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In this paper, a modified, easy to implement design method for 2-D linear-phase IIR digital 

filter is represented. In this dominator of 2-D IIR filter function is chosen as a 2-D all-pass 
function Q(z1, z2) which represents an approximately linear passband phase response. A 
mirror image polynomial P(z) of degree N is obtained to approximate a corresponding 1-D 
desired amplitude response. This polynomial P(z) is then transformed to 2-D function     
P(z1, z2) by applying the Digital Spectral Transform (DST). This 2-D function P(z1, z2) is used 
as the numerator of the overall 2-D transfer function H(z1, z2)= P(z1, z2)/ Q(z1, z2). The 
resulting H(z1, z2) belongs to a 2-D IIR digital filter with linear phase passband and could 

have circular, elliptical, or fan magnitude according to the proper selection of the only two 
parameters in the DST. The resulting filters are shown to be stable via the application of the 
one of the known stability test. The presented design method needs less computational 
efforts since it requires only to determine the 1-D mirror image polynomial coefficients. 

إن أهمية تصرفات طور المرشح الرقمي ذي البعدين لها نفس الأهمية المعروفة في تصرفات المرشحاات الرقميحة ذات  البعحد الوااحد 
ور واسب نوع التطبيق فان المرشحاات ذوات البعحدين بطح المستخدمة في نظم نقل المعلومات والنبضات ذات السعة الهائلة في النقل.

خطي مطلوبة ومرغوبة مهما يكن نوع التصرف المقداري سواءاً كان دائريا، بيضوياً، أو مرواياً وذلك لكفحاء  الاسحابية التحي تتمتح  
لقححد درس موضححوع تصححميم المرشححاات ذوات البعححدين  بهححا هححذم المرشححاات وايححا العححدد المختححلل للمضححارب المسححتعملة فححي بنائهححا.

ة من قبل عديد من البااثين. وكانت المسالة التي يجب الهحا هحي مسحالة التقريحب للمقحدار والطحور سحوية، وباستجابة النبضة اللامتناهي
ايا الصعوبة دائما في هذا المجال هحي كيفيحة الاصحول علحر تقريحب جيحد لخطيحة الطحور فحي مرشحاات اسحتجابة النبضحة اللامتناهيحة 

ضلة هي أن التصحرف الخطحي للطحور هنحا يتطلحب عئيسي في مثل هذم الميضمن استقرارية المرشح من هذا التقريب، ولعل السبب الر
أن تكون استجابة المرشح ذي البعدين تمتلك تماثلاً هرمشياً والتي يصعب الاصول عليها اتر في االة إضافة معدل للطحور منفصحل 

اا ماحورم سحهلة التطبيحق لتصحميم مرشحح يقدم هذا الب من نوع تام للمرور وهذم المعالجة كما هو معروف هي معالجة تقليدية قديمة.
ذي بعدين وبطور خطي في استجابة النبضة اللامتناهية. وفي هذا التصميم يتم اختيار مقام دالحة المرشحح ذي البعحدين باسحتجابة نبضحة 

ط دالحة المرشحح أمحا بسح تمثل تصرفاً خطيا للطور في المة التحرددات المحار  بصحور  مقربح . Q(z1, z2)لامتناهية كدالة تامة المرور
ليعطحي تقريبحاً للتصحرف  Nمحن صحنف صحور  المحرب  وبالدرجحة  P(z)فيتم اختيارها بخطوات تبدأ أولا بالاصحول علحر متعحدد احدود 

تمثححل  وباسححتخدام التاويححل الطيفححي الرقمححي  P(z1, z2)إلححر دالححة ببعححدين  P(z)المقححداري المطلححوب مححن المرشححح وبعححدها يححتم تاويححل
(DST) الدالححة ايحا تسححتخدم هححذمP(z1, z2) كبسححط للدالحة التاويليححة للمرشحححQ(z1, z2) P(z1, z2)=H(z1, z2).   إن دالححة الناتجححة

H(z1, z2)  تصف مرشااُ رقميا ذي بعدين استجابة لامتناهية النبضة(IIR)   ول  تصرف طور خطي ضحمن المحة التحرددات المحار
اً، أو مروايححاً وهححذا أمححر يسححير ويسححهل الاصححول علححر التصححرف وبالإمكححان جعححل التصححرف المقححداري اسححب الطلححب دائريححاً، بيضححوي

أمححا فيمححا يخححر اسححتقرارية المرشححح النححاتث فيبححين الباححا  ألمقححداري المرغححوب باختيححار عححاملين فقححط ضححمن التاويححل الطيفححي الرقمححي.
ج إلحر جهحد اسحابي اقحل محن إن طريقحة التصحميم المقدمحة هنحا تاتحا استقرارية من خلال اختبارها بإاحد  طحرق اختبحار الاسحتقرارية .

