+a; cos w;
and

a=a and g, =b

3. The design of 2-D filters via this DST can be
accomplished by choosing the parameters a
and b for some acceptable error in the pass-
band contour. The amplitude response of the
1-D prototype filter is preserved in the corre-
sponding 2-D filter depending on the parame-
ters a and b. The group delay along a» or @, is
constant in the passband region. From (7), we
can obtain:

0 0 06;
S B i (9-a)
0 @; 0 [0k
=1,2
where
0 6:; a? +a; cos ®;
L= : ’ (9_b)
0 @; ai2 +2a; cos w; +1
=1,2.
Since 2 i s nearly constant over the
@;

passband region, then it can be easily to use a
1-D filter with linear-phase as a prototype
filter and applying this DST, resulting in a 2-D
filter preserving both amplitude response and
linear-phase response characteristics in the
w1,z plane. Such properties will be utilized in
the next section in addition to the application
of the DST in the design of 2-D IIR filters with
linear-phase.

3. The design procedure

To design a 2-D IIR digital filter with a
linear-phase (constant group delay), start by
writing the transfer function of the filter in a
general form:

H (%%F%- (10)

It is chosen here, that the denominator
function Q(zi, z2) contributes the all-pass lin-
ear-phase response, while the numerator
function P(zi, z9) is originally a 1-D mirror im-
age polynomial P(z) of degree N so that it
contributes zero phase. P(z) Is synthesized to
approximate the corresponding 1-D amplitude
response of the desired 2-D digital filter. The
DST is then applied to the polynomial P(z) to
form the numerator function P(z:, z2). The
synthesis of P(z} Can be carried out as fol-
lows:

P(z) is a mirror image polynomial, which
can be expressed by;

N
P(z)= > anz"» (11)
=N
and
. N .
P (eﬁ): > a, Y, (12)
n=—N
or
. N
P(ejw)=a0+2 > ap cos (ne) - (13)
n=1
P (ej“’) is required to meet the

corresponding 1-D amplitude response g (@) of
the digital filter. To achieve such require-
ments, P (eja’m) is chosen to mach the sampled
version of the amplitude response g (@, ) for m
=0, 1,..., M when wg =0and wy; =m. Thus,
the error function E (@,,) defined by:

E (op) = ‘ P (eja)m)_g (@m) ‘ ) (14)
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is forced to be zero for m = 0, 1,..., M such as:

P (ejwm): glwy,) for m=01,..M. (15)
or
N
ag +2 . a, cos(nopy) = gloy) for m=0I..M. (16)
n=I

Eq. (16) can be rewritten in matrix form
as:

CA =G, (17)
where
[1 coswg cos2wmg cos 3wg cos Nay |
1 cosw; cos2w; cos 3w cos Nw;
co 1 coswy cos2wy cos3wy cos Ny
|1 cos @3 C€OS2m3 oS 3wz cos Nwg
|1 coswy cos2wp cos3wy - cos Noyy |
(18-a)
T _
Al =Jag 2a; 2a5 2a3 ... 2ay], (18-b)
and
T
G" =[g(@0) glan) glwa) gl@s).-.gloy)]-  (18-)

The system of equations given by (16) can
be solved in an efficient manner by choosing

M=N,woy=0,0, =n/N, and

Omil —Om = Om — Oy =T/N

The resulting C matrix will become
symmetric, while A and G are column vectors
of the order (Nx1). Cholesky decomposition
[19] is used for solving the matrix equation of
(17). First, the matrix C is expressed in the
form

C=SRST (20)
Where S is a lower triangular matrix

(whose main diagonal elements are all 1’s) and
R is a diagonal matrix. The superscript T de-

notes matrix transpose. The elements of the
matrices S and R are readily determined by
solving for the (1, j)** element of both sides of
(20), giving:

J
Cii=¥Sik m S;x for os<j<i-1, (21)
k=0
or
F1
Sijri=Cij- XSk 1 Sji for o<j<i-1, (22)
k=0

and for the diagonal elements:
i .
cil.:z,sik ne Sjp for i>1. (23)
k=0

Si=1
Si=Sji

or
i-1

i =Ciu— Zsizk T - (24)
k=0

with

The recursive egs. (21) to (25), can be used
to solve for S and R matrices. Once these
matrices have been determined, it is relatively
simple to solve the column vector A in two-
step procedure. From (17) and (20), we get:

SRSTA=G. (26)

Which can be rewritten as:

SB = G, (27)
where

RSTA =B, (28)
or

STA=R!B. (29)
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Thus, using the matrix S, (27) can be
solved for the column vector B using a recur-
sion of the form:

i-1

bi:g(wi)_zsi_j b; for N>i>1, (30)
j=0

with initial condition:

bo =9 (@p). (31)

Having solved for B, (29) can be solved
recursively for A using the relation;

N
Qai:ﬂ_g Zsjiaj for 1<i<N-1, (32)
C = |
and
b N
aozr—O—QZ Sioa;> (33)
(4] j=1

with initial condition,

_ by 34
ay 2ry (34)

It should be noted that, the index i in (32)
proceeds backwards from =N-1 to =1

Knowing the coefficient matrix A, the mir-
ror image polynomial is then formed as in (11),
i.e.;

p(z)= i a, z".

n=—N

Applying the DST of (5) to the polynomial
p(z), we can obtain the numerator function
pl(z1,20) as:

p(Z1,22): % an[21+aJn(22+an- (35)

e I+az 1+bzy

Where the parameters a and b are chosen
according to the desired shape of the cutoff
contours using the one-dimensional search

method outlined with the associated tables in
[17].

We arrive now at the stage of choosing an
all-pass linear-phase (or approximately linear-
phase over the passband) denominator func-
tion Q(z1,22). To do so, we recall for the simple
idea of having a 1-D linear-phase FIR filter
from a zero-phase filter p(z). This is usually
done by multiplying the zero-phase filter re-
sponse by zV where N is the degree of the
zero-phase polynomial p(z). i.e., the resulting
filter transfer function becomes:

H(z)=P@), (36)

Thus, Q(z1,2z2) can be chosen as the DST
the denominator in (36); i.e.,

z1+c N zZo+d v
Q (z1,25) = . (37)

l+cz 1+d zg

Q(z1 ,2z2) represents an all-pass phase filter
with a transfer function given by:

o' 2 Dlei', z5')

Q (Zl:ZQ) = D (Zl,ZQ) > (38)
where,
D (Zl,ZQ)=(1+C zl)N (1+d ZQ)N, (39)

and c and d are constants, smaller than uni-
modulars. The phase response of Q(z1 ,z) is
given by:

[0} i,
@ (01,02) = Q(ej 1e’ 2]
o o
=Ny +Na-2 D[ej 1e' 2]
=Nw+Nap-2N tan™! _csmeyp +tanL w ‘
1+c cos @ 1+d cos &y

(40)

The group delay of Q(z:1,z) function along
@ can be easily derived as:
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8(p(a)1,w2)_N_2N[ 02+ccoswl }

Oy 2 +2ccosa +1

or

76(’0(@1’602):N72Nf(c,w1)- (41)
6&)1

Where f(c,e;) takes nearly constant values

over the passband along @. Similar character-
istics can also be obtained along ws.

In order to have such constant group delay
over the same passband of the designed
P(z1 ,z), the values of parameters ¢ and d in
(37) are chosen to be equal to those of a and b
in (35), respectively. Thus, the group delay of
Q(z1 ,22) function along @1 can be rewritten as:

@ =2200%) b5 fae), (42-a)
0 (0}

and along a», it can be written as

ay = 221@2) v o fho) (42-b)

6602

The transfer function of the designed 2-D
IIR filter can now be written partially as:

]ZV: o | Zta " zy+b "
ne_N "\1+az 1+b zg 43
H (21,22): - (43)

N N
z1+a Zo+b
[1+a zlJ [1+bZQJ

It can be reduced to:

H (z1,2)=
N . ‘
Y ai iz +a)(z + bV {1+ az) 1+ bz

- (z1 +afN (zg + BN

: (44)

