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This paper studies a discrete time Geo/G/1/1 retrial queue with balking customers in 
which an arriving customer that finds the service facility busy will either join the infinite 

buffer orbit with probability 0  or leave the system with probability 1− 0 . Inter-retrial 

times are independent and follow a geometric distribution. Early arrival scheme is assumed. 
Analytic formula for the joint probability generating function of the remaining service time of 
the customer currently in the server and the number of customers in the orbit is derived. 
Moreover, the probability generating function of the total number of customers in the 

system is also obtained. Some special cases are considered. 

اصةة  اصةام مرةةر ة مةم لةم الةممق المتقاةال ممةق ال دمة  ةترةا تامة ةا  امةا تدرس هذه المقالة  اةارارا ذا موةاامت متةةرر  ا 
االةممق رةةةق اصةةام ال مةة ت ةترةةا تامة ةةا هيد ةةةال ال مةةةم الةةذ  ةغةد مرةةةم ال دمةة  مقةةمام  يةةد اصةةال   ةةد ة توةة  رمةةدار مي ةةا م 

ل الا ةةت رةةةق الموةةاامت ةترةةا تامة ةةا هيد ةةةال تةةح الوصةةام   ةةم الدالةة  المالةةد   −01أا ةمةةادر اليمةةاح راوتمةةام0راوتمةةام 

ل وتمامت لممق ال دم  المترقم ا دد ال م ت لم المدارل ةما تح الوصام   م الدال  المالد  ل وتمامت لإغمالم  ةدد ال مة ت لةم 
 اليماحل ت رض الروث ةذلك لر ض الوامت ال اص ل
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1. Introduction 

 

Recently, there is a great interest in 

analyzing discrete time queueing systems. 

This interest is motivated by the application of 
discrete time queueing systems in analyzing 

computer and communication systems work-

ing in a slotted time environment (see [1 - 3]). 

For example [1], the BISDN (broadband inte-

grated services digital network) provides a 
common interface for carrying different types 

of information including data, voice and video. 

Information in the BISDN is transported in 

discrete units of 53-octet ATM (Asynchronous 

Transfer Mode) cells. The time required to 

transmit such cells within the same system is 
constant and can be considered as the basic 

time slot. Analysis of such slotted time 

systems is based mainly on discrete time 

queueing systems.  

The research in the area of discrete time 
queueing systems focused mainly on discrete 

time classical queueing systems. Few works 

have appeared in the area of discrete time 

retrial queues [4]. One of the earliest papers in 

this field is that of Yang and Li [5]. They 

considered a discrete time Geo/G/1/1 retrial 

queue with geometric retrial times. They 

obtained the joint generating function of the 

number of customers in the server and in the 

orbit in the steady state. Moreover, they 

developed a recursive formula for computing 
the steady state probabilities. In [6], Li and 

Yang considered a discrete time PH/Geo/1/1 

retrial queue with geometric retrial times. A 

discrete time retrial queue with two types of 

customers was analyzed by Choi and Kim [7]. 
A similar model was studied by Li and Yang 

[8] where a recursive formula was presented to 

compute the marginal steady state 

distribution of the number of customers in the 

queue and in the orbit. A discrete time 

Geo/G/1/1 retrial queue with general retrial 
times was analyzed recently by Atencia and 

Moreno [4]. Nobel [9] considered a discrete 

time Geo/G/1/1 retrial queue with batch 

arrivals where the number of arrivals during 

any time slot follows a general distribution 
and the number of arrivals during different 

time slots are independent. 

In all of the above discrete time retrial 

queues models, the customers are assumed to 

be persistent. The customer can not depart 

from the system before his required service is 
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completed. A parallel study is needed for the 

case of impatient customers. Impatience in 

retrial queues is modeled by assuming that 
[10] an arriving customer to a busy server 

joins the orbit with probability 0 and departs 

completely from the system without being 

served with probability 1− 0  . Moreover, if 

upon making the nth retrial, a customer finds 

the server busy, he returns to the orbit with 

probability n  and departs from the system 

with probability 1− n . Three important 

choices for the probabilities n  appeared in 

the literature of the continuous time retrial 

queues [10]: (1) α0 < 1, n  = 1; n ≥ 1. (2) α0 = 

1, n  = α < 1; n ≥ 1. (3) n = α < 1; n ≥ 0. The 

first case represents balking customer, the 
second represents reneging customers and the 

third combines both types of customers. 