 سواها وذلك لان كل الجهد الاسابي المطلوب يتلخر في إيجاد عوامل ادود متعدد الادود نوع صور  المرأ . 
 
Keywords: 2-D IIR filter, McClellan transformation, Filter response, Delay response  

 

 

1. Introduction 

 

Recently many design methods have been 

successfully applied to the design of 2-D IIR 
filters with linear phase. Those methods unify 

the approximations of both magnitude and 

phase responses. 

The linear programming technique [1] is 

one of those methods, essentially based on the 

filter design approach presented in [2]. Al-

though, linear programming approach offers 
many advantages over conventional all-pass 

equalizer method, such as its drastic reduc-

tion of delay ripples. However, the linear pro-
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gramming approach is far from the optimal 

design because of its stability constraint as 

well as unnecessary weightings used in objec-
tive functions. Moreover, linear programming 

involves intensive computation. 

Alternatively, the design technique pro-

posed in [3] for 2-D IIR filters meets simulta-

neously the magnitude and group delay speci-

fication. A performance index has been chosen 
as a linear combination of three error func-

tions for magnitude and group delays. That 

index is then minimized iteratively to have the 

desired specifications. This technique has the 

advantage of always ensuring the filter stabil-
ity, whereas its encountered difficulties are 

computational complexity and convergence. 

Among the other methods for 2D IIR filters 

designed with simultaneous approximation of 

the desired magnitude and linear phase re-

sponses has been accomplished by consider-
ing a parallel connection of an all-pass subfil-

ters and cascaded delays as a basic section to 

ensure approximately linear phase [4]. The 

proposed filter can be designed directly in the 

2-D, z1, z2 domain to achieve 2-D IIR digital fil-
ters with circularly symmetric characteristics. 

In addition to the simultaneous approximation 

of the desired magnitude response and the 

passband linear phase characteristics, the 

structure obtained by this method requires 

only few parameters to be designed and has a 
very low sensitivity. A major drawback of this 

proposed method is that the stability of de-

signed all-pass filters is not always guaranteed 

because the unwrapped phase of the filter ob-

tained by this method is certainly continuous 
and periodic. This is not a sufficient condition 

for stability, but satisfies a necessary one. 

Thus, in many cases this method leads to 

unstable filters. 

In [5] a new methodology was presented. It 

based on considering an FIR model that repre-
sents the ideal filter response with linear 

phase. A linear phase IIR filter is then synthe-

sized as an approximation of the ideal FIR fil-

ter. It is a computationally intensive because 

of the use of computer-aided optimization 
technique. However the stability of the result-

ing IIR filters guaranteed since the obtained 

IIR filter are based on the FIR filter models. 

Alternative computationally-efficient tech-

niques include those using transformation of 

1-D filters (analog and/or digital). The 

McClellan transformation [6,7] in its general-

ized form was applied separately to the 
numerator and denominator polynomials of a 

1-D IIR filter functions and then by the use of 

several nonlinear optimization procedures a 2-

D IIR filter was achieved as presented in [8] 

and later on in [9-12], where the design 

philosophy is analogous to the equalizer 
method, i-e the magnitude and phase approxi-

mations are handled separately. Although this 

technique looks simple for a class of quadran-

tally symmetric 2-D filters. Nevertheless, the 

computation complexity still remains for non-
quadrantally symmetric filters. 

Unlike the above cited methods, the Digital 

Spectral Transformation (DST) first proposed 

in [13] was used for designing 2-D IIR filters, 

simultaneously approximating the prescribed 

magnitude response and constant group delay 
in the passband. 

This design method needs less computa-

tional efforts since it requires only to deter-

mine the 1-D mirror image polynomial coeffi-

cients. 
The origin of the DST and its analogy with 

the 2-D reactance function in addition to its 

properties are briefly indicated in section 2. 

The design method is represented in section 3. 

Section 4 includes design examples verifying 

this method. It also includes a comparative 
study between this method and others previ-

ously presented in the literature. Stability and 

realization conditions are treated in section 5.   

 

2. The DST and its origin 
 

It is well known that, a 2-D digital filter 

can really be designed from a 1-D analogue 

prototype after applying a bivariate reactance 

transformation followed by a Double BiLinear 

Transformation (DBLT) [13] and [14]. This 
technique is used here to find a stable direct 

1-D to 2-D DST. 