Py (21}22 )
Q1 (Zl’ZQ)

It should be noted that, the DST of (5)
exhibits half-plane symmetry, i.e., the con-
tours the first quadrant are symmetric to
those in the third quadrant. To have similar
contours in the second and fourth quadrant,

the filter in (44) is cascaded with # (5,73). The
resulting filter becomes:

Hyi(z1,22) = H (225) H (szél)- (45)

The filter response of (45) gives rise to four

spurious passband regions in (0< o) , |@) < 1)-

To eliminate these undesirable small pass
band regions, the filter in (45) may have to be
cascaded with a low-pass filter H (fi,(z))

H (f5,(25))- Thus, the overall filter response can
be written as:

Hr(z1,23)= H (z1,25) H (Zl’zél) , (46)
H(fi(z1) H (falz2))

4. Illustrative examples

To illustrate the design procedure pre-
sented in this paper three design examples are
given:

Example 1:

Required to design a circularly-symmetric
filter with passband edges @, = e, =3/8r rad.
and linear-phase with a; =ay =2
The design:

Since, it appears from (42) that the group
delays depend basically on the order N and on
the parameters a and b. Thus, assignment of
a and b first leads to the proper order N when
the desired values of group delays along mand
an (i.e.,a;andag)are originally given as a
specifications. For circular filters a=b, thus
a =ags=a.

If it is desired her that a=2, the parame-
ters a=b can be chosen according to the
amount of average error of the contours about
circular ones. From tables and discussions in
[19 and 20], and without loss of the acceptable
threshold value of 10% error, one can choose
a=b=0.6.

Using eq. (42-a or 42-b), with @ or an =0,
then;

a=N[1-2f(a,0)] H
(0.6)° +0.6

2=N|[1-2 >
(0.6 +2x0.6+1

gives N=8
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The corresponding 1-D filter response g (o)

will have a cutoff frequency @ which must
map onto the point wic, O in the a», a» -plane;
i.e.,

a sin @y

W =@y — 2 tan_l[ J =0336n rad-

1+ a cos w,

The sampled version of g(») which can be

written in a vector form G, taking the value of
the cutoff frequency into account, as:
G=[109 01 0 O O O O Q0

Where the order here, is as given in (18c) with
M=N. That is the order of G is (N+1)x1 = 9x1
for N=8.

Since N also denotes the degree of the
required mirror image polynomial P(z), thus,
an 8t degree mirror image polynomial is
needed to be designed. A computer program is
written to solve for the polynomial coefficient
an’s using the recursive egs. (21)— (34). By
running such a program with N=8 and G vec-
tor as in the above form, the polynomial P(z)
obtained as:

8
P(z)=ap+ Y an(z” + z‘"),
n=1

where
ao=0.1875000, a:=0.1752758 a»=0.1420495,
a3=0.09671304, a4=0.05, as=0.1060927,
=-0.01704951, a;=-0.03259761, and
as=-0.0187000
Thus, the numerator function P(z:1, z») can
be written as:

P(z1,25) = P(2) ; ( z - 06 ]( 25 — 0.6 J

14062 )(1+062,

The denominator function Q(zi1, z2) May be
written as:

8
2,406 ) [ 25406
Q (21)22) = :
1+O.6Zl 1+O.6ZQ

The partial transfer function of the prelimi-
nary 2-D IIR filter can be, readily formed as:

P (z1,25)
H (z,25) = —L22]
(z1.22) Q (z1,22)
or
H (z1,2) =

I_is a; {(z1 +06 ) (25 + 06 )" {1+ 0.6 7) (1 + 0.6 2)*

(z1 + 06 )10 (25 + 06 )1©

For a circular filter, a final overall 2-D
transfer function of the form given in eq. (46)
is required. Such a transfer function has the
amplitude response as in fig. 1 with its con-
tours shown in fig. 2. The group delays a,

along o and a, along a» are represented in

figs. 3 and 4, respectively. Note that, in figs. 3
and 4, the group delays are shown in the
passband only, for the purpose of clear
presentation. It can be easily seen that group
delay is nearly constant along each dimension.
Example 2: Elliptical-support filter:

Design an elliptical-support filter with a
passband region of elliptic shape with its
semi-major axis @, =0.6r rad., semi-minor

axis @, =0275r rad., and have a;= a,

The design:
The corresponding 1-D filter response g(w) will
have a cutoff frequency w, which can be

chosen to map onto the points (@, 0) and
(O,wQC ) in the o, w, -plane. On the same error

thresholds bases of example 1, one can choose
a=0.5, then:

R I = — IR

Maeninde Response
ISR N =)

Fig.1. Magnitude response of the 2-D IIR circularly-sym-
metric filter with ©;, =@y, =31/ 8 rad. And N=8.
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3.14 I
~ 1.57 /0/0—”,, N
< V2T
<
= 0.00 é """"""" 1.
N
o St
AN h.
S 1s7 S
-3.14
-3.14 -1.57 0.00 1.57 3.14

o, ( rad. )

=
@

. 2. Contour map of the magnitude response in fig. 1.

Grogp Delyy (S,

Fig. 3. Group delay response along @; for the circularly-

symmetric filter with a;=ag = 2.

Group Delay (Sec.)

Fig. 4. Group delay response along @; for the circularly-
symmetric filter with a; =ay =2.

a sin ;.

W =01 — 2 tan™! ( J =01 m rad

1+ acosm,

and

b sin @y j
_Ze- e |,

We = Woe — 2 tan~!
1+ b cos awy,

or

bsinawy . [QQC_G)CJZkl:l,

1+ b cos wye 2
thus,
b= fa =08-

~ sin o — Ik cos w2c
If a; is chosen to be 3.3, then at w; =0.

a2+a

a2+2a+1

33-Nl1-9 025+0.5
025+1+1

then N=10
The value of a, can be calculated easily

G.l:N 1-2

now using (42.b) with @, =0 this value is:

ap=10{1-2( 206408 Il_,
064 +2x08+1

It should be noted here, that only one of
the values a; or a, is needed to be assigned
in elliptical-support filter, because they are
sharing the same value of N, while a and b in
their expressions are dependent according to
the desired semi-major and semi-minor axes.

The vector G representing the sampled
version of the 1-D frequency response g(®)
can be written, with order (N+1) x 1= 11x 1, as
G™=[109 01 0 O O O O O O 0

After running the computer program with
the present G vector and N=10, the resulting
p(2) is given by:
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10
p(z)=ag+ > ay (z” + z_”),
n=1
where
a-=0.1500000, a1=0.1436852

a=0.1259017,  a3=0.0998105,
a;=0.06972136, as=0.04,
as=-0.014098297, a;=-0.0059908,
as=-0.0197236, a9=-0.02750491, and
a10=-0.015000000

Thus, the numerator function P(zi, z) can
be written as:

P(z1.23)=P(2) Z_[ 21 +0.5 ][ z5 +08 ]

1+052 )(1+08 2y

The denominator function Q(zi, z2) may be
written as:

1 10
z1 +0.5 0 z5 +0.8
Q (z1,22) = .
1+0.5 Z1 1+0.8 Z9

The partial transfer function of the prelimi-
nary 2-D IIR filter can be given by:

p
) G

or
H (z,29)=

10 . .
Y ai{(zy +05)zy + 0.8)] %H{(1 + 0.5 2, {1 + 0.8 2y O
i=-10

(z + 059z, + 0.8)°

To have an elliptic-support filter a final
overall 2-D transfer function of the form given
in (46) is required. The resulting amplitude re-
sponse and its contours are shown in figs. 5
and 6, respectively. While the group delays o
and a; are shown in figs. 7 and 8, respectively.

Example 3:

Fan filter: It is required now to design a 90°
fan filter.

The design: For the case of 2-D fan filter, the
DST is not a straightforward as in eq. (5). To

obtain a good approximation for a 90° fan
response, we use:

filz)=-22*+1, (47-a)
z1+a

__Zath 47-b

fal22) by 1 ( )

where |a|>1and |b|<1.