We are concerned here with balking 

customers. More specifically, we consider a 

discrete time retrial queue with geometric 

inter-arrival and inter-retrial times, general 
service times, one server, no queue and 

balking customers. System evolution is 

controlled by the early arrival scheme [11]. As 

in [5], we derive an explicit expression for the 

joint generating function of the number of 
customers in the orbit and the remaining 

service time. Moreover, the generating 

function of the total number of customers in 

the system (the server and the orbit) is 

derived. These generating functions could be 

used to extract important performance 
measures such as average system size and 

average waiting time. However, it seems hard 

to use the obtained generating functions to 

derive an explicit expression for probability 

distribution. Hence, in our incoming paper 
[12] we develop (starting from these generating 

functions) a recursive scheme to compute the 

steady state probabilities. For a parallel study 

concerning a similar system which is 

controlled by the late arrival scheme see [13]. 

This paper is organized as follows. In 
Section 2, we describe the mathematical 

model in more details and give the notations 

that will be used throughout this work. In 

Section 3, an explicit expression for the joint 

generating function of the number of 
customers in the orbit and the remaining 

service time of the customer in service is 

derived. Moreover, the generating function of 

the total number of customers in the system 
(the server and the orbit) is obtained. Some 

special cases are treated in section 4. 

Conclusion and some open problems are 

presented in section 5.  

 

2. The model 
 

We are concerned with a retrial queueing 

system with a single server and without a 

waiting room. It is assumed that the time axis 

is divided into intervals of equal length called 
time slots. All the system events occur at the 

boundary of these time slots. More 

specifically, the evolution of the system is 

controlled by the early arrival scheme [11]. In 

this scheme, it is assumed that the arrivals 

(either external or coming from the orbit) 
during time slot m (m ≥ 0) occur at the 

beginning of this time slot. On the other hand, 
service completion during time slot m occurs 

by the end of this time slot. During any time 
slot m, a single external arrival occurs 

(independently of all the other system events) 
with probability p. In other words, it is 

assumed that the time between consecutive 

arrivals follows a geometric distribution. If the 

arriving customer finds the server busy, then 

he joins an infinite orbit (to retry his demand 

later) with probability 0  and departs 

completely from the system with probability 

1− 0 . Service time (counted in time slots) of 

any customer is assumed to follow a general 
distribution sj, j = 1, 2, 3, ..., where sj = Pr{ 
service time = j time slots }. Customers in the 

orbit retry (independently of each other) their 

service during each time slot with probability 
1−r. In other words, the time between retrials 

for each customer follows a geometric 
distribution with parameter 1−r. If both an 

external arrival and a retrial occur at the same 

time and the server is idle, then the external 

arrival begins his service immediately and the 

other customer returns to the orbit to retry 

obtaining his service later. If no external 

arrival and more than one retrial occur at the 
same time to an idle server, then one 

customer is selected at random to start service 

and the other customers return to the orbit to 

retry obtaining their service later. 
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Define Nm to be the number of customers 

in the orbit at the beginning of the time slot m 

(m ≥ 0). Since a general service time 

distribution is assumed, we have to keep track 
of the remaining service time also. Define Xm 

to be the number of the remaining time slots 

for the customer in the server at the beginning 
of the time slot m (m ≥ 0). The system state is 

given by the two dimensional stochastic 
process {(Xm,Nm), m ≥ 0}. Since both inter-

arrival and inter-retrial times follow a 
geometric distribution, then the stochastic 
process {(Xm,Nm), m ≥ 0} is a Markov chain. The 

next section treats the problem of obtaining 

the steady state distribution of this process.  

 

3. Steady state distribution of {(Xm,Nm), 
    m ≥ 0} 

 
{(Xm,Nm), m ≥ 0} is a two dimensional 

Markov chain with state space {0, 1, 2, ...} × 
{0, 1, 2, ...}. Define Pi,k as the joint steady state 

probability of this stochastic process. More 
specifically Pi,k = Pr{Xm =i , Nm = k}. The joint 
probability generating function of Pi,k is given 

in Theorem 1 below. However, we have to 

define the following generating functions first:  
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Theorem 1 The joint probability generating 

function of Pi,k is given by: 
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Proof 

 

The balance equations of the Markov chain 
{(Xm,Nm), m ≥ 0} are given by: 
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together with the normalizing equation: 
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Multiplying both sides of (4) by zk, making 

summation from k = 1 to ∞, and using the 

boundary condition in (3) yields: 
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Substituting for R0(rz) in the above equation 

from (8) gives: 
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Multiplying both sides by xi and summing over 

i we get: 
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            (9) 

A relation between R0(z) and R1(z) can be 

obtained by putting x = 1− 0 p(1−z) in (9): 
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Substituting for R1(z) in (9) using the above 

equation we get: 
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Rearranging terms yields eq. (1) of the 
theorem. 