Consider the following bivariate reactance 

function as a General Analogue Transforma-

tion (GAT) from 1-D to 2-D case. 

 
21

21
21

PPC1

PBPA
P,Pag

GAT
P




  ,      (1) 

 
where A, B and C are positive constants. It is 

known that the application of the bivariate 
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reactance function  21 P ,Pag  leads to Bounded 

Input-Bounded Output (BIBO) stable digital 

filters which are free of nonessential singulari-

ties of the second kind [15 and 16]. Further-
more, C can suitably chosen to achieve a lo-

cal-type preservation on  




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with a and b as constants. Applying the DBLT, 

yields:  
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Thus, from (1) and (2), we obtain 
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However, it is well known that a bilinear 

transformation (BLT) is given by: 
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comparing (3) and (4), it can be seen that,  the  

GAT of (1) may easily be met by applying the 

following direct DST: 
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or equivalently 
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Thus, the equivalence of bivariate ana-

logue reactance functions and the product of 

two 1-D 1st-order all-pass digital functions 
(one in each dimension) is proved. 

It is worth to mention, here, that the 

above DST is similar to that proposed by [17 

and 18], but neither they specified its origin, 

nor pointed out its stability property due to its 

equivalency to the bivariate analogue reac-
tance functions. The DST in (5) has some 

interesting properties, which are: 

1. It is known that this DST is a stable   trans-

formation for 1a  and 1b  [17 and 18]. 

Thus, applying such DST to a stable 1-D 

prototype IIR filter leads to a stable 2-D IIR fil-

ter, although it is not separable. 

2. The DST is a product of two 1-D 1st-order 

all-pass functions which possess some nonlin-

earity with aω  and bω , where:  
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and 
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With 1j . Thus, the resulting 2-D 

filter will not have boundaries that are straight 

lines. This in turn provides the flexibility of 
the design according to some optimal value of 

the parameters a and b in the 1-D to 2-D 

mapping relationship which can easily be de-

rived from (5); 
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where 
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and  

 

aα 1  and bα 2  

 

3. The design of 2-D filters via this DST can be 
accomplished by choosing the parameters a 

and b for some acceptable error in the pass-

band contour. The amplitude response of the 

1-D prototype filter is preserved in the corre-

sponding 2-D filter depending on the parame-

ters a and b. The group delay along 2 or 2 is 
constant in the passband region. From (7), we 
can obtain:  
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i=1,2. 

 

Since 
i

i

ω

θ



  is nearly constant over the 

passband region, then it can be easily to use a 

1-D filter with linear-phase as a prototype 

filter and applying this DST, resulting in a 2-D 

filter preserving both amplitude response and 
linear-phase response characteristics in the 

1,2 plane. Such properties will be utilized in 

the next section in addition to the application 

of the DST in the design of 2-D IIR filters with 

linear-phase. 
 
 
 

3. The design procedure 

 

To design a 2-D IIR digital filter with a 
linear-phase (constant group delay), start by 

writing the transfer function of the filter in a 

general form: 
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It is chosen here, that the denominator 

function Q(z1, z2) contributes the all-pass lin-

ear-phase response, while the numerator 

function P(z1, z2) is originally a 1-D mirror im-
age polynomial P(z) of degree N so that it 
contributes zero phase. P(z) Is synthesized to 

approximate the corresponding 1-D amplitude 

response of the desired 2-D digital filter. The 
DST is then applied to the polynomial P(z)  to 

form the numerator function P(z1, z2). The 
synthesis of P(z)  Can be carried out as fol-

lows: 
P(z)  is a mirror image polynomial, which 

can be expressed by; 
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 jωeP  is required to meet the 

corresponding 1-D amplitude response  ωg  of 

the digital filter. To achieve such require-

ments,  mjω
eP  is chosen to mach the sampled 

version of the amplitude response  mωg  for m 

= 0, 1,…, M when 00 ω and πωM  . Thus, 

the error function  mωΕ  defined by: 
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is forced to be zero for m = 0, 1,…, M such as: 

 

  MmgeP m
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or  
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Eq. (16) can be rewritten in matrix form 

as: 

 
CA = G,              (17) 
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The system of equations given by (16) can 

be solved in an efficient manner by choosing  

 

Nπω,ω,NM  10 0 , and 

Nπωωωω mmmm   11   

 
The resulting C matrix will become 

symmetric, while A and G are column vectors 
of the order (N×1). Cholesky decomposition 