In this example, the choice for a and b is
done by proper guess for best approximation
of fan response. With a=-3.3 and p=-1/a=03,

we obtain fairly satisfactory fan shaped
response but not for points near the origin
(see fig. 9) with such values of a and b, a 1-D
amplitude response of cutoff frequency w, »

is required. Thus, the sampled version of such
response is given by the vector G as
G=[11 1 1 1 1 1 05 0
with N=8, the mirror image polynomial coeffi-
cients will have the following values:
ao=0.8750000, a;=0.1202424 a»=-0.1066941,
a3z=0.08941771, as=-0.0625, as=0.03858229,
as=-0.01830583, a7=0.00475754, and
as=-0.0

Thus, the numerator function P(z1, z) in
this case will take the following form:

P (z1,2)= P (2) z_[_3.3z1+1j[ 2,+03 ]

z1-33 1+03 2z

and the denominator function Q(zi, z2) may be
written as:

8
—3.3zl+18 29 +0.3
Q(z1.22)=| - .
zZ1 — 3.3 1+0.3 Zy

In this case, the partial transfer function
of the preliminary 2-D IIR filter can be ob-
tained as:

Plz,z,
H (Zl,zz) = AQ EZI z ))

8

Y a{(-1+33z)(z,+03)}"{(z,-33 ) (1+03 z,) I'"

_ i=8

(-1+332)° (2, +03)°
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X N

S 3
Q
:
QS

Fig. 5. Magnitude response of the 2-D IIR elliptical-sup-
port filter with @;,= 0.275 mw.wy,= 0.6 T rad.
And N = 10. Fig. 8. Group delay response along @, for the elliptical-

support filter witha, =1.1.

%14 An over all 2-D transfer function of the
= form given in (46) is also required here. The
£ 1.57 |— 4 7 A magnitude and group delay responses a; and
\': o of the designed fan filter are shown in figs.
~ 0.00 l 9.to 12. It can be seen that the filter response
P ' \ is not satisfactory as fan response due to
(= e nonlinearity with @ and @ possessed by
- -1.57 \\%vg =74 fl (z1) and £, (z5) which.leads'to have boundé_
~F ries that are not straight lines as seen in

3.14 eq. (6).

From the above three examples, It can be
concluded that the proposed method of design
o; (rad. ) given here, is an attractive approach for

designing 2-D IIR filter with the simultaneous

approximation of both, the prescribed magni-

Fig. 6. Contour map of the magnitude response in fig 5. tude response and the constant group delay
response over many types of passband re-
gions. It can also be seen that the same filter
realization can be used for circular and ellipti-
cal filters. The only need is to change the pa-
rameters a and b to obtain the desired pass-
band region. One limitation of this method of
design is that it can be used only for designing
filters with passband regions within w0, <097.

This is due to the limitations of the used DST
itself.

It may happen that the coefficient as as in
example 3 equals zero, which means that
there will be some reduction in filter realiza-
tion.

-3.14 _157 0.00 157 3.14

Group Delay (Sec.)

Fig 7. Group delay response along @; for the elliptical-
support filter witha; = 3.3.
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Fig. 10. Contour map of the magnitude response in fig. 9.

LICRIV (6C.7

(e

Fig. 11. Group delay response along @, for the fan filter
withe; =4.3.

Crowgp Ledpy (See?

Fig. 12. Group delay response along @, for the fan filter
witha, =4.3.

