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This paper proposes an iterative technique for the approximate computation of complex 
eigenvalues corresponding to electromechanical oscillations in a power system. By this 
technique, the critical oscillatory modes in multimachine power system can be identified. It 
enables to identify the natural frequencies and the least oscillatory stability margin of the 
synchronous generators. The effectiveness of the method is described through the application 
to a multi-machine power system dynamic mode. 

بالاهتزازات الكهروميكانيكية في الأنظمة ريبية للجذور المركبة المتعلقة هذا البحث يقدم طريقة رياضية تجريبية للحسابات التق
الكهربائية. باستخدام هذه الطريقة يمكن تحديد الحالة الاهتزازية الحرجة للأنظمة الكهربائية  متعددة الآلات وكذلك تحديد الترددات 

الاستقرارية الاهتزازية للمولدات التزامنية. تقدم الورقة أيضا وصفا لفعالية هذه الطريقة بتطبيقها على حالة ديناميكية  الطبيعية وحدود
 لنظام كهربائي  متعدد الآلات.
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1. Introduction 

 

Power systems experience low frequency 
oscillations when subjected to disturbances. 

These oscillations may sustain and grow to 

cause system separation if no adequate damp-

ing is available. To enhance system damping, 

the generators are equipped with Power 

System Stabilizers (PSSs) that provide supple-
mentary feedback stabilizing signals in the 

excitation systems. PSSs extend the power 

system stability limit by enhancing the system 

damping of low frequency oscillations 

associated with the electromechanical modes 

[1–3].  Some of the earliest power system 
stability problems included spontaneous 

power system oscillations at low frequencies. 

These LFOs are related to the small-signal 

stability of a power system and are 

detrimental to the goals of maximum power 
transfer and power system security [4]. 

 

2. Statement of the problem 
 

Power system stability may be broadly 

defined as that property of a power system 

that enables it to remain in a state of 

operating equilibrium under normal operating 
conditions and to regain an acceptable state of 

equilibrium after being subjected to a 

disturbance [5]. Eigenvalue determination has 

been an integral component of the analysis of 
power systems for many years [6,7]. The 

efficient computation of eigenvalues for large-

scale problems requires that: 

1. Only certain modes are significant from the 

perspective of stability (i.e., solving the com-

plete eigen problem is not necessary), and 
2. Sparsity is preserved throughout the com-

putation. 

Proper preservation of sparsity requires 

that the entire problem be formulated as an 

augmented problem. One of the first efforts in 

this regard was the AESOPS algorithm [7]. 
This algorithm was limited to electrom-echani-

cal modes of a system and it finds the modes 

associated with each and every machine in 

turn by exciting the machine with a torque 

after shifting the system state matrix. This 
algorithm works well because the electrom-

echanical modes are generally the most 

important modes as far as electromechanical 

stability is concerned.  

The focus of this paper is the development 

of a method for determining the dominant eig-
envalues of a linearized mathematical model of 

a multimachine power system. The method 

enables to identify the critical generators. The 
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method can be used to develop an algorithm 

for determining the tuning parameters of ex-

citation controllers for the synchronous 

generators in complex power systems. The 
significance of this method comes from the 

necessity for a rapid and precise calculation of 

the limitations on the maximum power 

transfer, this is in turn is connected with the 

development of new and fast-acting methods 
and programs for the calculation of the 

steady-state modes, dynamic stability and 

oscillatory stability evaluation. 

 

3. The dominant eigenvalues 

 
Once the state space system for the power 

system is written, the stability of the system 

can be calculated and analyzed. The per-

formed analysis follows the traditional root-

locus (or root-loci) methods such as those 
discussed in [8,9,10]. First, the eigenvalues pi, 

i= 1,2,…,n, are calculated for the A-matrix, 

which are the non-trivial solutions of the 

equation: 

 

 ipA  .               (1) 

 

where  is an nx1 vector. Rearranging (1) to 
solve for p yields: 

 
det (A -p I) = 0.                                             (2) 

 
A is the nxn state matrix, the n solutions of 

(2) are the eigenvalues (p 1, p 2,..., p n) of A. 

These eigenvalues may be real or complex, 
and are of the form σ±jω. If A is real, the 

complex eigenvalues always occur in conju-
gate pairs.  Eigenvalues associated with an 

unstable or poorly damped oscillatory mode 

are called dominant modes since their contri-

bution dominates the time response of the 

system. The damped frequency of oscillation 

in Hertz is given by: 
 




2
f .                (3) 

 

The damping ratio is given by: 

 

)( 22 




 .          (4) 

The dominant eigenvalues are the eigen-

value pair closest to imaginary axis if they are 

already on the left hand side of the complex 

plane [11,12]. Experience shows that with a 
change in system mode of operation or  con-

troller tuning,  oscillatory stability is deter-

mined by the complex roots, whose imaginary 

part is found to be in the range from 0 to 10 

rad/s or from 20 to 40 rad/s.  
The connection of these roots with the 

transient process equations and the state 

variables can be formed with the use of the 

participation matrix: 

 

kiMM   , 

 

each element of which is determined by the 

formula kikiki V.WM  where kiki V,W  are k-th 

elements for the i-th right and left eigenvector 
matrix A of the system which are determined 

by the relations:  

 

00  i
T
ii

T
iiiii W,WpA.W,V,p.VV.A  

where ip  is the i-th eigenvalue.   