[19] is used for solving the matrix equation of 
(17). First, the matrix C is expressed in the 

form 
 
C= S R ST.             (20) 

 
Where S is a lower triangular matrix 

(whose main diagonal elements are all 1’s) and 
R is a diagonal matrix. The superscript T de-

notes matrix transpose. The elements of the 
matrices S and R are readily determined by 

solving for the (1, j)th  element of both sides of 

(20), giving:  
 






j

k

SrSC kjkkiji
0

  for  10  ij ,      (21) 

 
or 

 






1

0

j-

k

SrSCrS kjkkijijji
 for 10  ij ,       (22) 

 
and for the diagonal elements: 

 





i

k

SrSC kikkiii
0

 for 1i .        (23) 

 
Sii=1 

 
Sij=Sji 

 

or 
 








1
2

i

0k

rScr kkiiii .           (24) 

 

with 

 

1cr 000  .            (25) 

 
The recursive eqs. (21) to (25), can be used 

to solve for S and R matrices. Once these 

matrices have been determined, it is relatively 
simple to solve the column vector A in two-

step procedure. From (17) and (20), we get: 
 

S R ST A = G.            (26) 
 

Which can be rewritten as:  
 

SB = G,             (27) 
 

where 
 

R ST A = B,             (28) 
 

or 
 
ST A = R-1 B.             (29) 
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Thus, using the matrix S, (27) can be 

solved for the column vector B using a recur-

sion of the form: 

 

  jjiii b
1-i

0j

Sωgb 


  for 1iN  ,            (30) 

 
with initial condition: 

 

 00 ωgb  .            (31)  

 
Having solved for B, (29) can be solved 

recursively for A using the relation;  

 

jij
i

i
i a

N

1ij

S2
r

b
a2 



  for 1Ni1  ,      (32) 

 

and 
 






N
aS

r

b
a

1j

j0j
0

0
0 2 ,           (33) 

 

with initial condition, 

 

N

N
N

r2

b
a  .              (34)

  
It should be noted that, the index i in (32) 

proceeds backwards from i=N-1 to i=1  

 Knowing the coefficient matrix A, the mir-

ror image polynomial is then formed as in (11), 

i.e.; 
 

  




N

Nn

n
n zazp . 

 

Applying the DST of (5) to the polynomial 
p(z), we can obtain the numerator function 

p(z1 ,z2) as:  

 

  






































N

Nn

n

2

2
n

1

1
n21

zb1

bz

za1

az
az,zp .   (35) 

  
Where the parameters a and b are chosen 

according to the desired shape of the cutoff 

contours using the one-dimensional search 

method outlined with the associated tables in 

[17]. 

We arrive now at the stage of choosing an 
all-pass linear-phase (or approximately linear-

phase over the passband) denominator func-
tion Q(z1 ,z2). To do so, we recall for the simple 

idea of having a 1-D linear-phase FIR filter 
from a zero-phase filter p(z). This is usually 

done by multiplying the zero-phase filter re-
sponse by z-N where N is the degree of the 
zero-phase polynomial p(z). i.e., the resulting 

filter transfer function becomes: 

 

 
 
Nz

zP
zH  .            (36) 

 
Thus, Q(z1,z2) can be chosen as the DST 

the denominator in (36); i.e., 

 

 
NN
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,zzQ 
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




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


















2

2

1

1
21

11
.           (37) 

 
Q(z1 ,z2) represents an all-pass phase filter 

with a transfer function given by: 

 

 
 

 21

1
2

1
121

21
,zzD

z,zDzz
,zzQ

NN 

 ,        (38) 

 

where, 
 

     NN zdzc,zzD 2121 11  ,        (39) 

 
and c and d are constants, smaller than uni-

modulars. The phase response of Q(z1 ,z2) is 

given by: 
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

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 21
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


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
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
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


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






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ωd

ωd

ωc

ωc
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                (40) 

 
The group delay of Q(z1 ,z2) function along 

1 can be easily derived as: 
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 























1cos2

cos
2

1
2

1
2

1

21

ωcc

ωcc
NN

ω

,ωωφ  

 

or 
 

 
 1

1

21 2 c,ωfNN
ω

,ωωφ




 .         (41) 

 

Where  1c,ωf  takes nearly constant values 

over the passband along 1. Similar character-

istics can also be obtained along 2. 
In order to have such constant group delay 

over the same passband of the designed       
P(z1 ,z2), the values of parameters c and d in 