5. A comparative study

To examine the performance of the
proposed design method over the others, the
following example is chosen to be solved by
the proposed method in addition to two other
previous methods presented in [3 and 9]. The
comparison between the three methods is
evaluated based on the deviation in magnitude
and group delays according to the relative root
mean square (RMS) errors defined as:

@, Wy

1/2
{Z > [\ H (o1,@2) |~ Hg (@1.02)P }
E, = x 100 ’

172
{Z > [ Hg (@p02) P }

@ W3
(48)
and
passband 5 1/2
[ti (QI’GJQ) - ai]
_ (2] @y
E; = 73 x 100
passband
> a?
@ @3
fori=1and 2. (49)

The problem is to design a 2-D circularly-
symmetric LP filter with the following desired
magnitude specifications:
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1.0, for re[0.0,0.1]

0.8, for rel01,0.2]

0.44, for r e[0.2,0.3]

Hy(w1,00)=1 014, for re[0.3,0.4]
0.03, for re[0.4,0.5]

0.002, for r <[0.5,0.6]

0.001, for r e[0.0,1.0]

where , _ /(‘,12 +@2 /m, the group delays are

2
a=ay=N|1-2| ||
a“+a+1

From the very well known relationship for
H(jw)

N
h(0)+ > 2h(0)Ty, (cos ®)

n=1

H(jow) =

describing the frequency response of 1-D Zero
phase filter satisfying a Chebeshev response,
and where Tx(cos @) is an nth degree Cheby-
shev polynomial in cos @. h(n) are the impulse
response coefficients of the:
1-D filter.

For order, N=2. With a=0.3, and by apply-
ing the inverse DST from 2-D to 1-D on Ha (w1,
@»), we can obtain

Gt=1[1 0.001 O].

The same computer program is used to
obtain the 1-D polynomial coefficients. They
are

ao=0.2505, a:=0.25 and a=0.12475

Simulating egs. (48) and (49), the resulting
relative RMS errors are obtained as:

Ey =By, =407 and Ey, =5124.

Next, for N=4, and a=0.4, the vector Gt can
be obtained as:
Gt=]1 0.03 0.001 0.001 O].

with the following polynomial coefficients:

a0=0.1333333, a;=0.1301265
a3=0.1198734, and a4=0.058750

a=0.124750

The filter responses, which is shown in
figs. 13 to 15, approximate the designed
specifications with the following relative RMS
errors:

Ey, = Er, =166 and Ey, =2418 .

Maeniidb Response

Fig .13. Magnitude response of the circular filter in the
example under comparison with @, = 0.3 mwrad.

And N = 4.
S lg
g 5
N
_
- 4
S 0y o
N 0 HERES
AR :%t\
@ 4. ety : SR
0 y e ssarees :n:-'-"u"::u:..’
() [ SERREE : e tasatsoatete
£oos oeeer ety edes 3
2, | R KL
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R s et
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P i":'l,‘llnnl_n_u.l“ 003 e :
2, QR % ";”
@ % % Q®
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' ‘%’o' $N ";fi, ) &"’b.
©_J N >
R b [C4d

Fig .14. Group delay response along @; for the filter in

the example under comparison.
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Fig .15. Group delay response along @, for the filter in
the example under comparison.

The same example has been solved in [3
and 9]. Table 1 summarizes the error analysis
of our method and other two methods
proposed in [3 and 9]. From table 1, it can be
easily seen that our filter accuracy with order
(2, 2) is the best for the group delay errors but
not for the magnitude error. The group delay
errors for filters of (4, 4) order designed via our
method is better than those for the same filter
designed as in [3]. The magnitude error for
this filter order is of the same order as in [3].

The number of independent parameters is
the smallest for both filter orders against other
methods in [3 and 9]. This makes this method
much easier to implement one.

6. Stability and realization

It is known that if H(zi, z) represents
BIBO stable filter, then H(zi, z2) has no poles
in the closed unit bidisk and no nonessential
singularities of the second kind in the closed
unit bidisk, except, possibly, on the distin-
guished boundary of the unit bidisk [21 and
19].

Table 1
Error analysis in Example under comparison

The filter response of eq. (43) can be

rewritten as follows:
(=i-N)
JEz] e

It can be easily seen, that this response
looks like the DST of a low order linear phase
FIR filter H(z) where;

z1+a Zo+Db

1+b 2z

1+az

H (z1,25)= % a{[

i=-N

H(z) =P(z) zN . (51)

Thus,

zZ1+a 22+b

1+b22

H (21,2p) = H(z) _[

I

Since H(z) is a stable 1-D filter and it is
known that z = fi(z1) f2(z) is a stable DST. It
has been shown in [17 and 22] that if we
apply a 2-D stable DST to a stable 1-D filter
H(z), the resulting filter H(fi(z1) f2(z2)) is also
stable, and therefore has no poles inside the
closed unit bidisk in the z;, z>-biplane.