 

Left and right eigenvectors are overno-

rmalized in such a manner that: 
 

 

k

kikiVW 1 .   

 

4. Test system and analysis 

 
To evaluate the effectiveness of the 

proposed method, tests were carried out for 

the three-machines power system shown in 

fig.1, with the following parameters (in pu): 
Z13= 0.022+ j0.240; Z12 = 0.14 + j0.12; Z14 = 
0.010+j0.02; Z34 = 0.0091 + j0.08; Z23 = 0.0053 

+ j0.07;  Z24 = 0.047 + j0.13. The three pairs of 

dominant eigenvalue are: P1,2= -0.03 ±  j4.02;  

P3,4 = -0.17 ± j6.5; P5,6= -0.17 ± j5.3;  a pair of 

high frequency roots are also present;  P7, 8= -

7.92 ± j29.97.  

From table1 it is clear that the torque 
angle deviation Δδ and the bus power devia-

tion ΔЅ introduce the greatest contribution in 

low-frequency roots, while internal generated 
voltage deviation ΔEr and the variables 
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participating in the descriptions of the 

controller common channel introduce the 

greatest contribution into the high-frequency 

roots.     
Let the power system at small distur-

bances be described by the linearized  differ-

ential and algebraic equation: 

 

  0XpA ,                  (5) 

 
where X=(ΔX1, ΔX2,…, ΔXm)-  vector of var-

iables. 

 

 

 
Fig. 1. The Scheme for a system of three interconnected 

machines. 
 

Table 1  
The fragment of the participation matrix for the diagram 

of fig. 1                         
 

The 

variables 

                Root value 

P1,2 P3,4 P5,6 P7,8 

ΔEg1 0.1012 0.0036 0.0726 0.0545 

Δ Eg2 0.0050 0.0442 0.0011 0.0385 

Δ Eg3 0.0402 0.0132 0.0976 0.2262 

ΔS1 0.4308 0.0167 0.1831 0.0033 

Δ S2 0.0529 0.4365 0.0267 0.0048 

Δ S3 0.1425 0.0519 0.4554 0.0274 

Δδ1 0.3563 0.0154 0.1233 0.0008 

Δδ2 0.0596 0.3938 0.0265 0.0003 

Δδ3 0.1308 0.0432 0.3559 0.0015 

ΔEr1 0.0042 0.0004 0.0028 0.4383 

Δ Er2 0.0002 0.0034 0.0001 0.0178 

Δ Er3 0.0016 0.0009 0.0054 0.0142 

 

The elements of matrix A(p) are polyno-

mials,  they are determined from the transfer 

function of the individual controller channels, 

the rotor speed equations and the damping 
winding calculation.  Excluding from (5) all 

variables, except kX  that has the greatest 

participation in the formation of the desired 

root, at 
)0(

kPp  , we get: 

 

kk XBXp  2 ,                         (6) 

 
where B- complex number. 
 

BP
)(

k


1
, is the next approximation for the 

desired eigenvalue related to the k-th unit of 

the power system; in which the parameter 

kX  takes the greatest participation. Subst-

ituting the obtained value of 
)(

k
P

1
 in (5) and 

again excluding all variables, except kX . As 

a result, a precise value of 
)(

k
P

2
 will be 

obtained. This iterative process should be 
finished with the satisfaction of the condition 

|Re(
)i(

k
P -

)i(
k

P
1

)| < ε; where ε is the assigned 

accuracy of calcu-lation  and  Re(p) is the real 

part of the root. To obtain the dominant 

eigenvalues for the rema-ining  power system 

aggregates, analogous procedure  is imple-
mented. 

To check the convergence of the proposed 

method, a system of two generators connected 

to an infinite power bus with the absence of 

automatic voltage regulation is considered. 

Disregarding the damping circuit, the system 
stability may be investigated using the 

following model of standard well known 

notations: 
 

,)SpT(S

;S)SpT(

J

J

0

0

222
2

2121

212111
2

1








    (7)    

 

where; Tj1, Tj2  the inertia constants,  Δδ1,  Δδ2  

the torque angle deviations for generators 1 
and 2, respectively; p is the differential 
operator, S11, S12, S21, S22 the synchronizing 
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torque coefficients. Transforming the system 

(7) into the form of (6) at 
)0(p , we get: 

 

,Δδ
μ)(p

)(pμμμTTS
Δδ)(p

)(

)(
JJ)(

1
2

20

20
12121

2
12

1
21




      

            (8) 
 

where ;
T

S

J1

11
1   .