(37) are chosen to be equal to those of a and b 

in (35), respectively. Thus, the group delay of 

Q(z1 ,z2) function along 1 can be rewritten as: 
 

 
  1

1

21
1 21 a,ωfN

ω

,ωωφ
α 




 ,    (42-a) 

 

and along 2, it can be written as  
 

 
  2

2

21
2 21 b,ωfN

ω

,ωωφ
α 




 .      (42-b) 

 

The transfer function of the designed 2-D 
IIR filter can now be written partially as:  
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. (43) 

 
It can be reduced to:  
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2
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2
1
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11  

 
 211

211

,zzQ

,zzP
.             (44) 

 

It should be noted that, the DST of (5) 

exhibits half-plane symmetry, i.e., the con-

tours the first quadrant are symmetric to 

those in the third quadrant. To have similar 

contours in the second and fourth quadrant, 

the filter in (44) is cascaded with  1
21
-,zzH . The 

resulting filter becomes: 
 

     1
2121211
-

T ,zzH,zzH,zzH  .          (45) 

 

The filter response of (45) gives rise to four 

spurious passband regions in  πω,ω0 11  .  

To eliminate these undesirable small pass 

band regions, the filter in (45) may have to be 

cascaded with a low-pass filter   11 z,fH  

  22 z,fH . Thus, the overall filter response can 

be written as: 
 

     
     2211

1
212121

z,fHz,f H                

,zzH,zzH,zzH -
T 

.      (46) 

 

4. Illustrative examples 

 

To illustrate the design procedure pre-

sented in this paper three design examples are 
given: 
Example 1: 

Required to design a circularly-symmetric 

filter with passband edges πωω cc 8/321   rad. 

and linear-phase with 221 αα  

The design: 

Since, it appears from (42) that the group 
delays depend basically on the order N and on 

the parameters a and b. Thus, assignment of 

a and b first leads to the proper order N when 

the desired values of group delays along 1and 

2 (i.e., 1α and 2α )are originally given as a 

specifications. For circular filters a=b, thus 

ααα  21 . 

If it is desired her that a=2, the parame-

ters a=b can be chosen according to the 

amount of average error of the contours about 

circular ones. From tables and discussions in 

[19 and 20], and without loss of the acceptable 
threshold value of 10% error, one can choose 

a=b=0.6.  

Using eq. (42-a or 42-b), with 1 or 2 =0, 
then; 
 

  021 ,afNα   

 

  






























160260

6060
212

2

2

..

..
N   

 
gives N=8 
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The corresponding 1-D filter response  ωg  

will have a cutoff frequency c which must 

map onto the point 1c, 0 in the 2, 2 -plane; 
i.e., 

rad3360
cos1

sin
tan2

1

11
1 π.

ωa

ωa
ωω

c

c
cc 















  . 

 

The sampled version of  ωg  which can be 

written in a vector form G, taking the value of 

the cutoff frequency into account, as:  
 
GT= [1 0.9   0.1 0 0 0 0 0 0]  

 

Where the order here, is as given in (18c) with 
M=N. That is the order of G is (N+1)×1 = 9×1 
for N=8. 

Since N also denotes the degree of the 

required mirror image polynomial P(z), thus, 

an 8th degree mirror image polynomial is 

needed to be designed. A computer program is 

written to solve for the polynomial coefficient 

an’s using the recursive eqs. (21) (34). By 
running such a program with N=8 and G vec-

tor as in the above form, the polynomial P(z) 

obtained as:  
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8

1n

nn
n0 zzaazP , 

 

where 
a0=0.1875000,  a1=0.1752758 a2=0.1420495, 

a3=0.09671304, a4=0.05,     a5=0.1060927,  

a6=-0.01704951, a7=-0.03259761,  and 
a8=-0.0187000 

Thus, the numerator function P(z1, z2) can 

be written as: 
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The denominator function Q(z1, z2) May be 

written as:  
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The partial transfer function of the prelimi-

nary 2-D IIR filter can be, readily formed as:  
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For a circular filter, a final overall 2-D 

transfer function of the form given in eq. (46) 
is required. Such a transfer function has the 

amplitude response as in fig. 1 with its con-

tours shown in fig. 2. The group delays 1α  

along 1 and 2α  along 2 are represented in 

figs. 3 and 4, respectively. Note that, in figs. 3 

and 4, the group delays are shown in the 

passband only, for the purpose of clear 

presentation. It can be easily seen that group 

delay is nearly constant along each dimension. 
Example 2: Elliptical-support filter: 