Instead of the direct realization of the
filter of eq. (43) the filter H(zi, 2z) in eq. (50)
can be easily realized as a parallel combina-
tion of cascaded 1-D 1st order all-pass
sections. Such a realization is shown in
fig. 16. It is known that using a parallel
realization will lead to an increase in the speed
of data transmission and a better sensitivity to
filter coefficients compared to the direct form.
A good reduction in the overall number of
multipliers in the system is gained, by the use
of minimal realization of each 1-D 1st order
all-pass section in the 2-D filter realization
(see fig. 17). The procedure for simulating the
performance of 2-D filter H(zi, z2) is carried
out as described in[3] by performing the input
and output data orientation.

] = filz1) fa(z2)

l+a z

Method Realization order EII EI2 Em Independent parameters
Proposed (2,2) 4.075 4.075 51.24 5
(4,4) 1.66 1.66 24.18 7
Of [3] (2,2) 17.05 12.86 34.21 17
(4,4) 9.32 8.18 24.36 33
Of [9] (2,2) 8.27 6.44 31.59 13
(4,4) 4.1x104 4.5x10+4 16.95 29
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2N o
H(z) [ Hyz)

a
N
I~
L
a
N-1 o r
HI(ZL) = Hz(zz)
| 2N+ 2N+
H(z) I H(z)

11

a
1
-N+1 -N+1
—|> HI(ZL) - Hz(zz)
0/p
-N-1 -N-1
— HI('/.L) — H}(zz)
a
0 -N || -N
_D_ HI(ZL) HE(ZZ)
Fig .16. Realization of the 2-D filter given in eq. (50).
1ip : .
-1
+ Zi
(A-1)
O (b-l) ) 4
>( ) —>
0/p

Fig .17. Minimal multiplier realization for each 1st order
1-D all-pass subfilter function H{l(zl-)in fig 16. if =1,

use (a=1) for the multiplier value and if =2, use (b-1).
6. Conclusions

As a final conclusion, one can say that in
this paper, an efficient design method for 2-D
I[IR filters with linear-phase has been
presented. The denominator of the 2-D IIR
function is a 2-D all-pass function Q(zi, z). It
presents an approximate constant passband
group delay response. The numerator function
P(z1, z) is originally a 1-D mirror image
polynomial P(z) designed to have zero-phase
and simulate a 1-D amplitude response for the
corresponding 2-D desired filter response. The
resulting 2-D filter presents the desired
amplitude response with linear phase in the

passband region. 2-D filters with circular,
elliptical and fan-shaped passband regions are
obtained according to the proper selection of
the parameters a and b in the used DST. It is
clear that the coefficients of the mirror image
polynomial {a;'s} control the corresponding

1-D filter specifications, while the parameters
a and b control the radius along the wi-and
an-axes, respectively and the overall shape of
the 2-D passband region. The stability of the
resulting filter is guaranteed. The proposed
design method needs less computational
efforts. The errors in magnitude and group
delay responses can take values of the same
order of their corresponding, in other two
previously published methods [3, 9Jor even
lower, while, it always happens that the no. Of
independent parameters is the lowest. This
obviously simplifies the implementation of
such filters. A realization of these 2-D filters
are given with reduced number of multipliers.
It should be noted that as N becomes larger,
the sampling density of the amplitude
response will be higher enough, such that the
vector G represents the desired response well.
At the same time as N increases, the
complexity of the filter will be higher. Thus,
appropriate values for N will give rise to a
suitable realization complexity with an
acceptable amplitude approximation.

Finally, It should be noted that the
method of design proposed here does not
belong to the optimal design family, since
neither of the functions which appear in the
numerator and denominator of the filter
response, be designed upon such bases.
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