Now, in order to find R0(z), we 

substitute for R1(z) in (8) using (10). Hence, 
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where G(z) is as defined above. Applying (11) 

recursively we get: 
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Putting z = 1 in the above equation leads to: 
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In order to get R0(1) we set x = 1 and take the 

limit as z tends to 1 in (1), then: 
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From the normalizing equation (7) it is clear 
that R0(1) + P(1, 1) = 1. Hence, R0(1) has the 

following form: 
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Substituting with (15) into (13) and then 

substituting with the result into (12) yields 
R0(z) as given in (2). This completes the proof. 

Now we define Q(z) to be the probability 

generating function of the number of  

customers in the system including those in 

orbit and the one in the server. In other 

words, 
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where qk is the probability that there are k 

customers in the system. Hence, 
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Using (1), we obtain directly the following 

theorem: 
Theorem 2 The probability generating function 

of the steady state distribution of the total 

number of customers in the system is given 

by: 
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4. Special cases 

 
4.1. The Geo/G/1/1 retrial queue with 
   persistent customers 

 

When 0 = 1, we obtain the Geo/G/1/1 

retrial queue with persistent customers in 

which an arriving customer who finds the 

service facility busy will always join the orbit. 

In this case, the generating functions reduce 
to: 
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4.2. The regular Geo/G/1/1 queue.  

 

Setting 0 = 0 implies that an arriving 

customer who finds the service facility busy 

will depart immediately from the system. 
Therefore, the orbit will be always empty. This 
is represented by setting r = 1. This system 

can be viewed as a regular Geo/G/1/1 queue 

which has no waiting room. When 0= 0 and r 
= 1 we get G(rkz) = 1, R0(z) = 1/(1 + pS'(1)) and 

P(1, z) = pS'(1)/(1 + pS'(1)). Therefore, Q(z) 

reduces to: 
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This simple model can be analyzed using a 

different approach. The state transition 

diagram of this queueing system is shown in 
fig. 1. Thus, we can write the balance 

equations as follows: 
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Multiplying both sides of (23) by zk and taking 

summation from k = 1 to ∞ we get: 
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Rearranging terms yields: 
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Since H(1) = 1 then it follows that: 
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which represents the probability of an idle 

system. Consequently: 
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The results in (26, 27) coincide with those that 

can be extracted from (21). 
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Fig. 1. State transition diagram of the regular Geo/G/1/1 
queue. 

 
4.3. The Geo/Geo/1/1 retrial queue with 
       balking customers.  

 
We assume that the service time is 

geometrically distributed with parameter q, 

i.e.,
1)(  j

j qqs  for j ≥1, where 0 < q < 1 and 

q = 1 − q. Hence, we get: 
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This formula together with (1) and (2) 

represent the joint probability generating 
function of Pi,k. This system will be treated 

numerically in [12]. 

 

5. Conclusions 
 

Discrete time queueing systems have 

received a great interest in recent years 

because they are used in the modeling and 

analysis of modern communication systems. 

In this paper we analyzed a discrete time 
Geo/G/1/1 retrial queue with balking 

customers in which an arriving customer that 

finds the service facility busy will either join 

the infinite orbit with probability 0 or leave 

the system with probability 1− 0 . Inter-retrial 

times are assumed to be independent and 

geometrically distributed. Early arrival scheme 
is assumed. 

We derived analytic formulas for both the 

joint probability generating function of the 

remaining service time of the customer 

currently in the server and the number of 

customers in the orbit, and the probability 
generating function of the total number of 

customers in the system. These generating 

functions could be used to obtain important 

performance measures such as average 

system size and average waiting time. 
However, it seems hard to invert these 

generating functions to derive an explicit 

expression for the system size distribution. To 

resolve this problem, we present in our next 

paper [12], a set of recursive formulas for 

computing the required probabilities. 
The present work can be extended in many 

directions. Only balking customers case was 

considered. Other types of impatience have to 

be considered. The present queueing system 

has no waiting room. The extension of the 
obtained results to the finite buffer case is 

under investigation. The present work was 

directed to obtain the distribution of the 

system size. A parallel study is needed for 

analyzing other system characteristics such as 

waiting time and idle and busy periods.  
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