Design an elliptical-support filter with a 

passband region of elliptic shape with its 

semi-major axis π0.6ω2c   rad., semi-minor 

axis π.ω c 27501   rad., and have 21 αα                            

The design: 

The corresponding 1-D filter response g(w) will 

have a cutoff frequency cω  which can be 

chosen  to map  onto  the  points  01 ,ω c   and 

 c,ω20  in the 21,ωω plane. On the same error 

thresholds bases of example 1, one can choose 

a=0.5, then:  

  
 

 

 

 

 
 

 

 

 

 

 
 

 
Fig.1. Magnitude response of the 2-D IIR circularly-sym-

metric filter with  8π/3ωω 2c1c  rad. And N=8. 
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Fig. 2. Contour map of the magnitude response in fig. 1. 

 

 
 

Fig. 3. Group delay response along 1ω for the circularly-

symmetric filter with 2 21 αα . 

 
 

 
 

 

Fig. 4. Group delay response along 1ω for the circularly-

symmetric filter with 2 21 αα . 
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If 1α  is chosen to be 3.3, then at 0ω1  . 
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then N=10 

The value of 2α  can be calculated easily 

now using (42.b) with 02ω  this value is:  
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1802640
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It should be noted here, that only one of 

the values 1α  or 2α  is needed to be assigned 

in elliptical-support filter, because they are 
sharing the same value of N, while a and b in 

their expressions are dependent according to 

the desired semi-major and semi-minor axes. 
The vector G representing the sampled 

version of the 1-D frequency response )(ωg  

can be written, with order (N+1) × 1= 11  × 1, as 
GT= [1 0.9   0.1 0 0 0 0 0 0 0 0]  

After running the computer program with 
the present G vector and N=10, the resulting 

p(z) is given by: 
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where 
ac=0.1500000,  a1=0.1436852 

a2=0.1259017,  a3=0.0998105,      

a4=0.06972136,   a5=0.04,   
a6=-0.014098297, a7=-0.0059908,  

a8=-0.0197236, a9=-0.02750491, and 

a10=-0.015000000 

Thus, the numerator function P(z1, z2) can 

be written as: 
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The denominator function Q(z1, z2) may be 

written as: 
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The partial transfer function of the prelimi-

nary 2-D IIR filter can be given by:  
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To have an elliptic-support filter a final 

overall 2-D transfer function of the form given 

in (46) is required. The resulting amplitude re-

sponse and its contours are shown in figs. 5 

and 6, respectively. While the group delays 1 
and a2 are shown in figs. 7 and 8, respectively. 

 
Example 3:  

Fan filter: It is required now to design a 90 

fan filter. 
The design: For the case of 2-D fan filter, the 

DST is not a straightforward as in eq. (5). To 

obtain a good approximation for a 90 fan 
response, we use: 
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where 1a and 1b .   

In this example, the choice for a and b is 

done by proper guess for best approximation 
of fan response. With a=-3.3 and ,.ab 30/1   

we obtain fairly satisfactory fan shaped 
response but not for points near the origin 
(see fig. 9) with such values of a and b, a 1-D 

amplitude response of cutoff frequency πωc   

is required. Thus, the sampled version of such 
response is given by the vector G as 

GT= [1 1 1 1 1 1 1 0.5    0]  

with N=8, the mirror image polynomial coeffi-

cients will have the following values: 
a0=0.8750000,  a1=0.1202424 a2=-0.1066941, 

a3=0.08941771, a4=-0.0625,  a5=0.03858229,  

a6=-0.01830583, a7=0.00475754,  and  
a8=-0.0 

Thus, the numerator function P(z1, z2) in 

this case will take the following form: 
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and the denominator function Q(z1, z2) may be 

written as: 
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In this case, the partial transfer function 

of the preliminary 2-D IIR filter can be ob-
tained as: 
 

 
 
 

         

   16

2

16

1

8

8

8

21

8

21

21

21
21

30331

3013330331

.zz.

z..z.zz.a

,zzQ

,zzP
,zzH

-i

ii

i














 

 



S.A. Alseyab et al. / Spectral transformation 

                                           Alexandria Engineering Journal, Vol. 44, No. 6, November 2005                                    875 

 
 

Fig. 5. Magnitude response of the 2-D IIR elliptical-sup-

port filter with π0.6ω .π0.275ω 2c1c   rad.  

And N = 10. 

 

 

 
 

 
Fig. 6. Contour map of the magnitude response in fig 5. 