T

S

J 2

22
2   

 

Let the initial approximation 
)0(P   differs 

from the actual eigenvalue Pa by ΔP, neglecting 

the small second-order values, the first appro-
ximation on ΔP*, after a simple mathe-matical 

transformations, may be written in the 

following form: 
 

p
P

P
P

a

a* 





2
2

2
1




 ,        (9) 

 

or taking into account the actual  eigenvalue: 
 







 D)((P )a

2
2121

2

2

1
 , 

 

where  
21

2
12

4

JJ TT

S
D  , then       

.p
D.

D.
P* 






50

50

21

22




  

 

To improve the convergence of the iterative 
process (6), the condition |ΔP* |<| ΔP|  or 

D.

D.

p

p*

50

50

21

12













 <1  should be 

fulfilled. 
Examining the case for μ2 > μ1, a stable 

process for the root is obtained 
 

.D)()(.Pa 





 2

212150   

 

For μ1> μ2 a successful iteration will be 

noticed for the second pair of complex 

conjugate roots. 

In case of pure imaginary roots, The 

solution of system (7) takes the following form: 
 

),tcos(mc)tcos(mc

);tcos(c)tcos(c

22222112112

2221111









 

Where c1, c2, φ1, φ2 - constants of integration; 
m21, m22 – the distribution coefficients for the 

amplitude of oscillation, characterizing the 

relationship between the amplitude of oscilla-
tion for the angles Δδ2 and Δδ1 at frequencies 

of ω1 and ω2, respectively. The amplitude 

distribution coefficients are determined by the 

relations:   
 

2
12

1
2
2

221
12

1
2
1

21 JJ T
S

m;T
S

m











              

 

For μ2> μ1, the convergence of iter-ative 

process is satisfying the conditon |m21| >1; 
|m22|<1. 

Thus, the algorithm of iteration gives the 

solution for that root, in which the 

participation of state variable preserved in the 
rotational motion component of expression (8) 

is maximum. 
     For μ1= μ2, in order to achieve  the 

algorithm convergence to the root, 

characterizing the main motion of the system, 

and  possesses smaller damping, the synch-
ronizing power for only one of n generators 

relative to the outgoing bus is to be considered 

in (8).      

The results, in table 2, illustrate the 

working of the algorithm at different assigned 

initial values 
)0(p  for the example of fig. 1. 

The calculations were carried out at an 
assinged accuracy of ε = 0.0001. It is obvious 

that  the obtained result does not depend on 

the given initial values in the range from 0 to 

30 rad/s. The greatest number of iterations is 

observed for those cases, when the assigned 

initial values are equal to the values of the 
roots. For practical calculation, the eigen-

values obtained from the analysis of the 

preceded regimes may be taken as initial 

values. If they are absent, then from the 

frequency band characterized for the 
electromechanical oscillations, which does not 

usually exceed 8 rad/s. 
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Table 2   
The results of the eigenvalues’ calculation at various initial values 

 

 
 
 

 
Generator 

The results of the eigenvalues’ calculation at various initial values Number 
of iterations 

Initial values Obtained values 

Re Im Re Im 

1 0 

-0.1717 
-0.1724 
-7.9200 

6.29 

6.49 
5.13 
29.97 

-0.0329 

-0.0324 
-0.0323 
-0.0329 

4.0220 

4.0216 
4.0243 
4.0220 

7 

12 
17 
16 

2 0 

-0.1724 
-7.9200 

6.28 

5.13 
29.97 

-0.1715 

-0.1715 
-0.1715 

6.4990 

6.4990 
6.4990 

3 

8 
7 

3 0 
-0.1717 

-7.9200 

6.28 
6.40 

29.97 

-0.1727 
-0.1730 

-0.1727 

5.1300 
5.1300 

5.1300 

7 
8 

12 

 

5. Conclusions 
 

1. The proposed approach gives the possibility 

of presenting the mathematical model of the 

power system in the form of transfer functions 

without the transformation into Cauchy's 

form.  
2. The analysis of the eigenvalues obtained by 

the proposed algorithm enables to reveal the 

generator of a complex root with the smallest 

attenuation factor, and to determine the 

generators’ natural  frequencies.  
3. The developed approache allows effectively 
using the state matrix A(p), and consequently, 

carrying  out investigation on the schemes of 

significant complexity in sufficiently short 

time. 

4. The iterative procedure of the propsed met-
hod possesses a satisfactory convergence.  
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