 

 
 

Fig 7. Group delay response along 1ω for the elliptical-

support filter with 33.α1  . 

 
 

Fig. 8. Group delay response along 2ω for the elliptical-

support filter with 11.α2  . 

 

An over all 2-D transfer function of the 
form given in (46) is also required here. The 

magnitude and group delay responses 1 and 

2 of the designed fan filter are shown in figs. 
9.to 12. It can be seen that the filter response 

is not satisfactory as fan response due to 

nonlinearity with 1 and 2 possessed by 

 11 zf  and  22 zf  which leads to have bounda-

ries that are not straight lines as seen in       

eq. (6). 

From the above three examples, It can be 

concluded that the proposed method of design 
given here, is an attractive approach for 

designing 2-D IIR filter with the simultaneous 

approximation of both, the prescribed magni-

tude response and the constant group delay 

response over many types of passband re-

gions. It can also be seen that the same filter 
realization can be used for circular and ellipti-

cal filters. The only need is to change the pa-
rameters a and b to obtain the desired pass-

band region. One limitation of this method of 

design is that it can be used only for designing 

filters with passband regions within π.,ωω 9021  .  

This is due to the limitations of the used DST 

itself.  
It may happen that the coefficient a9 as in 

example 3 equals zero, which means that 

there will be some reduction in filter realiza-

tion. 
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Fig. 9. Magnitude response of the 90 fan filter with N = 8. 

 

 
 
Fig. 10. Contour map of the magnitude response in fig. 9. 

 
 

Fig. 11. Group delay response along 1ω for the fan filter 

with 34.1  . 

 

Fig. 12. Group delay response along 2ω for the fan filter 

with 34.2  . 

 

 
5. A comparative study 

 

To examine the performance of the 

proposed design method over the others, the 

following example is chosen to be solved by 
the proposed method in addition to two other 

previous methods presented in [3 and 9]. The 

comparison between the three methods is 

evaluated based on the deviation in magnitude 

and group delays according to the relative root 

mean square (RMS) errors defined as: 
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and 
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for i = 1 and 2.           (49) 

 

The problem is to design a 2-D circularly-

symmetric LP filter with the following desired 

magnitude specifications: 
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1   the group delays are 

 


































1
21

2

2

21
aa

aa
Nαα . 

 

From the very well known relationship for 
H(jω) 

 





N

n
n ωThhjωH

1

)(cos)0(2)0()(  

 

describing the frequency response of 1-D Zero 
phase filter satisfying a Chebeshev response, 
and where Tn(cos ω) is an nth degree Cheby-

shev polynomial in cos ω. h(n) are the impulse 

response coefficients of the: 

1-D filter. 
 For order, N=2. With a=0.3, and by apply-

ing the inverse DST from 2-D to 1-D on Hd (ω1, 
ω2), we can obtain 

 
Gt = [1 0.001 0]. 

 

The same computer program is used to 

obtain the 1-D polynomial coefficients. They 

are 
 
a0=0.2505, a1=0.25 and a2=0.12475  

 

Simulating eqs. (48) and (49), the resulting 

relative RMS errors are obtained as:  
 

2451and074
21

.Ε.τΕτΕ m  . 

 
 Next, for N=4, and a=0.4, the vector Gt can 

be obtained as: 
 
Gt = [1 0.03 0.001 0.001 0].  

 
with the following polynomial coefficients: 

 

a0=0.1333333, a1=0.1301265 a2=0.124750 
a3=0.1198734, and a4=0.058750  

 

The filter responses, which is shown in 

figs. 13 to 15, approximate the designed 

specifications with the following relative RMS 

errors: 
 

1824661
21

.Εand.τΕτΕ m  . 

 

 
 

Fig .13.  Magnitude response of the circular filter in the 

example under comparison with π0.3ω2  rad.  

And N = 4. 

 
 

 
 

Fig .14.  Group delay response along 1ω for the filter in 

the example under comparison. 
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Fig .15.  Group delay response along 2ω for the filter in 

the example under comparison. 

 

The same example has been solved in [3 

and 9]. Table 1 summarizes the error analysis 

of our method and other two methods 
proposed in [3 and 9]. From table 1, it can be 

easily seen that our filter accuracy with order 

(2, 2) is the best for the group delay errors but 

not for the magnitude error. The group delay 

errors for filters of (4, 4) order designed via our 
method is better than those for the same filter 

designed as in [3]. The magnitude error for 

this filter order is of the same order as in [3]. 

The number of independent parameters is 

the smallest for both filter orders against other 

methods in [3 and 9]. This makes this method 
much easier to implement one.  

 

6. Stability and realization 

 
It is known that if H(z1, z2) represents  

BIBO stable filter, then H(z1, z2)  has no poles 

in the closed unit bidisk and no nonessential 

singularities of the second kind in the closed 

unit bidisk, except, possibly, on the distin-
guished boundary of the unit bidisk ]21 and  

19[ . 

 

The filter response of eq. (43) can be 

rewritten as follows: 
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It can be easily seen, that this response 

looks like the DST of a low order linear phase 
FIR filter H(z) where; 

 
H(z) =P(z) z-N .             (51) 

 

Thus, 
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Since H(z) is a stable 1-D filter and it is 

known that z = f1(z1) f2(z2) is a stable DST. It 

has been shown in [17 and 22[ that if we 

apply a 2-D stable DST to a stable 1-D filter 
H(z), the resulting filter H(f1(z1) f2(z2)) is also 

stable, and therefore has no poles inside the 
closed unit bidisk in the z1, z2–biplane. 

Instead of the direct realization of the 
filter of eq. (43) the filter H(z1, z2) in eq. (50) 

can be easily realized as a parallel combina-

tion of cascaded 1-D 1st order all-pass 

sections. Such a realization is shown in        

fig. 16. It is known that using a parallel 
realization will lead to an increase in the speed 

of data transmission and a better sensitivity to 

filter coefficients compared to the direct form. 

A good reduction in the overall number of 

multipliers in the system is gained, by the use 
of minimal realization of each 1-D 1st order 

all-pass section in the 2-D filter realization 

(see fig. 17). The procedure for simulating the 
performance of 2-D filter H(z1, z2) is carried 

out as described in]3[ by performing the input 

and output data orientation. 
 

Table 1 

Error analysis in Example under comparison 

 

Method Realization order 1τ
Ε  

2τ
Ε  

mΕ  Independent parameters 

Proposed 
(2,2) 4.075 4.075 51.24 5 
(4,4) 1.66 1.66 24.18 7 

Of ]3[ 
(2,2) 17.05 12.86 34.21 17 
(4,4) 9.32 8.18 24.36 33 

Of ]9[ 
(2,2) 8.27 6.44 31.59 13 
(4,4) 4.1×10-4 4.5×10-4 16.95 29 
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Fig .16. Realization of the 2-D filter given in eq. (50). 

 

 
 

Fig .17. Minimal multiplier realization for each 1st order  

1-D all-pass subfilter function )(1
i

-
i zH in fig 16. if i=1,  

use (a=1) for the multiplier value and if i=2, use (b-1). 

 

6. Conclusions 

 
As a final conclusion, one can say that in 

this paper, an efficient design method for 2-D 

IIR filters with linear-phase has been 

presented. The denominator of the 2-D IIR 
function is a 2-D all-pass function Q(z1, z2). It 

presents an approximate constant passband 
group delay response. The numerator function 
P(z1, z2) is originally a 1-D mirror image 

polynomial P(z) designed to have zero-phase 

and simulate a 1-D amplitude response for the 

corresponding 2-D desired filter response. The 

resulting 2-D filter presents the desired 

amplitude response with linear phase in the 

passband region. 2-D filters with circular, 

elliptical and fan-shaped passband regions are  

obtained according to the proper selection of 
the parameters a and b in the used DST. It is 

clear that the coefficients of the mirror image 

polynomial }{ 'sai  control the corresponding   

1-D filter specifications, while the parameters 

a and b control the radius along the 1-and 

2-axes, respectively and the overall shape of 
the 2-D passband region. The stability of the 

resulting filter is guaranteed. The proposed 

design method needs less computational 

efforts. The errors in magnitude and group 
delay responses can take values of the same 

order of their corresponding, in other two 

previously published methods [3, 9]or even 

lower, while, it always happens that the no. Of 

independent parameters is the lowest. This 

obviously simplifies the implementation of 
such filters. A realization of these 2-D filters 

are given with reduced number of multipliers. 
It should be noted that as N becomes larger, 

the sampling density of the amplitude 

response will be higher enough, such that the 
vector G represents the desired response well. 

At the same time as N increases, the 

complexity of the filter will be higher. Thus, 
appropriate values for N will give rise to a 

suitable realization complexity with an 

acceptable amplitude approximation. 

Finally, It should be noted that the 
method of design proposed here does not 

belong to the optimal design family, since 

neither of the functions which appear in the 

numerator and denominator of the filter 

response, be designed upon such bases. 
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